original
 - . .nvl
 Queensland Floods Commission of Inquiry

Statement of John Ruffini

Vol 1
January 2012

QUEENSLAND FLOODS
 COMMISSION OF INOUIRY

STATEMENT OF JOHN LAWRENCE RUFFINI NO. 3

I, JOHN LAWRENCE RUFFINI of c/- 41 Boggo Road, EcoSciences Precinct, Dutton Park, Brisbane Queensland, Director, Water Planning Sciences Branch, Environment and Resource Science Division, Operations and Environmental Regulator Business Group, Department of Environment and Resource Management ("DERM"), make oath and state as follows:

Requirement from Queensland Floods Commission of Inquiry

1. I have seen a copy of a letter dated 25 January 2011 (attachment JLR-17), from the Commissioner, Queensland Floods Commission of Inquiry (the 'Commission') to me requiring a written statement under oath or affirmation, which is attachment JLR-17 ("Requirement") and which details the topics my statement should cover.

Previous statements and role

2. I have previously provided 2 sworn statements to the Commission dated 24 March 2011 and 17 May 2011.
3. Paragraphs 17 to 20 of my statement dated 24 March 2011 provides details of my current role and employment at DERM.
4. Paragraphs 21 to 27 of that statement provides details of my duties as a Flood Operations Engineer.
5. I have also previously attended an interview conducted by Ms Lisa Hendy and Ms Susan Hedge of the Queensland Floods Commission of Inquiry on 29 March 2011 at 10:00am in relation to matters concerning the operation of Wivenhoe and Somerset Dams. Relevant extracts from the transcript of this interview discussing my involvement in the preparation of the January 2011 Flood Event: Report on the Operation of Somerset Dam and Wivenhoe Dam: 2 March 2011 is attached at attachment JLR-18.

Involvement in the creation of the following parts of the January 2011 Flood Event: Report on the Operation of Somerset Dam and Wivenhoe Dam, 2 March 2011:

Item 1: Executive Summary

6. My involvement in relation to the creation of the Executive Summary to the January 2011 Flood Event: Report on the Operation of Somerset Dam and Wivenhoe Dam: 2 March 2011 (the "Report") primarily involved reading,
reviewing and endorsing that the contents accurately reflected the operations of Somerset and Wivenhoe Dams during the January 2011 flood events.
7. I reviewed the Executive Summary in various draft forms during the creation of the Report prior to its release in early March 2011. There was one master copy of the Report (which was broken up into the various parts) saved on the computer server at the Flood Control Centre however, the Executive Summary was continuously updated and revised as parts of the Report were completed. The Executive Summary (as well as other parts of the Report) could only be opened and edited by one person at any one time but I recall that parts of the document could be opened by multiple persons at the same time for viewing purposes only. I am unsure of the specific dates or times which I reviewed and provided input into the Executive Summary however, I did provide some comments and edits to the Executive Summary for consideration. I do not recall specifically the edits, comments or additions made at the time.
8. The writing, reviewing and editing process of the Report was primarily conducted in the Flood Control Centre. I would either be provided with a hard copy of the current version of the Executive Summary which I would annotate with edits, additions or comments or alternatively, edits were made in track changes mode on the master version of the various parts of the Report and saved electronically for consideration by the primary author/editor. Any hard copies of the Executive Summary containing edits or comments would be provided back to the primary author/editor for consideration by being placed in a physical box located at the Flood Control Centre.
9. I did not keep copies of any comments I made in reviewing the Report as Seqwater's processes for editing the report was generally confined to within the Flood Control Centre.
10. Seqwater may have saved progressive draft versions of the Report and its various parts electronically.
11. I was not the primary author/editor of the Executive Summary to the Report however I reviewed and endorsed that its contents were accurate to my knowledge at the time of its completion.

Item 2: Part 2 - Flood Event Summary

12. My involvement in relation to the creation of Part 2 - Flood Event Summary ("Part 2") to the Report primarily involved reading, reviewing and endorsing that the contents accurately reflected the operation of Somerset and Wivenhoe Dams during the January 2011 flood events.
13. I reviewed Part 2 in various draft forms during the creation of the Report similar to my review of the Executive Summary described above.
14. I primarily focussed my review of Part 2 on the flood event summaries provided for the periods that I was rostered on as a Duty Flood Operations Engineer. The
periods which I was rostered on is detailed at pages $35-36$ of the Report however, these periods were:

- Friday 7/1/11 from 7:00 PM to Saturday 8/1/11 7:00 AM
- Sunday 9/1/11 from 7:00 PM to Monday 10/1/11 7:00 AM
- Monday 10/1/11 from 7:00 PM to Tuesday 11/1/11 7:00 AM
- Tuesday 11/1/11 from 7:00 PM to Wednesday 12/1/11 7:00 AM
- Tuesday 11/1/11 - assisted from 1:00 PM to 7:00 PM
- Wednesday 12/1/11 from7:00 PM to Thursday 13/1/11 7:00 AM
- Saturday 15/1/11 from 7:00 PM to Sunday 7:00AM
- Monday 17/1/11 from 7:00 AM to 7:00 PM

15. Although these were the periods which I had direct knowledge of in relation to the operations of Somerset and Wivenhoe Dams, I also reviewed the other Flood Event Summaries but this was done without the benefit of having been present at the Flood Control Centre during those periods.
16. I provided comments and edits to Part 2 of the Report for the primary author/editor's consideration however I do not recall specifically the edits, comments or additions I made at the time however, the edits, comments or additions were provided to the primary author/editor for consideration as per para 8 above.
17. I did not keep any copies of my comments made to Part 2 as Seqwater's processes for making any edits, amendments or comments was generally confined to within the Flood Control Centre.
18. As previously mentioned at para 9, Seqwater may have saved progressive draft versions of the Report, including Part 2, electronically.
19. I was not the primary author/editor of Part 2 to the Report however I reviewed and endorsed that its contents were accurate to my knowledge at the time of its completion.

Item 3: Part 10 - Flood Management Strategies and Manual Compliance

20. My involvement in relation to the creation of Part 10 - Flood Management Strategies and Manual Compliance ("Part 10") to the Report primarily involved reading, reviewing and endorsing that the contents accurately reflected the flood management strategies and the objectives of the Manual as well as compliance with the Manual and its strategies.
21. I reviewed Part 10 in various draft forms during the creation of the Report similar to my review of the Executive Summary and Part 2 detailed above.
22. Similar to para 13 above, I primarily focussed my review of Part 10 to the periods that I was rostered on as a Duty Flood Operations Engineer (Please refer to para 13 for the relevant periods).
23. I provided comments and edits to Part 10 for the primary author/editor's consideration however I do not recall specifically the details of the edits, comments or additions I made at the time.
24. Similar as for Items 1 and 2, I did not keep copies of any comments made to Part 10 however, as mentioned at para 9, Seqwater may have saved progressive draft versions of the Report, including Part 10, electronically.
25. I was not the primary author/editor of Part 10 to the Report however I reviewed and endorsed that its contents were accurate to my knowledge at the time of its completion.

Item 4: Part 19-Report Conclusions

26. My involvement in relation to the creation of the Part 19 - Report Conclusions ("Part 19") to the Report primarily involved reading, reviewing and endorsing that the contents accurately reflected the conclusions drawn from the Report.
27. I reviewed Part 19 in various draft forms during the creation of the Report similar to my review of the Executive Summary detailed above at para 7 however, I cannot recall whether or not I made any edits, corrections, amendments or comments to Part 19.
28. Similar to Items 1, 2 and 3, I did not keep copies of my comments made to Part 19, however, as previously mentioned at para 9, Seqwater may have saved progressive draft versions of the Report, including Part 19, electronically.
29. I was not the primary author/editor of Part 19 to the Report however I reviewed and endorsed that its contents were accurate to my knowledge at the time of its completion.

Additional Attachments

30. In response to the third dot point of the Requirement under "The Statement should be accompanied by:", I did on a few occasions take an electronic copy of a draft version of the Report home for my perusal. This was primarily due to the tight timeframes under the Manual for producing the Report. Attachment JAL-19 and JAL-20 are copies of draft Reports that I recently located as part of complying with this Requirement. These copies contain edits in track changes mode in progress that were yet to be approved by the primary author/editor. I note that any edits, changes or amendments proposed were brought back to the Flood Control Centre where they were considered in accordance with the processes in the Flood Control Centre.

I make this solemn declaration conscientiously believing the same to be true, and by virtue of the provisions of the Oaths Act 1867.

Taken and declared before me, at Brisbane this 30th day of January 2012

Our ref: Doc 1835409

25 January 2012
Mr John Ruffini
Flood Operations Engineer
Department of Environment and Resource Management
GPO Box 2454
BRISBANE QLD 4000

REQUIREMENT TO PROVIDE STATEMENT TO COMMISSION OF INQUIRY

I, Justice Catherine E Holmes, Commissioner of Inquiry, pursuant to section 5(1)(d) of the Commissions of Inquiry Act 1950 (Qld), require Mr John Ruffini to provide a written statement, under oath or affirmation, to the Queensland Floods Commission of Inquiry, in which the said Mr John Ruffini gives an account of his involvement in the creation of the following parts of the January 2011 Flood Event Report on the Operation of Somerset Dam and Wivenhoe Dam, 2 March 2011 (Exhibit 24):

1. Executive Summary
2. Part 2 - Flood Event Summary
3. Part 10-Flood Management Strategies and Manual Compliance
4. Part 19-Report Conclusions

The statement should include but not be limited to an explanation as to when and how any parts of the report were:
5. written by him
6. contributed to by him
7. reviewed by him
8. endorsed by him, or
9. were the subject of any suggestion from him as to correction, amendment, addition or
10. the subject of any comment from him.

The statement should be accompanied by:

- any drafts of any part of the flood event report listed in 1. to 4. above that were written by him
- any document, in any form (for example, electronic, hard copy), which records any comments, corrections, amendments, additions or endorsements made by him
- any document which contains comments directed specifically to those parts of the report listed in 1. to 4. above, including documents which contain comments that might apply to those parts because they indicate any sort of opinion about the flood event report in its entirety.

In addressing these matters, Mr John Ruffini is to:

- provide all information in his possession and identify the source or sources of that information;
- make commentary and provide opinions he is qualified to give as to the appropriateness of particular actions or decisions and the basis of that commentary or opinion.

Mr John Ruffini may also address other topics relevant to the Terms of Reference of the Commission in the statement, if he wishes.

The statement is to be provided to the Queensland Floods Commission of Inquiry by 4 pm , Monday 30 January 2012.

The statement can be provided by post, email or by arranging delivery to the Commission by emailing info@floodcommission.qld.gov.au.

C. Dolmen

Commissioner
Justice C E Holmes

QUEENSLAND FLOODS COMMISSION OF INQUIRY

Matters concerning the operation of Wivenhoe and Somerset Dams

Tuesday, 29 March 2011 at 10.00am

At level 30, 400 George Street, Brisbane, Q1d

Interview conducted by: Ms Lisa Hendy and Ms Susan Hedge

Private interview of John Lawrence Ruffini pursuant to sections of the Act

MS HENDY: We might have another break. I don't know if you want to have a longer break to eat and then we can keep going.
A. No, it's right. Keep going.

MS HENDY: We'11 just have another break for 10 minutes. So what time is it now, Susan?

MS HEDGE: It's currently 10 past, nine past on my watch.
MS HENDY: So we'11 just start again at 20 past.
SHORT ADJOURNMENT
MS HENDY: This is an interview with John Ruffini just continuing at 12.20 and just for the purposes of the reporter I just note Mr Jeff rolls has left the interview. Everyone else who was here earlier is still here.
Q. John, I was just going to - unless you've got anything else you want to say on the topics we've been discussing I'11 just now move on to the actual event summary and the event \log to run through that?
A. Sure. As I said I mean - I guess the only thing I'd say there's a fair bit of misinformation out there, so it just sort of - and I haven't gone through an exercise of going in detail about this is wrong, that's wrong, this is different and whatever, rather it's focussing on saying our view about - this is why we think it's the way it is but there is just no need for this - there is a lot of stuff out there that isn't - that is just not right.
Q. First of all, I might just ask you about the actual the January ' 11 flood event report on the operation of Somerset dam and Wivenhoe dam dated 2 March 2011?
A. Sure.
Q. And about the process of compiling that. Was that primarily written by John Tibaldi?
A. The way it worked, the process was that John - John did a lot of the writing legwork. Rob and Terry did a lot of the modelling, reporting side of things, and I kind of reviewed the critical bits and pieces as needed. I wasn't able to put in as much time as the other guys unfortunately because I had - one of the group's I manage out at Rocklea that site was flooded so there was quite a bit of - and I
had to do quite a bit of work because we had to get the repaired stations up and running, so there was a bit initially I had to sort of deal with that for a little bit of time with it, so I didn't quite spend as much time. They had - some of the other Seqwater staff assisting and just the --
Q. The background information?
A. Background, like putting tables together and they had some people help them formatting and that sort of thing as well but for the critical bits of the report which is like going through - going through the flood event summary stuff, I've been through pretty well, and through the compliance with the manual stuff, we've been through that pretty well, and I've been through the main body of the text with it. The appendices, not as much. I've been through what I could with them but I didn't - you know, there well could be little errors and things like that there. It's a big document.
Q. We'11 just start moving through the flood event summary?
A. Okay.
Q. So just starting at period 1 of 20 on page 10 ?

