From: John Tibaldi
Sent: Sunday, 16 January 2011 8:17 AM
To: 'Duty Engineer'; John.Ruffini; Rob.ayre
Subject: Updated, note end pages and green bold text
INTRODUCTION

Wivenhoe Dam was constructed by the Queensland Government between 1977 and 1984. The dam is a 56 metre high, 2.3 kilometre long earth and rock embankment separated into two parts by a concrete gravity spillway. The spillway is controlled by 5 radial gates, each 12.0 metres wide by 16.0 metres high. Two saddle dam embankments are located on the left side of the reservoir.

The dam spillway capacity was upgraded in 2005. This was done primarily through the construction of a 164 metre wide secondary spillway through the right abutment of the existing dam. This spillway contains three erodible earth fill fuse plug embankments that are initiated at different dam levels in excess of EL 75.6.

The dam has two main functions by providing:

- A 1,165,000 ML storage at full supply level (FSL EL 67.0) providing an urban water supply for Brisbane and surrounding areas;

- Flood mitigation in the Brisbane River by providing a dedicated flood storage volume of 1,450,000 ML up to EL77 (this flood level was increased as part the 2005 upgrade to allow a water level of EL80m and a temporary flood storage volume of 2,000,000 ML with all fuse plugs initiated and the dam at the point of failure).

The dam has an EXTREME hazard classification under ANCOLD guidelines because of the significant development downstream in the Brisbane and Ipswich metropolitan areas, with the population at risk in the event of a dam failure numbering in the hundreds of thousands.

In accordance with the Queensland Regulatory program for dam spillway upgrades, a further upgrade of Wivenhoe Dam is scheduled to occur prior to 2035 to enable the dam to safely pass the Probable Maximum Flood. This work will involve the reconstruction of Saddle Dam 2 as a fuse plug spillway.

Wivenhoe Dam is in excellent condition. Comprehensive Dam Safety reviews undertaken in accordance with ANCOLD guidelines have been undertaken in 1997 (Gutteridge, Haskins & Davey Pty Ltd), 2003 (Wivenhoe Alliance), 2006 (NSW Department of Commerce), 2009 (GHD) and September 2010 (Seqwater). The reports concluded that the design of the dam
is in accordance with modern day standards and that there are no significant outstanding
design or construction issues that require investigation.

WIVENHOE DAM FLOOD MITIGATION AND FLOOD OPERATIONS

Flood Mitigation

The Brisbane River catchment covers an area of approximately 14,000 square kilometres of
which about half is below Wivenhoe Dam. Maximum overall flood mitigation effect is
achieved by operating Wivenhoe Dam in conjunction with Somerset Dam. Although
Somerset and Wivenhoe Dam reduce flooding in Brisbane City, major flooding can still
occur. The Lockyer-Laidley Valley drains into the Brisbane River through Lockyer Creek that
enters the Brisbane River just downstream of Wivenhoe Dam near Lowood. Another major
tributary, the Bremer River, flows into the Brisbane River at Moggill. Wivenhoe dam has no
control over inflows into the Brisbane River from both these major tributaries.

Wivenhoe Dam mitigates downstream flooding by storing incoming flood water during a
rainfall event and releasing these waters at a reduced flow rate downstream to reduce flood
impacts. The timing of the releases is also manipulated so that the aim is for outflows from
the dam to impact on downstream areas only after the peak inflows from the Brisbane
River's major tributaries have passed. However this aim cannot always be achieved in
practice. This is because some large floods, such as the one currently being experienced,
have the potential to overflow the dam's flood storage compartment. Should this occur,
the dam would fail and the resulting damage and loss of life would be at least 100 to
1000 times greater than that currently being experienced.

Therefore the basis of all flood operation decision making is to ensure the dam never
fails. This is the reason that the dam's flood storage compartment would never be
intentionally fully filled as additional inflows after this point would result in a dam
failure.

Flood Operations

A real time flood monitoring and forecasting system has been established in the Wivenhoe
and Somerset dam catchments. This system employs radio telemetry to collect, transmit
and receive rainfall and stream flow information. The system consists of around 230 field
stations that automatically record rainfall and/or river heights at selected locations in the dam
catchments. Most of these field stations are owned by Seqwater with the remainder belonging to other agencies.

The rainfall and river height data is transmitted to Seqwater’s Flood Operations Centre in real time. Once received in the Flood Operations Centre, the data is processed using a Real Time Flood Model (RTFM) to estimate likely dam inflows and evaluate a range of possible inflow scenarios based on forecast and recorded rainfall in the dam catchments. The RTFM is a suite of hydrologic computer programs that utilise the real time data to assist in the operation of the dams during flood events.

Seqwater engineers use the RTFM for flood monitoring and forecasting during flood events to operate the dams in accordance with a Manual of Flood Mitigation (the origin of and objectives and procedures contained in the Manual of Flood Mitigation are explained in the following section of this document). Releases of water from the dams are optimised to minimise the impacts of flooding in accordance with the objectives and procedures contained in a Manual of Flood Mitigation.