A: Yes.
Q. You're the duty engineer that was called back early from holidays to assist with the management of the event, is that you?
A. No, that was Terry. Terry was the on call duty engineer during the period and Terry came back and started off the event. Where is it? There's a roster.
Q. I have seen it somewhere?
A. There's a roster there which sort of goes through exactly who was on.
Q. When?
A. Who was on where. It tended to - yes, it tended to be - I think - I'd have to look it up exactly which one I was first on with, but yes.
Q. Sure. And you were - later in the event I was just curious about why you were rostered on with Rob Ayre given that you and he seem to be the most senior. Is there some reason for that?

EXECUTIVE SUMMARY

Somerset Dam and Wivenhoe Dam are located in the Brisbane River Basin. The Dams are dual purpose storages that provide urban water supplies (including drinking water) to South East Queensland as well as flood mitigation benefits to areas impacted by flood flows along the Brisbane River below Wivenhoe Dam.

I In the 25 days prior to Thursday 6 January 2011, above-average levels of rainfall were received in the Dam catchment areas and the Dams successfully operated as flood mitigation dams on a number of occasions during this period. Further rain fell in the Dam catchments on Thursday 6 January 2011 leading to another mobilisation of Seqwater's Flood Operations Centre. The rainfall continued in various parts of the Brisbane River Basin until Wednesday 12 January 2011, resulting in the largest innows into both Dams ever recorded. During this time, and for a period following the peak of the loods, the Dams were operated as flood mitigation storages in accordance with The Manual of Operational Procedures for Flood Mitigation at Wivenhoe Dam and Somerset Dam (Revision 7) ("the Manual"). The Manual defines the objectives and procedures for $<$ operating Somerset Dam and Wivenhoe Dam during llood events. An understanding of the Manual is 5 important when reading this Report.

This Flood Event that impacted the Dams between Thursday 6 January 2011 and Wednesdax January 2011 can be defined in the range of large (1 in 100 years) to rare (1 in 2,000 years) in acgoryance with Australian Rainfall and Runoff (Book 6). (AR\&R). Studies associated with the design andoperation of Wivenhoe Dam that date back to 1971, indicate a flood of this magnitude would be ex oected to result in urban damage below Moggill. The Wivenhoe - Somerset Interaction Study which was, ßrepared to support the 2009 review of the Manual, is the most recent investigation undertaken that supportsthis expectation.

Flood events that impact Somerset Dam and Wivenhoe Dam are ead bed rainfall events that vary in intensity, duration and distribution over a catchment area exceseling $7,000 \mathrm{~km}^{2}$ above the Dams. When making decisions about releasing water from the Dams during flood events, consideration is also given to rain falling in Brisbane River catchment areas not controlled 6 the Dams. These catchment areas, which include the Lockyer Creek and Bremer River catchments, also. çver an area in the order of $7,000 \mathrm{~km}^{2}$ and rain falling in these catchments will also vary in intensity, duratin and distribution. Accordingly, the Manual must account for an infinite number of flood event scenarios.

The current level of forecasting technologydoes not make it possible for the Bureau of Meleorology (BoM) to provide completely accurate rainfall fofeçasts for the Dam catchment areas. A degree of uncertainty exists in all weather forecasts and the further fonward in time forecasts are provided, the greater the degree of uncertainty

As it is not possible to procire a specific procedure for Dam operation during every possible flood event, the Manual takes the approash of providing objectives and strategies to guide operational decision-making during a flood event. The objective followed and strategy chosen at any point in time depends on the actual water levels in the Damis well as flood modelling predictions based on the best observed and forecast rainfall and stream fow information available at the time.

It is notpossible to predict the range of objectives and strategies that will be used during the course of a flood event beffore or at any time during the event, prior to the event peak. Objectives and strategies change as floge events progress, as rainfall is received in the catchment and as forecast rainfall amounts change. For 3rhall floods, objectives and strategies relate to minimising flood impacts in rural areas, while as the scale of the flood increases, the emphasis changes to protecting urban areas and maintaining the structural safety of the Dam.

The primary objectives of the Manual in order of importance ${ }_{2}$ are:

- Ensure the structural safety of the Dams;
- Provide optimum protection of urbanised areas from inundation;
- Minimise disruption to rural life in the valleys of the Brisbane and Stanley Rivers;
- Retain the storage at Full Supply Level (FSL) at the conclusion of the lood event;

EXECUTIVE SUMMARY

- Minimise impacts to ripanian flora and fauna during the drain down phase of the flood event

While ensuring the Dams are operated during flood events within these objectives, Seqwater's duty of care to Deleted: always operating the public is also a primary consideration when making flood releases from the Dams. Every attempt is made to ensure public roads are closed prior to inundation by Dam outflows and that authorities are provided with enough time to prepare for community isolations and to undertake evacuations. Every attempt is also made to
ensure urban damage is minimised, and that Dam outflows with the potential to contribute to urban damage are delayed until it is apparent no other options are available without risking the safety of the Dams.

It is also important to note that, under the Manual's current operating rules, both Somerset Dam and

Wivenhoe Dam are expected to fail during the Probable Maximum Flood, if such an event ever occurs.

Significance of the January 2011 Flood Event

The January 2011 Flood Event has been defined as a large to rare event by AR\&R, The instifutiong Engineers Australia (Engineers Australia) national guidelines for the estimation of design flogd cciaracteristics. The,food level classifications adopted by BoM define the Event as a major flood. Relevant statistics that demonstrate this are

- Rainfall recorded in the catchment area above Wivenhoe Dam indicates that tifeetchment average rainfall intensity for the 72 hour period to Tuesday 11 January 2011 at $19: 00$ bad an annual recurrence interval of between 1 in 100 years and 1 in 200 years. The catchment avage rainfall intensity for the 120 hour period to Tuesday 11 January 2011 at 19:00 also had an annualrecurrence interval of between 1 in 100 years and 1 in 200 years. At some individual rainfall stations githin the Brisbane River catchment, rainfall estimates beyond the annual exceedance probability (AE St limit of extrapolation (1 in 2,000 years) were recorded for durations of between 6 hours and 48 hours

- On Tuesday moming 11 January 2011, water levels in Wivenhoe Dam began rising rapidly in response to very heavy localised rainfall in the area immediately nosstream of the Dam. At the time, the BoM radar indicated this rain was located in an area which does hot have any real time rain gauges. Post flood analysis suggests the rainfall required to reprofluce this rise could exceed an annual recurrence interval of 1 in 2,000 years and may be well into the extreme category. Rainfall of this intensity and duration over the Wivenhoe Dam lake area at such a criticatstage of the Flood Event, was unprecedented.
- The volume of total inflow into Wivenkoe Dam during the Event was $2,650,000 \mathrm{ML}$. This volume has been \qquad calculated to be almost double (190%) the comparable volume of inflow from the January 1974 flood event, and comparable with the frod of 1893.
- The inflow into Wivenhoe Bat' during the Event is represented by two individual floods, with the peak of each flood separated $6 y$ about 30 hours. The maximum flow rate at the first peak is estimated to be around 200% of the comparable flow rate calculated from the January 1974 event, while the maximum flow rate at the secondpeak is estimated to be approximately 230% of the comparable flow rate from the January 1974 gyent (Source of January 1974 flow: Brisbane River and Pine River Flood Study, October 1994, Regorf No. 23a).
- The peak water level recorded at many gauges in the Brisbane River, including the Brisbane City gauge, exceeded the BoM-defined major flood level

EXECUTIVE SUMMARY

Operations during the January 2011 Flood Event

1. During the January 2011 Flood Event, operational decisions were made in accordance with the Manual. Dam outflows contributing to downstream flooding were delayed until it was apparent no other option was available, without risking the safety of Wivenhoe Dam.
2. Two separate floods entered Wivenhoe Dam during the Event. The first flood Into Wivenhoe Dam was similar in nature and magnituge to the comparable flood flows of the January 1974 event. The combined mitigation effect of Somerset and Wivenhoe Dams ensured this first flood did not result in urban damage below Moggill however, achieving this result did cause significant filling of the Dams' flood storage compartments.
3. The second flood was also similar in nature and magnituge to the comparable flood flows of the Januan 1974 event. Rainfall which occurred directly on and near the Wivenhoe Dam lake area contributed to the second flood. Post flood analysis suggests the intensity of this rainfall could have exceeded an andyal recurrence interval of 1 in 2,000 years and may be well into the extreme category. The location betthis rainfall on and near the Dam also reduced available mitigation options.
4. Due to the level to which the flood compartments were filled by the first flood, the second flood could not be completely contained without risking the safety of the Dams and therefore the inflow of water to the Brisbane River resulted in urban damage below Moggill. The extent of this damafe however was greatly reduced by the the operation of the Dams.

Rainfall forecasts in the early stages of the Event did not support flood releases being made from Wivenhoe Dam, greater than those that actually occurred. An increase to flood releases in the later stages of the Event (prior to the moming of Tuesday 11 January 2011) had the potential toincrease urban damage, due to the possible southward movement of the prevailing weather system. H fothe rainfall on Tuesday 11 January 2011 fallen south of the Dam, the transition to an operating strafeby to protect the safety of the Dam may have been avoided however, urban damage would have likely inceazeed under this scenario, due to the loss of the mitigation effects provided by the Dam.

Given the current level of forecasting technology azailable, there was an extremely high degree of difficulty in predicting the actual quantity, intensity and spatial, distribution of the Event rainfall. This resulted in a high level of uncertainty in predicting the likely Darif haflows in advance of rainfall on the ground and is demonstrated by the three_day and five_day forecast rainfall model results.

The available recorded data shows the yanuary 2011Flood Event was unprecedented in the history of Deleted: available Somerset and Wivenhoe Dams apo,tivals the largest floods in the recorded flood history of the region. However, the successful operation of the Dams as flood mitigation storages is considered to have had a major effect on reducing the flood damages in the areas downstream of the Dams.
Flood mitigation benefits of Somerset Dam and Wivenhoe Dam
Wivenhoe Dam prôvided clear and greatiy significant flood mitigation benefits during the January 2011 Flood Event as demonstrated below:
\qquad

- Figure 9.1.2 demonstrates the significant mitigation benefits of Wivenhoe Dam during this Flood Event. The peak of the outflow from the Dam was approximately 40% lower than the peak of the inflow meaning That, just below the Dam, the maximum hourly flow rate in the Brisbane River was reduced by around 40%.

Without the mitigating effects of Wivenhoe Dam, the peak flood height measured at the Port Office gauge near the Brisbane CBD would have been approximately 2.0 m higher than was experienced.

- Based on the current damage curves, these projected reductions in the flood peak height equate to significant reductions in the potential for the loss of life as well as monetary savings in regard to property damages in the order of up to $\$ 5$ billion. (Source: Flood Damage Tables - River PMF tab; provided to Seqwater by the Brisbane City Council.
- Without the above flow rate reductions provided by Wivenhoe Dam, it is estimated up to 14,000 more properties would have been impacted by the January 2011 Flood Event. (Source: Flood Damage Tables River PMF tab; provided to Seqwater by the Brisbane City Council.

EXECUTIVE SUMMARY

Figure 9.1 .2 - Whence Don inflow and release summary for the January 2011 Flood f over

Conclusions

The significant conclusions drawn from the information complained in this Report include:

- During the January 2011 Flood Event, Somerset mam and Wivenhoe Dam were operated in accordance with The Manual of Operational Procedures fomFlood Mitigation at Wivenhoe Dam and Somerset Dam (Revision 7).
- The data collection and flood modelliggsystems used to support decisions made during the Event \qquad Deleted: making performed well and assisted informed decision-making, in accordance with the Manual.
- Boa rainfall forecasts did not support the additional release of flood water early in the Event.
- During the Event, Seqwater followed the Department of Environment and Resource Management's draft Communications Prated which was compiled after the October 2010 flood event. This Protocol was developed to ensure, effective communication between local, State and Commonwealth agencies impacted by the release of floodwater from the Dams.
- The January /2011 Flood Event was an extremely large and rare flood event. The combined effects of

1 Somerset, Dam and Wivenhoe Dam did reduce flood damages downstream however ${ }_{2}$ they could not fully mitigate the impacts of the Event without putting the safety of the Dams at risk.

- Studies associated with the design and operation of Wivenhoe Dam dating back to 1971, Indicate a flood
>0 f the magnitude of the January 2011 Flood Event would be expected to result in urban damage below Moggill.
- The combined effects of Somerset Dam and Wivenhoe Dam provided clear and greatly significant flood mitigation benefits during the January 2011 Flood Event. .

TABLE OF CONTENTS

Report

Executive summary

1 Introduction
2 Flood event summary
Flood event description
3 Event mobilisation and staffing
4 Flood Event procedures
5 Data collection system performance
6 Event data
7 Flood model validity and performance
8 Preliminary assessment of Event magnitude
9 Dam inflow and flood release details
10 Flood management strategies and manual compliance.
11 Event communication processes \qquad
Flood event review
12 Review of data collection systems
13 Review of Flood Operations Centre persmel and staffing
14 Review of Dam site personnel andfang.
15 Review of flood modelling sysfems
16 Review of flood manualobjectives and strategies
17 Review of Wivenhee Dam Full Supply Level
18 Review of agency interaction
Floodevent outcomes
n..
19. Report conclusions

20 Report recommendations

TABLE OF CONTENTS

Appendices

Appendix A - Model Results
Appendix B - Flood Volume Summary
Appendix C - Quantitative Precipitation Forecasts
Appendix D - Catchment Rainfall

Appendix E -Situation Reports
Appendix F - Communication Protocol Technical Situation Reports
Appendix G - Severe Weather Warnings
Appendix H - Flood Event Notification Email
Appendix I - Flood Readiness Checklists

Appendix J - Forecast rainfall comparison
Appendix K - 3-Day Assessments and Model Results
Appendix L - Flood Operations Directives \qquad
Appendix M - Flood Event Log
Appendix N -Flood Operations Engineers Resumes
Appendix O -Hourly Rainfall Tables \qquad
Appendix P - Rainfall Intensity. Frequency Duration. \qquad
Appendix Q - Recorded Height Hydrograph \qquad
Appendix R - Ratings \qquad +.
Appendix S - Model Calibration Runs \qquad
Appendix T-Rainfind Station Temporal Patterns \qquad
Appendix $U \checkmark$ Wivenhoe Dam Hydrology Reports \qquad

TABLE OF CONTENTS

Tables and figures

Executive summary

Figure 912 Wivenhoe Bam nifow and release summany for the January 2011 Food Even Introduction
1.4.1 Wivenhoe Dam infrastructure - arrangement of radial gates
1.4.2 Submergence flows for bridges
1.5.1 Somerset Dam infrastructure - arrangement of radial gates, sluice gates and regulatorvalves
1.5.2 Wivenhoe / Somerset Operating Target Line

Flood event summary
2.1.1 Actual and forecast rainfall comparison (BoM access model)

Event mobilisation and staffing
3.3.1 Flood Operations Centre stafing - Flood Operations ngineers
3.3.2 Flood Operations Centre staffing - Flood Officers
3.3.3 Flood Operations Centre staffing - Wiyenho Dam Operators

Flood Event procedures
4.1.1 Relationship between the kiod Procedure Manual and the Manual of Operational Procedures for Flood Mitigation at Wivenaoe Dam and Somerset Dam
4.1.2 Location of controlfed hardcopies of Flood Procedure Manual

Data collection systên performance
5.2.1 Seqwater ALERT rainfall station network as at January 2011
5.2.2 Seqwater ALERT water level network as at January 2011

Rainfall stations marked out of action or suspect, Thursday 6 January 2011
5.2.4 River stations marked out of action or suspect, Thursday 6 January 2011
5.2.5 Rain gauges marked out of action or suspect, Wednesday 19 January 2011
5.2.6 River gauges marked out of action or suspect, Wednesday 19 January 2011
5.2.7 Number of readings received from each rainfall and water level sensor in the ALERT network

Event data

TABLE OF CONTENTS

6.2.1 Daily rainfall totals by station for the duration of the January 2011 Flood Event
6.2.2 Rainfall in the 24 hours to 09:00, Wednesday 5 January 2011
6.2.3 Rainfall in the $\mathbf{2 4}$ hours to 09:00, Thursday 6 January 2011
6.2.4 Rainfall in the 24 hours to 09:00, Friday 7 January 2011
6.2.5 Rainfall in the 24 hours to 09:00, Saturday 8 January 2011
6.2.6 Rainfall in the 24 hours to 09:00, Sunday 9 January 2011
6.2.7 Rainfall in the 24 hours to 09:00, Monday 10 January 2011
6.2.8 Rainfall in the 24 hours to 09:00, Tuesday 11 January 2011
6.2.9 Rainfall in the 24 hours to 09:00, Wednesday 12 January 2011
6.2.10 Rainfall in the 24 hours to $09: 00$, Thursday 13 January 2011
6.2.11 Rainfall in the six days to 09:00, Thursday 13 January 2011
6.2.12 Daily rainfall throughout the total Wivenhoe Dam catchment (\times xcluding Somerset Dam catchment)
6.2.13 Catchment rainfall in the eight days to 09:00, Thursdaysi January 2011
6.2.14 Stanley River average hourly rainfalls
6.2.15 Upper Brisbane River average hourly raloqalls
6.2.16 Middle Brisbane River average hogrly rainfalls
6.2.17 Lockyer Creek average hourly rainfalls
6.2.18 Bremer River average nourly rainfalls
6.2.19 Lower Brisbarer River average hourly rainfalls
6.2.20 Signifigant hourly rainfall totals
6.2.21 figurly rainfall totals recorded between 03:00 and 15:00, Tuesday 11 January 2011
6.4.1 Peak heights recorded at automatic gauging stations during the January 2011 Flood Event
6.4.2 Gauge height, Stanley River at Woodford
6.4.3 Gauge height, Somerset Dam
6.4.4 Gauge height, Brisbane River at Gregors Creek
6.4.5 Gauge height, Wivenhoe Dam (sensor 6638, out of action)

TABLE OF CONTENTS

6.4.6 Gauge height, Wivenhoe Dam (50 m up steam from gates)
6.4.7 Gauge height, Lockyer Creek at Lyons Bridge
6.4.8 Gauge height, Brisbane River at Savages Crossing
6.4.9 Gauge height, Bremer River at Walloon
6.4.10 Gauge height, Warrill Creek at Amberiey
6.4.11 Gauge height, Brisbane River at Moggill
6.4.12 Gauge height, Brisbane River at Whyte Island
6.5.1 Summary of inflows and outflows for Somerset and Wivenhoe Dams
6.5.2 Somerset Dam water levels, January 2011 Flood Event
6.5.3 Wivenhoe Dam water levels, January 2011 Flood Event

Event significance
7.1.1 Annual Exceedance Probability (AEP)
7.2.1 Rainfall anomalies (mm), December 2010
7.2.2 Daily catchment average rainfalls (min) Yanuary 1974, February 1999 and January 2011
7.2.3. Highest rainfall (mm) Somersef Dám and Wivenhoe Dam, January 1974, February 1999 and January 2011
7.2.4 Comparison of avergge hourly catchment rainfall patterns in the Somerset and Wivenhoe Dam catchments during Jànuary 1974, February 1999 and January 2011
7.2.5 Temporal patherns in Wivenhoe Dam catchment, January 1974, February 1999 and January 2011
7.3.1 Rainfall stations IFD analysis

Highest AEP rain station recordings, January 2011
7.3.3 Rainfall intensity, Gregors Creek
7.3.4 Rainfall intensity, Cooyar Creek
7.3.5 Rainfall intensity, Glenore Grove
7.3.6 Rainfall intensity, Toowoomba
7.3.7 Rainfall intensity, Lowood

TABLE OF CONTENTS

7.3.8 Rainfall intensity, Bellthorpe West
7.4.1 Rainfall intensity, Somerset Dam
7.4.2 Rainfall intensity, Wivenhoe Dam catchment (excluding Somerset Dam catchment / including Stanley River)
7.5.1 Recent and historical event flood volumes in the Brisbane River at Wivenhoe Dam
7.6.1 January 2011 peak water levels compared with other historical floods
7.7.1 Flood frequency analysis, Linville
7.7.2 Flood frequency analysis, Gregors Creek
7.8.1 Wivenhoe Alliance report, design inflow and outflows
7.9.1 Ratio of AEPs to Q_{100}
7.10.1 Impact of scaled rainfalto the upper Brisbane River inflow to Wivenhoe Dam
7.10.2 Recalculated infloys to Wivenhoe Dam
7.11.1 Comparison of modelled flood scenarios
7.11.2. Vmpact of Somerset and Wivenhoe Dams at Brisbane Port Office, showing estimated flow
.7.3 Impact of Somerset and Wivenhoe Dams at Brisbane Port Office, showing peak height
7.11.4 Duration of flooding above the flow threshold
7.12.1 January 2011 Flood Event key statistics

Flood model validity performance

8.2.1 FLOOD system regions

TABLE OF CONTENTS

8.2.2 FLOOD system statistics by region

8.2.3 Region runoff-routing parameters
8.2.4 Upper Brisbane River inflow to Wivenhoe Dam
8.3.1 Region loss rate estimates at 5 January 2011
8.3.2 Region loss rates (final) January 2011
8.3.3 Preserved model runs, January 2011 Flood Event
8.3.4 Model run naming convention
8.3.5 Model run peak flow and flood volume values

Dam inflow and flood release details
9.1.1 Wivenhoe Dam inflow and release data for the January 2011 Floofgent
9.1.2 Wivenhoe Dam inflow and release summary for the January 2011 Flood Event
9.2.1 Somerset Dam inflow and release data for the danuary 2011 Flood Event
9.2.2 Somerset Dam inflow and release summaty for the January 2011 Flood Event

Flood management strategies and Manualcompliance
10.1.1 Wivenhoe Dam flood strategy flow chart
10.2.1 Somerset Danfood strategy flow chart
10.2.2 Somerset Dam operating conditions for flood strategy S2
10.2.3 Sttategy S2, Wivenhoe / Somerset Operating Target Line
10.3.1 Wivenhoe Dam operating strategies for the January 2011 Flood Event, in compliance with the Manual
10.4.1 Somerset Dam levels as tracking against the Wivenhoe / Somerset Operating Target Line for the January 2011 Flood Event
10.4.2 Somerset Dam operating strategies for the January 2011 Flood Event, in compliance with the Manual

TABLE OF CONTENTS

10.4.3 Wivenhoe / Somerset Operating Target Line throughout the January 2011 Flood Event

1 INTRODUCTION

1.1 Preface

Given the potential significant impact on downstream populations and property, it is imperative Somerset and Wivenhoe Dams are operated during flood events in accordance with clearly defined and pre-determined procedures. The current procedures are contained in Revision 7 of The Manual of Operational Procedures for Flood Mitigation at Wivenhoe Dam and Somerset Dam ("the Manual") that was gazetted in January 2010. The Manual is an approved flood mitigation manual under the Queensland Water Supply (Safety and Reliability) Act 2008. An understanding of the Manual is important when reading this Report.

The Manual requires the owner of Somerset and Wivenhoe Dams (currently Seqwater) to prepare a report after each flood event impacting the Dams. A flood event is defined as a situation where either Somerset and or Wivenhoe Dams exceed their Full Supply Level (FSL) and flood water releases are made. The report must contain details of the procedures used during the flood event, the reasons why procedures were used other pertinent information. Seqwater must forward the report to the Director General of the Depariment of Environment and Resource Management (DERM) within six weeks of the completion of the flood elvent.

This document and its associated volumes comprise the required report relating to the Janiody 2011 Flood Event impacting Somerset and Wivenhoe Dams that commenced on Thursday 6 January 2011 and concluded on Wednesday 19 January 2011. It is due for submission by Wednesday 2 March 2010?