MANUAL OF FLOOD MITIGATION FOR WIVENHOE AND SOMERSET DAMS

The original Manual of Flood Mitigation for Wivenhoe and Somerset dams was developed in 1992 during an extensive hydrological study of the Brisbane and Pine Rivers catchments by DPI, Water Resources that was reviewed by an external expert panel. Subsequently, the Manual was extensively reviewed during the Brisbane Valley Flood Damages Minimisation Study in 2006, with the latest comprehensive review of the Manual undertaken in 2009. Both of these reviews have included expert review panels comprising key stakeholders.

The Manual of Flood Mitigation is prepared by Seqwater as the owner of the dam and approved and gazetted by the Chief Executive of DERM in accordance with the Water Supply Act 2008. The manual defines flood objectives procedures; roles and responsibilities; and staffing and operational requirements for flood events impacting on Wivenhoe and Somerset dams.

The primary objectives of the procedures contained in the flood manual are, in order of importance:

- Ensure the structural safety of the dams;
- Provide optimum protection of urbanised areas from inundation;
• Minimise disruption to rural life in the valleys of the Brisbane and Stanley Rivers primarily, this involves minimising inundation of the six bridges below the dam upstream of Moggill);
• Retain the storage at Full Supply Level at the conclusion of the Flood Event.
• Minimise impacts to riparian flora and fauna during the drain down phase of the Flood Event.

During an event, the operation of the dam transitions between the following four operating strategies depending of the circumstances at the time. These procedures associated with these strategies are explained in detail in the Manual.

• **Strategy W1** – Primary consideration is given to Minimising Disruption to Downstream Rural Life. Under this strategy, the predicted water level is below 68.50 m AHD and the maximum release is 1,900m3/s.

• **Strategy W2** – Transition Phase moving from Minimising Disruption to Protecting Downstream Urban Areas. Under this strategy, the water level is predicted to be between 68.5 and 74.0 m AHD and the maximum release is less than 3,500m3/s.

• **Strategy W3** – Primary consideration is to Protect of Urban Areas from Inundation. Under this strategy, the water level is predicted to be between 68.5 and 74.0 m AHD but the maximum release is less than 4,000m3/s.

• **Strategy W4** – Primary consideration is to protecting the structural safety of the Dam. Under this strategy, the water level is predicted to exceed 74.0 m AHD and there is no limit to the maximum release. Consideration is given to managing flood releases to avoid fuse plug initiation if at all possible as this would compromise flood mitigation capacity in the short to medium term.

In addition to these strategies, historical records show that there is a significant probability of two or more flood producing storms occurring in the Brisbane River system within a short time of each other. Accordingly for each flood event, the aim is always to empty stored floodwaters within seven days after the flood peak has passed through the dams.
JANUARY 2011 FLOOD EVENT

Background
In the 25 days leading up to the current event, three flood events impacting on Wivenhoe Dam were experienced, with gate releases being made on all but five of those days. The details of these events are as follows:

<table>
<thead>
<tr>
<th>EVENT</th>
<th>EVENT START DATE</th>
<th>EVENT END DATE</th>
<th>VOLUME RELEASED (ML)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>13/12/2010</td>
<td>16/12/2010</td>
<td>70,000</td>
</tr>
<tr>
<td>2</td>
<td>17/12/2010</td>
<td>24/12/2010</td>
<td>150,000</td>
</tr>
<tr>
<td>3</td>
<td>26/12/2010</td>
<td>02/01/2010</td>
<td>470,000</td>
</tr>
</tbody>
</table>

During these events, pressure was experienced from residents impacted by bridge closures downstream of the dam to curtail releases as soon and as quickly as possible. Additionally the end date of the final event meant that significant drain down of the dam prior to the onset of the current event that commenced on 6 January 2011, was not possible without major bridge inundation downstream of the dam and without exceeding minor flood levels in the lower Brisbane River.

Additionally, a flood event was also experienced in October 2010 that resulted in a release of 750,000ML from the dam. Accordingly drain down below the dam full supply level prior to the start of the first December event would not have been possible without significant bridge inundation and without exceeding minor flood levels in the lower Brisbane River.

Regardless, significant drain down, prior to the current event would have had little impact on final flood levels as shown in the graph below. This is reinforced by a engineering report completed by SunWater in 2001 entitled “Feasibility of Making Pre-Releases from SEQWC Reservoirs.”
Event Decision Making

The following table contains a summary of the key decisions points associated with the current event. As at 16 January 2011, the event remains in progress.