1:2 Meaning of terms

In this report, the following terms are defined as below:
"Act" means the Water Supply (Safety and Reliability) Act 2008;
"AEP" means annual exceedance probability, the probability offa specified event being reached or exceeded in any one year. This may be expressed as a ration (e.g in Y) or a percentage;
"Agency" includes a person, a local government anca department of state government within the meaning of the Acts Interpretation Act 1954;
"AHD" means Australian Height Datum;
"ALERT" means Automated Local eqvaluation in Real Time System and a system of monitoring and displaying rainfall and water level data. It, is combination of field stations, communications networks and data collection software;
"AMTD" means the Adorted Middle Thread Distance which is the distance along the centre line of the mainstream from adû́ction, usually in kilometres:

"Chief Executive" means the Director General of the Department of Environment and Resource Management or nominated delegate;
"Controlled Document" means a document subject to managerial control over its contents, distribution and storage. It may have legal and contractual implications;
"Dams" means Somerset Dam and Wivenhoe Dam;
"Dam Crest Flood" the flood event which, when routed through the storage with the storage initially at Full Supply Level, results in the still water level in the storage reaching the lowest point in the dam embankment, excluding wind and wave effects
"Dam Supervisor" means the senior on-site officer at Somerset or Wivenhoe Dam ast the case may be;
"DERM" means the Queensland Government department, the Department of Environment and Resource Management;
"Duty Flood Operations Engineer" means the Senior Flood Operations Engineer or Flood Operations Engineer rostered on duty to be in charge of Flood Operations at the Dams;
"EL" means elevation in metres Australian Height Datum;
"Enviromon" is the Bureau of Meteorology data collection software used to collect and display raffyall and water level data;
"ERRTS" means Event Reporting Radio Telemetry System;
"Flood Event" is a situation where the Duty Flood Operations Engineer expects the water level in either of the Dams to exceed the Full Supply Level;
"Flood-Col" is the data collection software used in the Flood Operations Gegtre to collect and display rainfall and water level data;
"Flood_Ops" is the modelling software used in the Flood Operallonst Centre to model the runoff from the catchments;
"Flood Operations Centre" means the centre used by 한 100 d Operations Engineers during a Flood Event to manage the Event;
"Flood Operations Engineer" means a persondesignated to direct flood operations at the Dams in accordance with Section 2.4 of the Manua
"Flood Operations Engineers" megns the collective group of persons who individually have designation as either a Flood Operations Engineer or a Senior Flood Operations Engineer:

Flood Operations Manager'means the Flood Operations Engineer sesponsible for the overall managemen of the Flood Operations Centre leading up to or during a Flood Event
"FSL" or "Full Supply Level" means the level of the water surface when the reservoir is at maximum operating level,
"Gauge" When referred to in (m) means river level referenced to AHD or a local datum, and when referred to in $\left(\mathrm{m}^{3} \mathrm{k}\right)$ means flow rate in cubic metres per second;

"Manual" or "Manual of Operational Procedures for Flood Events at Wivenhoe Dam and Somerset Dam" means the current version (Revision 7) of the Manual;
| " $\mathrm{m}^{3} / \mathrm{s}$ " means a rate of water flow being one cubic metre of water per second or $1_{1} 000$ litres of water per second;
"OOA" means 'out of action' in relation to the operation of a rainfall or river height gauge that provides catchment data;

"Operating Target Line" means the Wivenhoe/Somerset Operating Target Line from Strategy S2 of the Manual.
 "Power Station" means the Wivenhoe pumped storage hydro-electric power station associated with Wivenhoe Dam and Splityard Creek Dam;

"QPF" means Quantitative Precipitation Forecast provided by the Bureau of Meteorology and is an estimate of the predicted rainfall in millimetres, usually in the next 24 hours;
"RTFM" means Real Time Flood Model and is a combination of Flood_Col, Flood-Ops and other ancillary software;
"SD" means State Datum, which is a level height datum that is different from AHD.
"Sentor Flood Operations Engineer" means a person designated in accordance with Section 2 8 . 8 the Manual under whose general direction the procedures in the Manual must be carried out;
"Seqwater" means the Queensland Bulk Water Supply Authority trading as Seqwater;
"URBS" means Unified River Basin Simulator.
Note: Dam levels in thls document represented as metres (m) are metres Australian Height Datum (m AHD).

1.3 Background

The primary objectives of the procedures contained in the Mâpal in order of importance are:

1. Ensure the structural safety of the Dams;
2. Provide optimum protection of urbanised areasergom inundation;
3. Minimise disruption to rural life in the valleyspof the Brisbane and Stanley Rivers;
4. Retain the storage at Full Supply Level (C LL) at the conclusion of the flood event;
5. Minimise impacts to riparian flora and ăuna during the drain down phase of the flood event.

In meeting these objectives, the Dain's must be operated to account for the potential effects of closely spaced flood events. Normal operating procedures require stored floodwaters to be emptied from the Dams within seven days of the flood evert peak passing through the Dams. During flood events, Somerset Dam and Wivenhoe Dam are operated in conjunction to maximise the overall flood mitigation capabilities of the two Dams.

1.4 Wiyenhoe Dam

Wivenho Dam is a dual purpose storage facility that provides urban water supplies (including drinking water) to Soutlo East Queensland as well as flood mitigation benefits to areas impacted by flood flows along the Brisibate River below the Dam. Depending on the origin, magnitude and spatial extent of the flood, Wivenhoe Dam can be operated in a number of ways to reduce flooding downstream of the Dam. Maximum overall flood mitigation can be achieved by operating Wivenhoe Dam in conjunction with Somerset Dam.

The capacity of the urban water supply compartment that relates to Wivenhoe Dam's FSL is $1,165,000 \mathrm{ML}$.
The reservoir volume above the FSL that is used as temporary flood storage is $1,450,000 \mathrm{ML}$. How much of Deleted: \{uil supply solume this flood storage compartment is utilised during a flood event depends on the initial reservoir level below the FSL, the magnitude of the flood being regulated and the procedures adopted.

Radial gates and an auxiliary spillway are the primary infrastructure used to release water during flood events at Wivenhoe Dam. The arrangement of the radial gates is shown in Figure 1.4.1.

1 INTRODUCTION

Figurey 4 - Wivenhoe Darm infrasfructure - artangement of radiar gates
An auxiliary spillway was constructed in 2005 as padto an upgrade to improve Wivenhoe Dam's flood \qquad Deleted: the immunity. The auxiliary spillway consists of a threobay fuse plug spillway at the right abutment. In association with other constructions at the Dam. the spillway gives the Dam Crest Flood an AEP of Deleted: is approximately 1 in 100,000 years.

Once a flood event is declared, the rignitude of the event is assessed by predicting:

- The maximum storage levets in' Somerset and Wivenhoe Dams;
- The peak flow rate at that Lowood gauge, excluding Wivenhoe Dam releases;
- The peak flow rato arthe Moggill gauge, excluding Wivenhoe Dam releases.

According to the Manual the spilhway gates are not to be opened for flood control purposes prior to the \qquad reservoir levgetexceeding 67.25 m .

The strategies contained in the Manual require significant control over Dam releases to be exercised, as well as metowledge of flows into the Brisbane River from both Lockyer Creek and the Bremer River, below Wivenhoe Dam.

In small floods, releases are controlled to ensure the combined flow from Lockyer Creek and Wivenhoe Dam is less than the limiting values contained in the strategies, to delay the submergence of bridges and to minimise disruption to rural life in the Brisbane and Stanley River valleys. Figure 1.4 .2 shows the location of bridges impacted by Dam releases and the approximate river flow rate at which they are closed to traffic.

* Note: Colleges Crossing is alse affected by tides

Elowrelind - Submergence llows for bridges
During larger floods, teleases from Wivenhoe Dam are controlled to protect urbanised areas from inundation
The releases areicóntrolled so the combined flow from Wivenhoe Dam, Lockyer Creek and the Bremer River is either minifilsed or kept below the threshold level for urban damage which is $4,000 \mathrm{~m}^{3} / \mathrm{s}$ at Moggill.

O
In large flood events, releases from Wivenhoe Dam are also controlled to ensure the structural safety of the Damis not put at risk of failure.

Somerset Dam is able to be operated in a number of ways to regulate the flood level of Stanley River. Somerset and Wivenhoe Dams are to be operated in conjunction to optimise the flood mitigation benefits downstream of Wivenhoe Dam. Radial gates, sluice gates and regulator valves are the primary infrastructure used to release water during flood events at Somerset Dam. The arrangement of this infrastructure is shown

1.6 Operating Somerset Dam insơnjunction with Wivenhoe Dam

The strategies used to operate Somerset Dat during a flood event are intended to maximise the benefits of the flood storage capabilities of the Dam while protecting the structural safety of both Somerset and Wivenhoe
Dams. To achieve this, a Wivenhoe/semberset Operating Target Line (Figure 1.6.1) is used to set a goal for \qquad Formatted: Not Highlight balancing the use of the flood stordsin each Dam.

The Wivenhoe/Somerset Operating Target Line was selected based on the following factors:

- Equal minimisation afford level peaks in both Dams in relation to their associated failure levels;
- Minimisation of fiefs in the Brisbane River downstream of Wivenhoe Dam;
- Consideration of the time needed at the onset of a flood event to properly assess the magnitude of the flood event rand the likely impacts. This is to ensure the likely optimal strategy to maximise the flood mitigation benefits of the storage can be selected.

The target point on the Operating Target Line at any point in time is based on the maximum storage levels in
| Sornerset and Wivenhoe Dams, using the best forecast rainfall and stream flow information available at the time. Gate operations enable the progressive movement of the duly point towards the target line. It is not necessarily possible to adjust the duty point directly towards the target line in a single gate operation.

1 INTRODUCTION

2 FLOOD EVENT SUMMARY

2.1 Summary of the January 2011 Flood Event

The following summary must be read in conjunction with The Manual of Operational Procedures for Flood Mitigation at Wivenhoe Dam and Somerset Dam (Revision 7) ("the Manual"). It provides a detailed summary of the operation of Somerset and Wivenhoe Dams during the January 2011 Flood Event. Each table below covers a period of the Event during which one of the following occurred:

- There was a transition or change to the flood operation strategy used, as defined by the Manual;
- There was a period of stability during which no gate operations from either Somerset Dam or Wivenhoe Dam were directed;
- There was a period of sustained gate operations (either opening or closing) at either Somerset Dam or Wivenhoe Dam.

Each table also provides a summary of relevant background information and a summary of the infortuation that was used to make decisions during the period covered by the table. This information incluass:

- Details of the time period;
- Relevant background information from the period leading up to and during the period
- Changes in Dam conditions during the period;
- Rainfall information (including forecast rainfall) and model results availableduring the period;
- The strategy used and/or adopted during the period.

The source data for the information shown in the tables below gad be found in the following Appendices of this Report:

- Appendix A - Model results
- Appendix B - Flood volume summary
- Appendix C - Quantitative Precipitation Fofecasts (QPF)
- Appendix D - Catchment rainfall
- Appendix E - Situation reports
- Appendix G-Severe weathgernings
- Appendix H - Flood Evert
- Appendix L - Flood ORerations directives
- Appendix M-F Fogd Event log

Note: Dam levels in this document represented as metres (m) are in metres Australian Height Datum ($m A H D$) 5

January 2011 Flood Event- Period 1 of 20

Date/time	Background
Commenced	Strategy W1A and Strategy W1B; Thursday
and Strategy S2	
06 Jan 2011	Catchment conditions prior to the $07: 42$
Event are as described in	
Completed	Section 6.0. The Event was Friday
considered a continuation of the 07 Jan 2011	ongoing wet period that 02:00
commenced in October 2010.	

- No significant rainfall occurred in the 24 hours to 09:00 on 5 Jan 2011.
- Catchment average rainfalls in the 24 hours to 08:00 on
6 Jan 2011 were
- Wivenhoe Dam 25mm;
- Somerset Dam 21mm;
- Lockyer Creek 23mm;
- Bremer River 23mm.
- Event mobilisation occurred at 07:42 on 6 Jan 2011, using Strategies W1A and S2.
- Once mobilisation occurred, 24/7 staffing of the Flood Operations Centre and Dams continued until official de-mobilisation was announced. This occurred 12:00 on 19 Jan 2011.
- Duty Engineer was called bac early from holidays to assist with the management of the Event
- Transitioned from Strategy W1A to W1B once the Wivenhoe lake level exceedect 67.50 m .

Dam conditions

Total rainfall from
08:00 on 6 Jan
2011 to the end of this period:

- Wivenhoe Dam 53 mm ;
- Somerset Dam 44mm;
- Lockyer Creek 53mm;
- Bremer River 54 mm .

Wivenhoe Dam level rose from 67.31 m to 67.52 m over the 18 -hour period.
Somerset Dam level rose from 99.34 m to $99.55 \mathrm{~m}^{2}$ over the 18 -hur period.
til

January 2011 Flood Event - Period 2 of 20

Date/time	Background . ${ }^{\text {am conditions }}$	Rainfall and model results	Strategy
Commenced Friday 07 Jan 2011 02:00 Completed Friday 07 Jan 2011 09:00	Strategy W1B and Strategy S2 - Transitioned from Strategy W1A to W1B due to the Wivenhoe lake level exceeding 67.50 m . - Transitioned from Strategy W1B to W1C once the Wivenhoe lake level exceeded 67.75 m . - Colleges Crossing was inundated by natural river flows during this period. Total rainfall from 08:00 on 6 Jan 2011 to the end of this period: - Wivenhoe Dam 64mm; - Somerset Dam 60mm; - Lockyer Creek 57 mm ; - Bremer River 60 mm . Wivenhoe Dam level rose from 67.52 m to 67.75 m over the seven-hour period. Somerset Dam level rose from 99.55 m to 99.65 m) over the sevenhour period.	- Catchment average rainfalls during this period were: - Wivenhoe Dam 11mm; - Somerset Dam 15mm; - Lockyer Creek 4mm; - Bremer River 5mm. - Forecast 24 hour catchment average rainfall at 10:00 on 6 taht2011 was 25 mm . - Estimated peak U Uivenhoe Dam level: 68.2 m (excluding forecast); 68.5 m (incliding forecast). - Estimated'peak Somerset Dam level: 99.8 md (excluding forecast); 700,2m (including forecast). Estimated total Dam inflow: $242,000 \mathrm{ML}$ (excluding forecast); $380,000 \mathrm{ML}$ (including forecast). - Estimated peak flow at Lowood excluding Wivenhoe Dam releases: $470 \mathrm{~m}^{3} / \mathrm{s}$ (excluding forecast); $670 \mathrm{~m}^{3} / \mathrm{s}$ (including forecast). - Estimated peak flow at Moggill excluding Wivenhoe Dam releases: $570 \mathrm{~m}^{3} / \mathrm{s}$ (excluding forecast); $970 \mathrm{~m}^{3} / \mathrm{s}$ (including forecast). - Estimated peak Wivenhoe Dam outflow: $1,220 \mathrm{~m}^{3} / \mathrm{s}$ (excluding forecast); $1,250 \mathrm{~m}^{3} / \mathrm{s}$ (including forecast).	Strategy W1B and Strategy S2 (Lake level greater than 67.50 m , maximum release $380 \mathrm{~m}^{3} / \mathrm{s}$) - Endeavoured to keep Burtons Bridge trafficable by limiting combined flows from Wivenhoe Dam and Lockyer Creek to a maximum of $430 \mathrm{~m}^{3} / \mathrm{s}$. - Peak inflows into the Brisbane River from Lockyer Creek were estimated to be in the order of $470 \mathrm{~m}^{3} / \mathrm{s}$. These flows may not be sufficient to inundate Burtons Bridge. - Lake level was not expected to reach 67.75 m (Strategy W1C) for at least six hours. Lake level may not exceed 68.5 m . - Water was held in Wivenhoe Dam in an attempt to keep Burtons Bridge trafficable in accordance with Strategy W1B. - In accordance with Strategy S2, the crest gates at Somerset Dam were raised to enable uncontrolled discharge and the low level regulators and sluices at Somerset Dam were kept closed.

January 2011 Flood Event - Feriod 3 of 20

Date/time	Background	Dam conditions	Rainfall and model results	Strategy
Commenced Friday 07 Jan 2011 $09: 00$ Completed Friday 07 Jan 2011 15:00	Strategy W1C and Strategy S2 - At around 09:00 it became apparent flows from Lockyer Creek into the Brisbane River, combined with local Brisbane River inflows downstream of Wivenhoe Dam, would be sufficient to inundate all bridges below the Dam, with the exception of Mt Crosby Weir Bridge and Fernvale Bridge. Burtons Bridge was inundated by natural niver flows near the end of this period. - All impacted Coúncils were notified of the situation and that releases would commence from Wivenhoe Dam. Releases were timed to occur at 15:00 to allow bridges to be closed and arrangements to be made to cater for rural community isolation. The impacted rural communities had been isolated over the Christmas period and time was needed for suitable arrangements to be made to allow these communities to prepare for another potentially extended period of isolation. Releases were timed to start in accordance with the Manual requirements of keeping Burtons, Bridge and Kholo Bridge openkia, traffic when operating under Strategy W1C. - Transitioned from Strategy W1C to Strategy W1D onceetfe Wivenhoe Dam lake level exceéded 68.0 m .	Total rainfall from 08:00 on 6 Jan 2011 to the end of this period: - Wivenhoe Dam 89mm; - Somerset Dam 90 mm ; - Lockyer Creek 71 mm ; - Bremer River 71 mm . Wivenhoe Dam level rose from 67.75 m to 68.03 m over the six-hour period. Somerset Dam lever rose from 99.65 m to 99.94 m over they six-hour period.	- Catchment average rainfalls during this period were: - Wivenhoe Dam 24mm; - Somerset Dam 30mm; - Lockyer Creek 14 mm . - Bremer River 12 mm - Forecast 24 -hour catahment average rainfall at 10:00 on 7 fuan 2011 was 25 mm . - Estimated peak Nivenhoe Dam level: 68.4 m (ex (luding forecast); 68.9 m ((M, - Estimated peak Somerset Dam level: 1003 m (excluding forecast); 7.00 .6 m (including forecast). Estimated total Dam inflow: 346,000ML (excluding forecast); $483,000 \mathrm{ML}$ (including forecast). - Estimated peak flow at Lowood excluding Wivenhoe Dam releases: $530 \mathrm{~m}^{3} / \mathrm{s}$ (excluding forecast); $710 \mathrm{~m}^{3} / \mathrm{s}$ (including forecast). - Estimated peak flow at Moggill excluding Wivenhoe Dam releases: $660 \mathrm{~m}^{3} / \mathrm{s}$ (excluding forecast); $1,040 \mathrm{~m}^{3} / \mathrm{s}$ (including forecast). - Estimated peak Wivenhoe Dam outflow: $1,240 \mathrm{~m}^{3} / \mathrm{s}$ (excluding forecast); $1,270 \mathrm{~m}^{3} / \mathrm{s}$ (including forecast). Lake level greater than 67.75 m , maximum release $500 \mathrm{~m}^{3} / \mathrm{s}$) - Due to the further rain and observed stream rises, it became apparent flows from Lockyer Creek into the Brisbane River, combined with local Brisbane River inflows downstream of Wivenhoe Dam, would be sufficient to inundate all bridges downstream of the Dam, with the exception of the Mt Crosby Weir Bridge and Fernvale Bridge. - Releases from Wivenhoe Dam were managed in an attempt to ensure Mt Crosby Weir Bridge and Fernvale Bridge remained trafficable in accordance with Strategies W1D and W1E. - In accordance with Strategy S2, the crest gates at Somerset Dam were raised to enable uncontrolled discharge, and the low level regulators and sluices at Somerset Dam were kept closed.	

January 2011 Flood Evení- Period 4 of 20

Date/time	
Commenced	
Friday	
07 Jan 2011	
15:00	

Completed
Saturday
08 Jan 2011
14:00
Background
Transition from Strategy W1D to W1E to W3; and Strategy S2
Wivenhoe Directives \#1 to \#4.
Somerset Directives \#1 to \#3.

- Gates opened continuously at Wivenhoe Dam for 23 hours, in accordance with standard gate opening sequence at a rate or 0.5 m of opening per hour.
- Transitioned from Strategy W1D to W1E when the Wivenhoe Dam level exceeded 68.25 m (22:00 on 7 Jan 2011).
- Transitioned from Strategy W1E to W3 as it became apparent Wivenhoe Dam level would exceed 68.50 m (08:00 on 8 Jan 2011). Strategy W2 was by-passed as it was not possible to achieve this strategy by limiting the flow in the Brisbane River to less than the naturally occurring peaks at Lowood and Moggill. This is because the calculated naturally occurring peaks at Lowood and Moggill were $530 \mathrm{~m}^{3} / \mathrm{s}$ and $770 \mathrm{~m}^{3} / \mathrm{s}$ respectively, whereas the release rate from the Dam was already $940 \mathrm{~m}^{3} / \mathrm{s}$. Limiting releases to these naturally occurring, peak flows would also have compromised the Dam draindown requirements.
- At 14:00 on 8 Jan 201 T, Nivenhoe Dam discharge was $2339 \mathrm{~m}^{3} / \mathrm{s}$. All rural bridges below the Dam, with the exception of MfCrosby Weir Bridge and Fernvale Bridge, were flooded.
Dam conditions

Total rainfall from 0800 on 6 Jan 2011 to the end of this period:

- Wivenhoe Dam 92 mm ;
- Somerset Dam 95 mm ;
- Lockyer Creek 72 mm ;
- Bremer River 72 mm .
Wivenhoe Dam level rose from 68.03 m to 68.61 m over the 23 -hour period.
Somerset Dam level rose from 99.94 m to 100.44 m oventhe 23-hour period.

January 2011 Flood Event- Period 5 of 20

Date/time	Background	Dam conditions	Rainfall and model results	Strategy
Commenced Saturday 08 Jan 2011 14:00	Strategy W3 and Strategy S2 - Releases maintained from both Wivenhoe and Somerset Dams to ensure Mt Crosby Weir Bridge and Fernvale Bridge remained trafficable. - No change to gate settings over this period. Wivenhoe Dam discharge was $1,240 \mathrm{~m}^{3} / \mathrm{s}$. All rural bridges below the Dam, with the exception of the Mt Crosby Weir Bridge and Fernvale Bridge, were flooded.	Total rainfall from 08:00 on 6 Jan 2011 to the end of this period: - Wivenhoe Dam 100 mm ; - Somerset Dam 111 mm ; - Lockyer Creek 75 mm ; - Bremer River 75 mm . Wivenhoe Dam level rose very slightly from 68.61 m to 68.63 m over the 13 -hour period.	- Catchment average rainfalls during this period were: - Wivenhoe Dam 8mm; - Somerset Dam 16mm; - Lockyer Creek 3mm; - Bremer River 2mm. - Forecasted 24 -hour catchntent average rainfall at 16:00 on 8 1at2011 was 40 mm . - Estimated peak Vivenhoe Dam level: 68.7 m (excluding forecast); 69.9 m (ind (uding forecast). - Estimated peak Somerset Dam level: $10 Q 5 \mathrm{~m}$ (excluding forecast); 100.6 m (including forecast). Estimated total Dam inflow: $457,000 \mathrm{ML}$ (excluding forecast); $697,000 \mathrm{ML}$ (including forecast). - Estimated peak flow at Lowood excluding Wivenhoe Dam releases: $530 \mathrm{~m}^{3} / \mathrm{s}$ (excluding forecast); $530 \mathrm{~m}^{3} / \mathrm{s}$ (including forecast). - Estimated peak flow at Moggill excluding Wivenhoe Dam releases: $770 \mathrm{~m}^{3} / \mathrm{s}$ (excluding forecast); $840 \mathrm{~m}^{3} / \mathrm{s}$ (including forecast). This peak is estimated to have occurred at 05:00 on 8 Jan 2011. - Estimated peak Wivenhoe Dam outflow: $1,480 \mathrm{~m}^{3} / \mathrm{s}$ (excluding forecast); $1,520 \mathrm{~m}^{3} / \mathrm{s}$ (including forecast). This flow was significantly greater than the calculated natural peak that excluded Wivenhoe Dam releases.	Strategy W3 and Strategy S2 Lake level greater than 68.50 m , maximum release $4,000 \mathrm{~m}^{3} / \mathrm{s}$)
Completed Sunday 09 Jan 2011				Strategy W3 required the flow at Moggill to be lowered to $4,000 \mathrm{~m}^{3} / \mathrm{s}$ as soon as possible after the naturally occurring peak at Moggill (excluding Wivenhoe Dam
				releases). This was already achieved. Strategy W3 also required lower level Manual objectives to be considered. Therefore, with lake levels rising slightly (Wivenhoe Dam) and falling (Somerset Dam) consideration during this period remained on minimising disruption to downstream rural life and endeavouring to keep Mt Crosby Weir Bridge and Fernvale Bridge trafficable.
				There was also awareness Wivenhoe Dam outflows were already more than doubling the natural peak flow at Moggill. Increasing the Wivenhoe Dam release to produce a flow at Moggill of up to $3,000 \mathrm{~m}^{3} / \mathrm{s}$ during this period would have moved the operating strategy back to W1 in around 18 hours.
				This approach was not justifiable at the time given the impacts of such a flow down the river system that included localised flooding in Brisbane. - With the Somerset Dam level still expected to exceed 100.45 m , and the level in
				Wivenhoe Dam remaining relatively static, releases from Somerset Dam continued. Closing of the sluices would have resulted in Dam levels quickly moving under the Operating Target Line requiring sluice reopening within a short period.