<table>
<thead>
<tr>
<th>DATE AND TIME</th>
<th>FLOOD EVENT MILESTONE</th>
</tr>
</thead>
<tbody>
<tr>
<td>07:00 06/01/2011 (Thursday)</td>
<td>Rainfall is experienced in the dam catchments that will result in flood releases, however Wivenhoe releases are delayed for 24 hours to allow Lockyer Creek flood flows to pass downstream and prevent the isolation of the community dependent of Burtons Bridge. The forecast is for 150mm over the next 24 hours.</td>
</tr>
<tr>
<td>15:00 07/01/2011 (Friday)</td>
<td>Wivenhoe releases commence, with operational strategy W! in use. Rainfall for the next four days is estimated to be between 140mm and 300mm, with a forecast for rain easing on Tuesday 11 January 2011. All bridges downstream of the dam with the exception of Fernvale Bridge and Mt Crosby Weir Bridge are expected to be inundated for a number of days.</td>
</tr>
<tr>
<td>06:00 09/01/2011 (Sunday)</td>
<td>Rain periods forecast until Tuesday, but both Wivenhoe and Somerset dam levels were falling slowly, with Somerset at 1.27 meters above FSL and Wivenhoe 1.58 metres above FSL.</td>
</tr>
<tr>
<td>15:30 09/01/2011 (Sunday)</td>
<td>Following significant rain during the day a meeting of Duty Engineers is held. The QPF issued at 16:00 indicates 50mm to 80mm over the next 24 hours. Based on this forecast it is anticipated that dam levels can be held to a maximum of 3.50 metres above FSL in Somerset and 5.5 metres above FSL in Wivenhoe. However by 19:00 it was apparent that both Fernvale Bridge and Mt Crosby Weir Bridge would be inundated by dam releases and that the operational strategy had progressed to W2.</td>
</tr>
<tr>
<td>06:30 10/01/2011 (Monday)</td>
<td>Rainfall continued during the night and based on rainfall on the ground it was apparent the operational strategy had progressed to W3.</td>
</tr>
<tr>
<td>06:30 10/01/2011</td>
<td>Rainfall continued during the day but based on rainfall on the ground,</td>
</tr>
<tr>
<td>Time</td>
<td>Date</td>
</tr>
<tr>
<td>------------</td>
<td>------------</td>
</tr>
<tr>
<td>(Monday)</td>
<td></td>
</tr>
<tr>
<td>08:00</td>
<td>11/01/2011</td>
</tr>
<tr>
<td>11:00</td>
<td>11/01/2011</td>
</tr>
<tr>
<td>21:00</td>
<td>11/01/2011</td>
</tr>
<tr>
<td>22:00</td>
<td>11/01/2011</td>
</tr>
<tr>
<td>08:00</td>
<td>12/01/2011</td>
</tr>
<tr>
<td>21:00</td>
<td>13/01/2011</td>
</tr>
<tr>
<td>09:00</td>
<td>17/01/2011</td>
</tr>
</tbody>
</table>

Flood Mitigation Benefits of Wivenhoe Dam

The following graphs and tables demonstrate the significant benefits of Wivenhoe Dam in mitigating the current flood event, with reductions in flood peak of up to 2.5 metres in the City Area and up to 5.5 metres in the Moggill area. Reductions in flood
level between these two points would be up to between 2.5 to 5.5 metres depending upon location. This equates to a saving in damages in the order of $1.6 billion up to based on current damage curves.
The strategy adopted to quickly close off releases once the peak in the dam had been reached and rain stopped falling certainly reduced the predicted flood peak by at least one metre in the lower Brisbane River area. This notion is supported by BOM.

EVENT REVIEW

Under the Manual of Operational Procedures for Flood Mitigation at Wivenhoe Dam and Somerset Dam that are approved and gazetted by the Department of Environment and Resource Management there is a regulatory requirement that a report must be prepared as per the below wording:

“Seqwater must prepare a report after each Flood Event. The report must contain details of the procedures used, the reasons therefore and other pertinent information. Seqwater must forward the report to the Chief Executive within six weeks of the completion of the Flood Event.”

Such a report was prepared for the flood events of February and March 2010 and copies are available. A copy of the Table of Contents of that report are included as Appendix 1. For this event, the report would be a comprehensive summary of all procedures, actions, outcomes and processes during the event.

The review would be initiated within two weeks of the final close out of the current flood event to allow the Flood Operations Centre to demobilise and recover. However this is dependent on any further rainfall resulting in gate operations. Predictions indicate that this is a possibility. It is anticipated that such a comprehensive review and report would take approximately 4 weeks to complete. Review of the report would then be done by the Dam Regulator. The Flood Manual review would take considerable time after that as it will require considerable investigation and consultation.

In the interim, the report attached to this briefing note would provide a basis for comment on the event and communication to the public or media.

It is recommended that the process for such a report be:
- Seqwater prepare the report as per the requirements of the Act and the gazetted manual and any requirements of the Dam Safety Regulator.
- The report would then be reviewed by the Dam Safety Regulator in conjunction with any peer review they require.
- It is anticipated that one outcome of this report would be a public document that would add to any other reviews of the event being done.
- Based on this review, a review of the Manual of Operational Procedures for Flood Mitigation at Wivenhoe Dam and Somerset Dam would occur utilising an expert panel of review including representatives of DERM, Seqwater, BoM, affected Local Governments and other stakeholders as necessary. This would include taking into account Brian Coopers review and communications processes.