January 2011 Flood Event - Period 6 of 20

January 2011 Flood Event-Period 7 or 20

Date/time	Background Dam conditions	Rainfall and model results	Strategy
Commenced Sunday 09 Jan 2011 08:00 Completed Sunday 09 Jan 2011 14:00	Strategy W3 and Strategy S2 Wivenhoe Directives \#7. Somerset Directives \#4 to \#5. - Releases increased marginally from Wivenhoe Dam to account for the passing of the Lockyer Creek peak while ensuring Mt Crosby Weir Bridge and Fernvale Bridge remained trafficable. - Wivenhoe Dam discharge increased from $1,334 \mathrm{~m}^{3} / \mathrm{s}$ to $1,386 \mathrm{~m}^{3} / \mathrm{s}$. - Somerset Dam sluice gates opened progressively over this period to allow Dam levels to move towards the Operating Target Line in accordance with Strategy S2. - All rural bridges below the Dam, with the exception of the Mt Crosby Weir Bridge and Fernvale Bridge, were flooded. Total rainfall from 08:00 on 6 Jan 2011 to the end of this period: - Wivenhoe Dam 146 mm ; - Somerset Dam 199mm; - Lockyer Creek 94mm; - Bremer River 90 mm . Wivenhoe Dam level rose very slightly from 68.56 m to 68.58 m over the six-hour period. Somerset Dam level rose from 100.28 m to 100.47 m over the six-hourperiod.	- Catchment average rainfalls during this period were: - Wivenhoe Dam 34mm; - Somerset Dam 53mm; - Lockyer Creek 18mm; - Bremer River 15 mm . - Forecast 24 -hour catchment average rainfall at 10:00 on 9 dâr2011 was 50 mm . - Estimated peak Vivenhoe Dam level: 70.0 m (excluding forecast); 71.3 m (ineliding forecast). - Estimated'peak Somerset Dam level: 100 Zm (excluding forecast); 2017m (including forecast). Estimated total Dam inflow: 804,000ML (excluding forecast); $1,108,000 \mathrm{ML}$ (including forecast). - Estimated peak flow at Lowood excluding Wivenhoe Dam releases: $530 \mathrm{~m}^{3} / \mathrm{s}$ (excluding forecast); $690 \mathrm{~m}^{3} / \mathrm{s}$ (including forecast). - Estimated peak flow at Moggill excluding Wivenhoe Dam releases: $770 \mathrm{~m}^{3} / \mathrm{s}$ (excluding forecast); $1,210 \mathrm{~m}^{3} / \mathrm{s}$ (including forecast). This peak was estimated to have occurred at 05:00 on 8 Jan 2011. - Estimated peak Wivenhoe Dam outflow: $1,490 \mathrm{~m}^{3} / \mathrm{s}$ (excluding forecast); $1,560 \mathrm{~m}^{3} / \mathrm{s}$ (including forecast). This flow was significantly greater than the calculated natural peak that excluded Wivenhoe Dam releases.	Strategy W3 and Strategy S2 (Lake level greater than 68.50 m , maximum release $4,000 \mathrm{~m}^{3} / \mathrm{s}$) - With lake levels rising at both Dams and heavy rain being experienced in the Dam catchments, consideration was given to transitioning from minimising disruption to downstream rural life to protecting urban areas from inundation. - However, using the BoM rainfall forecasts, a three day assessment (see Appendix K) showed the lower limit of three day forecast inflow to be similar to the October 2010 flood event, with the upper limit similar to the February 1999 flood event. Therefore, during this period, consideration remained on minimising disruption to downstream rural life and endeavouring to keep Mt Crosby Weir Bridge and Fermvale Bridge trafficable. This was the approach used during both the October 2010 the February 1999 flood event. - With Dam levels under the Operating Target Line at the end of this period, releases continued from Somerset Dam.

January 2011 Flood Event - Period 8 of 20

January 2011 Food Event - Period 9 of 20

January 2011 Flood Event - Period 10 of 20

Date/time	Background
Commenced Monday 10 Jan 2011 01:00 Completed Monday $10 \operatorname{Jan} 2011$ 09:00	Strategy W3 and Strategy S2 Wivenhoe Directives \#8 to \#10. - Gates opened continuously at Wivenhoe Dam for eight hours in accordance with standard gate opening sequence at a rate of 0.5 m of opening per hour. - Wivenhoe Dam discharge increased from $1,473 \mathrm{~m}^{3} / \mathrm{s}$ to $2,015 \mathrm{~m}^{3} / \mathrm{s}$. All rural bridges below the Dam were flooded.

- Further gate openings at Wivenhoe Dam were paused at 09:00 in an attempt to allow the Lockyer Creek and Bremer River peaks to pass Moggill, and to restrict Brisbane River flows at Moggill to $3,500 \mathrm{~m}^{3} / \mathrm{s}$. This was achieved following discussions with Brisbane City Council that advised a flow of $3,500 \mathrm{~m}^{3} / \mathrm{s}$ at Moggill would fully submerge 322 properties and impact 7,000 properties.
- No gate movements occurred at Somerset Dam during this period, with Dam levels plotting under the Operating Target Line. This meant the only gate movements allowable at Somerset Dam funter Strategy S2 would be openings and this did not happento limit further rises in Wivention Dam.

January 2011 Flood Event - Period 11 of 20

Date/time Background Dam conditions

Commenced

Monday
10 Jan 2011
09:00
Completed
Monday
10 Jan 2011
15:00

Strategy W3 and Strategy S2

- Gate settings at Wivenhoe Dam did not change over this period. Wivenhoe Dam discharge was $2,087 \mathrm{~m}^{3} / \mathrm{s}$. All rural bridges below the Dam were flooded.
- At 15:00, the attempt to restrict Brisbane River flows at Moggill to $3,500 \mathrm{~m}^{3} / \mathrm{s}$ was abandoned due to rainfall in the Dam catchments. A new target of $4,000 \mathrm{~m}^{3} / \mathrm{s}$ was set in accordance with the Manual, on the basis that Strategy W3 intends to limit the flow in the Brisbane River at Moggill to less than $4,000 \mathrm{~m}^{3} / \mathrm{s}$ and minimise urban damage.
- Gate movements at Somerset Dam did not change during this period, with Dam levels plotting under the Operating Target Line. This meant the only gate movements allowable at Somerset Dam under Strategy S2 was openings and this was not done to limit further rises in Wivenhoe Dam.

Total rainfall from 08:00 on 6 Jan 2011 to the end of this period:

- Wivenhoe Dam 274mm;
- Somerset Dam 407 mm ;
- Lockyer Creek 169mm;
- Bremer River 149 mm .
Wivenhoe Dam level rose from 71.56 m to 72.54 m over the six-hour period.
Somerset Dam level rose from 103.08 m to 103.43 m overth six-hour peftipd.

Rainfall and model results

Strategy

- Catchment average rainfalls during this period were:
- Wivenhoe Dam 34mm;
- Somerset Dam 31mm;
- Lockyer Creek 27mm;
- Bremer River 30mm.
- Forecast 24 hour catchment average rainfall at 10:00 on 10-12n 2011 was 75 mm .
- Estimated peak Wivenhoe Dam level:
73.6 m (exchiding forecast);
75.2 m (încuuding forecast).
- Estinated peak Somerset Dam level:
- 03.4 m (excluding forecast);
103.7 m (including forecast).

Estimated total Dam inflow: 1,708,000ML (excluding forecast); $2,162,000 \mathrm{ML}$ (including forecast).

- Estimated peak flow at Moggill excluding Wivenhoe Dam releases: $1,500 \mathrm{~m}^{3} / \mathrm{s}$ (excluding forecast); $2,570 \mathrm{~m}^{3} / \mathrm{s}$ (including forecast). This peak was estimated to occur at 20:00 on 10 Jan 2011.
- Estimated peak flow at Moggill including Wivenhoe Dam releases: $3,910 \mathrm{~m} / \mathrm{s}$ (excluding forecast); $5,180 \mathrm{~m}^{3} / \mathrm{s}$ (including forecast).

Strategy W3 and Strategy S2 fake level greater than 68.50 m , maximum hellease $4,000 \mathrm{~m}^{3} / \mathrm{s}$)

- Consideration focused on protecting urban areas from inundation and minimising urban damage.
- It was decided at 15:00 to attempt to remain below a target flow of around $4,000 \mathrm{~m}^{3} / \mathrm{s}$ at Moggill.
- Continued to follow the approach in the Manual which states the intent of Strategy W3 is to limit the flow in the Brisbane River at Moggill to less than $4,000 \mathrm{~m}^{3} / \mathrm{s}$.
- With Dam levels under the Operating Target Line during this period, releases continued from Somerset Dam.
- Although there was full awareness of the rainfall forecasts and associated potential flood impacts, the strategy was not to release flows that would cause high level urban inundation until it was certain it could not be avoided. Model results continued to indicate this may be possible.

January 2011 Flood Event - Period 12 of 20

Date/time	Background	Dam conditions	Rainfall and model results	gy
Commenced Monday 10 Jan 2011 15:00 Completed Monday 10 Jan 2011 20:00	Strategy W3 and Strategy S2 Wivenhoe Directive \#11. - Gates opened continuously at Wivenhoe Dam for five hours in line with standard gate opening sequence, at a rate or 1.0 m of opening per hour. Wivenhoe Dam discharge increased from $2,087 \mathrm{~m}^{3} / \mathrm{s}$ to $2,695 \mathrm{~m}^{3} / \mathrm{s}$. - In accordance with the Manual, a target of $4,000 \mathrm{~m}^{3} / \mathrm{s}$ at Moggill was set, on the basis of the intent of Strategy W3 to limit the flow in the Brisbane River at Moggill to less than $4,000 \mathrm{~m}^{3} / \mathrm{s}$ and minimise urban damage. - Further gate openings at Wivenhoe Dam were paused at 20:00 in an attempt to allow the Lockyer Creek and Bremer River peaks to pass Moggill and to restrict Brisbane River flows at Moggill to $4,000 \mathrm{~m}^{3} / \mathrm{s}$. - No gate movements occurred at Somerset Dam during this period, with Dam levels plotting under the Operating Target Line. This limited further rises in Wivenhoe. - Initial advice on a major flash fooda originating in the Lockyer headwaters was received from BoM at 17:32. No volume of.flow details were available and gauges in the area were not indieating a significant event. The event would not impact on the Brisbaņe River for 24 hours.	Total rainfall from 08:00 on 6 Jan 2011 to the end of this period: - Wivenhoe Dam 279mm; - Somerset Dam 415 mm ; - Lockyer Creek 174mm; - Bremer River 153 mm . Wivenhoe Dam level rose from 72.53 m to 73.06 m over the five-hour period. Somerset Dam levets rose from 103.43m to 103.45 m ove the five-hour perió. - Catchment average rainfalls during this period were: - Wivenhoe Dam 4mm; - Somerset Dam 8mm; - Lockyer Creek 5mm; - Bremer River 3mm< - Forecast 24-hour catchment average rainfall at 16:00 on fovan 2011 was 38 mm . - Estimated peak Nivenhoe level: 73.6 m (exeluâing forecast); 74.3 m (Gy) - Estimated peak Somerset level: 103.5 m (excluding forecast); 703.5 m (including forecast). Estimated total Dam inflow: 1,731,000ML (excluding forecast); $1,982,000 \mathrm{ML}$ (including forecast). . - Estimated peak flow at Moggill excluding Wivenhoe Dam releases: $1,500 \mathrm{~m}^{3} / \mathrm{s}$ (excluding forecast); $1,840 \mathrm{~m}^{3} / \mathrm{s}$ (including forecast). This peak was estimated to occur at 20:00 on 10 Jan 2011. - Estimated peak flow at Moggill including Wivenhoe Dam releases: $3,980 \mathrm{~m}^{3} / \mathrm{s}$ (excluding forecast); $4,470 \mathrm{~m}^{3} / \mathrm{s}$ (including forecast). - The extreme rainfall that occurred in Lockyer Creek catchment during this period was not recorded in the remotely-accessible rain gauges in the catchment, and was not indicated on the BoM weather radar.		Strartegy W3 and Strategy S2 (Lake level greater than 68.50 m , maximum release $4,000 \mathrm{~m}^{3} / \mathrm{s}$) - Consideration focused on protecting urban areas from inundation and minimising urban damage. - The target maximum flow at Moggill was now $4,000 \mathrm{~m}^{3} / \mathrm{s}$. The approach in the Manual which states the intent of Strategy W3 is to limit the flow in the Brisbane River at Moggill to less than $4,000 \mathrm{~m}^{3} / \mathrm{s}$, continued to be followed. - With Dam levels under the Operating Target Line during this period, Somerset Dam releases continued. - The reduced rainfall forecast justified retaining the target of $4,000 \mathrm{~m}^{3} / \mathrm{s}$ at Moggill, while the Wivenhoe Dam peak of 74.3 m (including forecast) indicated it may be possible to keep urban damage within tolerable limits. A discussion was held with the Dam Safety Regulator to request permission to exceed a level of 74.0 m in Wivenhoe Dam for a short period (maximum 12 hours) without invoking Strategy W4, if the safety of the Dam could be guaranteed and urban damage reduced. The Regulator agreed with this approach and provided permission. - The strategy continued to not release flows that would cause high level urban inundation until it was certain it could not be avoided. Model results continued to indicate this may be possible.

January 2011 Flood Event - Period 13 of 20

Date/time	Background	Dam conditions
Commenced Monday 10 Jan 2011 20:00 Completed Tuesday 11 Jan 2011 04:00	Strategy W3 and Strategy S2 - Gate openings at Wivenhoe Dam were paused at 20:00 in an attempt to restrict flows at Moggill to close to $4,000 \mathrm{~m}^{3} / \mathrm{s}$. There were no changes to gate settings at Wivenhoe Dam over this period. The Dam discharge was $2,726 \mathrm{~m}^{3} / \mathrm{s}$. - In accordance with the Manual, a target flow of $4,000 \mathrm{~m}^{3} / \mathrm{s}$ at Moggill was set on the basis of Strategy W3	Total rainfall from 08:00 on 6 Jan 2011 to the end of this period: - Wivenhoe Dam 323 mm ; - Somerset Dam 437 mm ; - Lockyer Creek 186mm; - Bremer River

- At 17:32, initial advice was provided about a significant flash flood originating in the Lockyer Creek headwaters. Details were received at 20:00. The focus was on developing strategies to manage these potential flows, however, as any strategy would involve significantly reducing outflows from Wivenhoe Dam, the strategies were not adopted.
- During this period the plotted dam levels drifted just above the Operating Target Line. This lead to a decision at 04:00, to start closing down releases framisomerset Dam to limit further rises in Wivenhoe Dam.
Rainfall and model results \quad Strategy
- Catchment average rainfalls during this period were:
- Wivenhoe Dam 44mm;
- Somerset Dam 22mm;
- Lockyer Creek 12 mm .
- Bremer River 14 mma
- Forecast 24-hour catehment average rainfall at 16.00 on 10 Jan 2011 was 38 mm .
- Estimated péak Vivenhoe level: 74.1 m (excluơing forecast); 74.9 m ((c)
- Estimated peak Somerset level: 103.5 m (excluding forecast); c 103.7 m (including forecast). \rightarrow

Estimated total dam inflow: 2,016,000ML (excluding forecast); $2,267,000 \mathrm{ML}$ (including forecast).

- Estimated peak flow at Moggill excluding Wivenhoe Dam releases:
$1,500 \mathrm{~m}^{3} / \mathrm{s}$ (excluding forecast);
$1,810 \mathrm{~m}^{3} / \mathrm{s}$ (including forecast).
This peak was estimated to have occurred at 20:00 on 10 Jan 2011.
- Estimated peak flow at Moggill including Wivenhoe Dam releases:
$4,040 \mathrm{~m}^{3} / \mathrm{s}$ (excluding forecast); $4,540 \mathrm{~m}^{3} / \mathrm{s}$ (including forecast).

Strategy

Strategy W3 and Strategy S2
(Nake level greater than 68.50 m , maximum release $4,000 \mathrm{~m}^{3} / \mathrm{s}$)

- Consideration focused on protecting urban areas from inundation and minimising urban damage. The target maximum flow at Moggill remained $4,000 \mathrm{~m}^{3} / \mathrm{s}$. The approach in the Manual which states the intent of Strategy W3 is to limit the flow in the Brisbane River at Moggill to less than $4,000 \mathrm{~m}^{3} / \mathrm{s}$, continued to be followed.
- Model results showed a peak level in the Dam close to 74.0 m was possible, but appeared increasing unlikely.
- With Dam levels moving above the Operating Target Line during this period, it was decided to begin closing down releases from Somerset Dam to limit further rises in Wivenhoe Dam.
- Although there was full awareness of the rainfall forecasts and associated potential flood impacts, the strategy was not to release flows that would cause high level urban inundation until it was certain it could not be avoided. Model results continued to indicate this may be possible however, as rainfall continued, the strategy was reviewed each hour. At 21:00 the Dam Safety Regulator was asked for permission to exceed a level of 74.0 m in Wivenhoe Dam for a short period (maximum 12 hours) without invoking Strategy W4, provided the safety of the Dam could be guaranteed. This was considered carefully during the period in view of the continued rainfall.

January 2011 Flood Event - Period 14 of 20

Date/time	Background	Dam conditions	Rainfall and model results	Strategy
Commenced Tuesday 11 Jan 2011 04:00 Completed Tuesday 11 Jan 2011 08:00	Transition from Strategy W3 to Strategy W4; and Strategy S2 Wivenhoe Directive \#12. Somerset Directive \#6. - Extreme intense rainfall (estimated after the Event to exceed 1 in 500 year intensities) commenced on and close to the Wivenhoe Dam lake area during this period. If the centroid of this rainfall was located further east or south, it may have been possible to avoid transition to Strategy W4. - Beciause the extreme intense rainfall was occurring on and close to the Dam rather than in the northern areas of the Dam catchment, response time was minimised and quick action was needed to protect the safety of the Dam. Accordingly, at 08:00, a decision was made to transition to Strategy W4. Significant urban damage was not to be avoided and the Dam Safety Regulator, Seqwater's CEO and the Councils were advised. - Gate settings were not changed at Wivenhoe Dam over this period. Wivenhoe Dam discharge was $2,832 \mathrm{~m}^{3} / \mathrm{s}$. - Sluice gate openings at Somerset Dam were reducedfolm five to two as the plotted dam levels had drifted just abare the Operating Target Line.	Total rainfall from 08:00 on 6 Jan2011 to the end of this period: - Wivenhoe Dam 356mm; - Somerset Dam 483mm; - Lockyer Creek 240 mm ; - Bremer River 183mm. Wivenhoe Dam level rose from 73.40 m to 73.70 m over the four-hour period. Somerset Dam level rose from 103.23 m to 103.46 m overthe four-hour peakiod.	- Catchment average rainfalls during this period were: - Wivenhoe Dam 33mm; - Wivenhoe Dam (local) 78 mm - Somerset Dam 46mm; - Lockyer Creek $54 \mathrm{~mm} /$ - Bremer River 16 mm h - Forecast 24 -hour catchtrient average rainfall at 16:00 on 40 Jan 2011 was 38 mm . - Estimated peak Wivenhoe level: 74.5 m (exctiding forecast); 75.1 m (inctuding forecast). - Estimated peak Somerset Dam tevel: 103.9m (excluding forecast); 104.2 m (including forecast). Estimated total Dam inflow: 2,210,000ML (excluding forecast); $2,460,000 \mathrm{ML}$ (including forecast). - Estimated peak flow at Moggill including Wivenhoe Dam releases: $5,870 \mathrm{~m}^{3} / \mathrm{s}$ (excluding forecast).	Strategy W4 and Strategy S2 (A ake level predicted to exceed 74.00 m , no maximum release rate) - At 08:00, model results showed restricting the peak level in the Dam close to 74.0 m was no longer possible due to the high intensity rainfall experienced over this period. - At 08:00 it was decided to transition to Strategy W4 and the Dam Safety Regulator, Seqwater's CEO and Councils were advised. It was now apparent significant urban damage resulting from releases from Wivenhoe Dam could not be avoided due to the extreme intense rainfall (estimated after the Event to exceed 1 in 500 year intensities) that commenced on and close to the Wivenhoe Dam lake area during this period. - As Dam levels moved above the Operating Target Line during this period, releases from Somerset Dam were progressively closed down to limit further rises in Wivenhoe Dam (sluices were closed down at hourly intervals in accordance with the Manual).

January 2011 Flood Event - Period 15 of 20

Date/time	Background	Dam conditions	Rainfall and model results	Strategy
Commenced Tuesday 11 Jan 2011 08:00 Completed Tuesday 11 Jan 2011 13:00	Strategy W4 and Strategy S2 Wivenhoe Directive \#12 to \#14. Somerset Directive \#7. - Extreme intense rainfall (estimated after the Event to exceed 1 in 500 year intensities) continued on and close to the Wivenhoe Dam lake area during this period. If the centroid of this rainfall was located further east or south, it may have been possible to avoid transition to Strategy W4. - Because the extreme intense rainfall was occurring on and close to the Dam rather than in the northem areas of the Dam catchment, response time was minimised and quick action was needed to protect the safety of the Dam. Once Strategy W4 is invoked, the Manual requires the opening of gates in accordance with standard sequences until the storage level of Wivenhoe Dam begins to fall. Accordingly gates were opened continuously at Wivenhoe Dam for five hours in accordance with the standard gate opening sequence ato an average rate of 2.0 m of opening ${ }^{2}$ per hour. This increased the Bang discharge from $2,753 \mathrm{~m}^{3} / \mathrm{s}$ tof $4,250 \mathrm{~m}^{3} / \mathrm{s}$. The threshold limit for urban damage had beenexceeded and the lake level continued to rise. - During this period Sómerset Dam sluice gate openitings were closed to limit rises in Whivenhoe Dam in accordancewith Strategy S2.	Total rainfall from 08:00 on 6 Jan 2011 to the end of this period: - Wivenhoe Dam 382 mm ; - Somerset Dam 570 mm ; - Lockyer Creek 287 mm ; - Bremer River 237 mm . Wivenhoe Dam level rose from 73.70 m to 74.39 m over the five-hour period. Somerset Dam levet rose from 103.46 m , to 103.83 m over the five-hour periơo.	- Catchment average rainfalls during this period were: - Wivenhoe Dam 27mm; - Wivenhoe Dam (local) 85mm; - Somerset Dam 86 mine - Lockyer Creek 47anm; - Bremer River 5fram. - Forecast 24-hourcatchment average rainfayat 10:00 on 11 Jan 201 dywas 100 mm . - A portion of the extreme intense rainfâll in the Dam catchment fell inday un-gauged area (e.g. on the take area) making it difficult for the model to accurately predict lake level rises. Accordingly, operations at Wivenhoe Dam commenced gauge board readings every 30 minutes during this period and relayed this information to the Flood Operations Centre by telephone. - Estimated peak Wivenhoe Dam level: 75.0 m (excluding forecast); 76.2 m (including forecast). - Estimated peak Somerset Dam level: 104.8 m (excluding forecast); 105.7 m (including forecast). - Estimated total Dam inflow is: 2,506,000ML (excluding forecast); $3,123,000 \mathrm{ML}$ (including forecast).	Strategy W4 and Strategy S2 (hàke level predicted to exceed 74.00 m , no maximum release rate) - The strategy was to protect the structural safety of the Dam. - The Manual requires actions under Strategy W4 to ensure Wivenhoe Dam gate openings occur in accordance with standard sequences until the storage level of Wivenhoe Dam begins to fall. - The Dam level continued to rise at 13:00. During this period, a Dam Operator relayed Wivenhoe Dam gauge board readings to the Flood Operations Centre every 30 minutes. All four Duty Engineers were present in the Flood Operations Centre and flood operations decisions were made every half hour upon receipt of the gauge board readings. - With Dam levels above the Operating Target Line during this period, releases from Somerset Dam were closed down (all sluices closed at 10:00) to limit further rises in Wivenhoe Dam.

2 FLOOD EVENT SUMMARY

January 2011 Flood Event-Period 16 of 20

January 2011 Flood Event - Period 17 of 20

Date/time	Background	Dam conditions	Rainfall and model results	Strategy
Commenced Tuesday 11 Jan 2011 19:00 Completed Tuesday 11 Jan 2011 21:00	Strategy W4 and Strategy S2 Wivenhoe Directive \#15 to \#24. - Gate settings at Wivenhoe Dam did not change over this period. Wivenhoe Dam discharge is $7,458 \mathrm{~m}^{3} / \mathrm{s}$. - The lake level in Wivenhoe Dam stabilised and then fell slightly at 21:00. At the same time a decision was made to close down the gates as quickly as possible to reduce urban flood impacts. This decision required gate openings below minimum recommended settings however, it was made in an attempt to minimise urban damage below Moggill (an objective that has to be considered under Strategy W4). Gates would have been reopened if further lake level rises were experienced. - In accordance with Strategy S2, there were no releases made from Somerset Dam.	Total rainfall from 08:00 on 6 Jan 2011 to the end of this period: - Wivenhoe Dam 398mm; - Somerset Dam 610 mm ; - Lockyer Creek 326 mm ; - Bremer River 278 mm . During this two hour period, the lake level in Wivenhoe Dam stabilised at 74.97 m and then fell slightly to 74.95m at 21:00. Somerset Dam level rose from 104.60 m tof 104.78 moyer the two-hour period.	- Catchment average rainfalls during this period were: - Wivenhoe Dam 1 mm ; - Somerset Dam 1mm; - Lockyer Creek 1mm; - Bremer River 1 mm . - Forecast 24 -hour catchment average rainfall at 16:00 on 1-33n 2011 was 75 mm . - A portion of the extreme intense rainfall in the Dam catchment fell in an un-gauged area (e.g. on the dam lake area) which made it difficult for the model to accurately predict lake levelibehaviour. Estimated peak Wivenhoe Dam level: 75.0 m (excluding forecast); 75.2 m (including forecast). - Estimated peak Somerset Dam level: 105.2m (excluding forecast); 105.9 m (including forecast). - Estimated total Dam inflow: 2,659,000ML (excluding forecast); $3,289,000 \mathrm{ML}$ (including forecast).	Strategy W4 and Strategy S2 (Nake level predicted to exceed 74.00 m , no mraximum release rate) - The strategy was to protect the structural safety of the Dam. - The Manual requires actions under Strategy W4 to ensure Wivenhoe Dam gate openings occur in accordance with standard sequences until the storage level of Wivenhoe Dam begins to fall. - The Dam level stabilised during this period and then fell slightly at 21:00. A Dam Operator relayed Wivenhoe Dam gauge board readings to the Flood Operations Centre every 30 minutes. All four Duty Engineers were present in the Flood Operations Centre and decisions were made every half hour upon receipt of the gauge board readings. - With Dam levels above the Operating Target Line during this period, no releases were made from Somerset Dam to limit further rises in Wivenhoe Dam. - The water level in Wivenhoe Dam peaked at 19:00 on 11 Jan 2011 at 74.97 m .

January 2011 Flood Event-Period 18 of 20

Date/time	Background	Dam conditions	Rainfall and model results	Strategy
Commenced Tuesday 11 Jan 2011 21:00 Completed Wednesday 12 Jan 2011 08:00	Strategy W4 and Strategy S2 Wivenhoe Directive \#25 to \#34. - During this period, Wivenhoe Dam gates were closed as quickly as possible without causing rises in the lake level. This was done to reduce urban flood impacts downstream. This decision was made in an attempt to minimise urban damage below Moggill (an objective that must be considered under this strategy). - Gates were closed continuously at Wivenhoe Dam for 11 hours in accordance with the standard gate closing sequence, at an average rate of just over 3.6 m of opening per hour. - Wivenhoe Dam discharge was decreased from $7,464 \mathrm{~m}^{3} / \mathrm{s}$ to $2,547 \mathrm{~m}^{3} / \mathrm{s}$. All rural bridges below the dam remained flooded and significant damage to urban areas below Moggill had occurred. - No releases were made from Somerset Dam in accordance with Strategy S2.	Total rainfall from 08:00 on 6 Jan 2011 to the end of this period: - Wivenhoe Dam 399mm; - Somerset Dam 613mm; - Lockyer Creek 328mm; - Bremer River 279mm. Wivenhoe Dam level fell from 74.97 m to 74.78 m over the 11 -hour period. Somerset Dam level rose from 104.78 m to 105.11 m overthe 11-hour periad.	- Catchment average rainfalls during this period were: - Wivenhoe Dam 1mm - Somerset Dam 3mm; - Lockyer Creek 3m; - Bremer River 1 m . - Forecast 24 -hour catchment average rainfall at 16:00 on 1 1-san 2011 was 75 mm . - Peak Wivenhoé Dam level: 74.97 m at 19:00 on 11 Jan 2011. - Peak Sowerset Dam level: 105.1mat 06:00 on 12 Jan 2011. - Estimated total Dam inflow: (2;650,000ML.	Strategy W4 and Strategy S2 (fake level predicted to exceed 74.00 m , no nraximum release rate) - The strategy was to protect the structural safety of the Dam. - The Manual requires actions under Strategy W4 to ensure Wivenhoe Dam gate openings occur in accordance with standard sequences until the storage level of Wivenhoe Dam begins to fall. - As the lake level was falling slightly, a decision was made to quickly reduce releases from Wivenhoe Dam to as low a level as possible, to minimise urban damage below Moggill. - It was calculated that reducing to a discharge of $2,547 \mathrm{~m}^{3} / \mathrm{s}$ from Wivenhoe Dam would: - Not increase the downstream flood peak; - Not cause the water level in Wivenhoe Dam to rise and; - Allow the Dam to be drained back to FSL in seven days, in accordance with the Manual. - With Dam levels above the Operating Target Line during this period, no releases were made from Somerset Dam to limit further rises in Wivenhoe Dam.

[^0]

[^1]| Date/time | Background | Dam conditions | Rainfall and model results | Strategy |
| :---: | :---: | :---: | :---: | :---: |
| Commenced
 Thursday
 13 Jan 2011
 12:00
 Completed
 Wednesday
 19 Jan 2011
 12:00 | Drain Down Phase
 Wivenhoe Directives \#35 to \#62
 Somerset Directives \#10 to \#13.
 - During this period, releases from Wivenhoe Dam were increased as the peaks from Lockyer Creek and Bremer River subside. Downstream impacts were controlled to ensure that, at no time during this phase, downstream water levels rose, except if impacted by tidal influences.
 - During this period, stored flood water in Somerset Dam was drained into Wivenhoe Dam in accordance with the drain down target of seven days. Importance was placed on opening the D'Aguilar Highway as soon as possible. | Total rainfall from 08:00 on 6 Jan 2011 to the end of this period:
 - Wivenhoe Dam 415 mm ;
 - Somerset Dam 626 mm ;
 - Lockyer Creek 337 mm ;
 - Bremer River 288mm.
 Wivenhoe Dam level fell from 74.61 m to 66.89 m over the six-day period.
 Somerset Dam level fell from 103.96 m to 99.00 m over the six-day period. | - Catchment average rainfalls during this six day period were:
 - Wivenhoe Dam 14mm;
 - Somerset Dam 7mm;
 - Lockyer Creek 7mm;
 - Bremer River 8 mm . | Drain DowitPhase
 - Drifing this period the target was to release stored floodwaters from the Dam within seven days of the flood peak passing through the Dams, while controlling downstream impacts. Considerations impacting the duration and timing of the Drain Down Phase in this instance included:
 - Causing no renewed increases in river levels below the Dam (except where unavoidable due to tidal influences);
 - Maintaining an adequate release rate to ensure temporary pumps providing water supplies to the Lowood area could continue to operate;
 - Minimising bank slumping impacts along the river, particularly in key areas such as Coronation Drive (as requested by Brisbane City Council);
 - Re-opening Brisbane Valley Highway and key rural bridges as quickly as possible;
 - Achieving FSL in the Dams at the conclusion of the Event. |

3 EVENT MOBILISATION AND STAFFING

3.1 Catchment conditions at Event commencement

In the 25 days leading up to the January 2011 Flood Event, three separate flood events impacted Somerset and Wivenhoe Dams. Flood releases were made from Wivenhoe Dam on all but five of those days. The total outlow from the three additional events was around $690,000 \mathrm{ML}$ and the details of these events are as follows:

Event	Event start date	Event end date	Volume released (ML)
1.	13/12/2010	16/12/2010	70,000
2	17/12/2010	24/12/2010	150,000
3	26/12/2010	02/01/2011	470,000

During these events, requests were received from Councils and residents, either isolated or adversely impacted by bridge closures downstream of the Dam, to curlail releases as soon and as quickly asyporsible. This was a significant issue at the time as bridge closures had occurred over the traditional Chtish has/New Year holiday period, including closures on Christmas and New Year's Day. However releases during these events were always made in accordance with the Manual.

Less than four days separated the end date of Event 3 and the commencement of 10 January 2011 Flood Event. This meant that any significant drain down of Somerset and Wivenhoe Defes during this period was impossible without causing significant bridge inundation downstream of the Dand without exceeding minor flood levels in the Lower Brisbane River. These actions were not able to bêtustified by the Manual, particulariy as Section 8.3 states the following in relation to Wivenhoe Dam:
"The spillway gates are not to be opened for flood control (purposes prior to the reservoir level exceeding EL 67.25."

This issue is also discussed in Section 17.0.
Finally, due to the rainfall that occurred in the Dapotchments throughout December 2010, al the start of the January 2011 Flood Event, the catchment conditidns were near saturation. However the catchment was highly responsive, with the initial loss varying between 0 and 30 mm , Continuing loss rates were also unusually low. Because the degree of gatehment saturation increased as the Event progressed, very high levels of run-off generation were experienc
 levels of run-off generation were experfenced throughout the Event.

Deleted: at the start of the January 2011 Flood Event
Deleted: T
Deleted:
Deleted: $\%$

3 EVENT MOBILISATION AND STAFFING

3.2 Event mobilisation

There was no significant rainfall in the 24 hours to 09:00 on Wednesday 5 January 2011 however, in the $24 \ldots$. Deleted:
hours to 08:00 Thursday 6 January 2011, catchment average rainfall totals were:
Wivenhoe Dam 28mm;

- Somerset Dam 21mm;
- Lockyer Creek 23mm;
- Bremer River 23mm.

This rainfall was sufficient to trigger event mobilisationat 07:42,Thursday 6, January 2011, using Strategies......... Deleted: , W1A and S2. Based on the rainfall at that time and subsequent model runs, the Somerset lake level wasi). forecast to peak at 99.7 m (excluding forecast) and 100.0 m (including forecast). The Wivenhoe lake lebey was forecast to peak at 68.3 m (excluding forecast) and 68.4 m (including forecast),

The following actions were undertaken as soon as mobilisation occurred:

Deleted: which occurred
Deleted: on
Deleted:
Deleted:

- $24 / 7$ staffing commenced at the Flood Operations Centre with at least one Duty Flogd Operations Engineer and at least one trained Flood Officer present (minimum two persons); \qquad
- 24/7staffing commenced at the Dams with at least two trained Dam Operators\%present;
- The one absent Flood Operations Engineer was called back early fromannual leave to assist wilh the management of the Event.

Staffing of the Flood Operations Centre and the Dams continued ond this basis until event de-mobilisation at 12:00 Wednesday 19 January 2011. During critical periods, alfour Flood Operations Engineers were present in the Flood Operations Centre and were actively involved if flood event decision-making processes. These Engineers generally lived in the Flood Operations Centrebuilding during the critical 96 hours of the Event, as did a number of the trained Flood Officers.

	Deleted: on
	Deleted:
	Deleted:
	Deleted:

3.3 Qualifications of staffor duty

Flood Operations Engineers
The four Flood Operations Engifieers approved by the Chief Executive to direct the operations of Somerset and Wivenhoe Dams during flood events are:

- Flood Operations Engineer 1
- Flood Operattońs Engineer 2
- Flood Operations Engineer 3
- FloodOOperations Engineer 4

Tpa approved Engineers all hold a current Cerlificate of Registration as a Registered Professional Engineer of Queensland, as well as tertiary degrees in engineering. All Engineers had demonstrated to the Chief
Executive fhey have:

Deleted: e
Deleted; Officar

1. Knowledge of design principles related to the structural, geotechnical and hydraulic design of large dams, and;
2. At least a total of five years suitable experience, having, demonstrated their expertise in at least two of the

Deleted: and have following areas:

- Investigation, design or construction of major dams;
- Operation and maintenance of major dams;
- Hydrology with parlicular reference to flooding, estimation of extreme storms, water management or meteorology;
- Applied hydrology with parlicular reference to llood forecasting and/or flood forecasting systems.

3 EVENT MOBILISATION AND STAFFING

| Flood Operations Engineers 1,2 and 3 are three of the most experienced and expert Engineers in the \qquad Deleted: e industry, in relation to their knowledge of Brisbane River flood hydrology. Flood Operations Engineer 4 is one of the most experienced Engineers in Australia in relation to the operation and maintenance of gated dams. The Flood Operations Engineers' resumes are included in Appendix N. Formatted: Font color: Red

Flood Officers

Nine Flood Officers, trained in Flood Operations Centre duties, assisted in the Flood Operations Centre during the Event.

1. Flood Officer 1 ;
2. Flood Officer 2;
3. Flood Officer 3;
4. Flood Officer 4 \qquad
5. Flood Officer 5 ;
6. Flood Officer 6;
7. Flood Officer 7;
8. Flood Officer 8;
9. Flood Officer 9 .

Dam Operators

Thirteen Dam Operators, trained in Flood Operations Centre duties opyerated Somerset and Wivenhoe Dams during the Event.

1. Dam Operator 1;
2. Dam Operator 2;
3. Dam Operator 3;
4. Dam Operator 4;
5. Dam Operator 5 ;
6. Dam Operator 6;
7. Dam Operator 7;
8. Dam Operator 8;
9. Dam Operator 9 ;
10. Dam Operator 10;
11. Dam Operator 1,
12. Dam Operalor 12;
13. Dam Operatừr 13.

3 EVENT MOBILISATION AND STAFFING

3.4 Flood Operations Centre staffing

Flood Operations Centre staffing details for the duration of the Event are recorded in Tables 3.3.1, 3.3.2 and 3.3.3 below. Each table has been compiled in accordance with the confirmed Event Roster.

3 EVENT MOBILISATION AND STAFFING

3 EVENT MOBILISATION AND STAFFING

Shift start time	Shift finish time	Flood Operations Engineers	Notes
Tue 18/01/2011. 07:00	Tue 18/01/2011 19:00	Engineer 1	Standard shift handovers occurred at either end of this shift in accordance with the Flood Procedure Manual.
Tue 18/01/2011 19:00	Wed 19/01/2011 07:00	Engineer 4	Standard shift handovers occurred at either end of this shifl in accordance with the Flood Procedure Manual.
Wed 19/01/2011 07:00	Wed 19/01/2011 14:00	Engineer 2	Standard shift handovers occurred at either end of this shift in accordance with the Flood Procedure Manual.

3 EVENT MOBILISATION AND STAFFING

Shift start times	Shift finish times	Flood Officers	Notes
Wed 19/01/2011 07:00	Wed 19/01/2011 14:00	Flood Officer 2	

Table 3.3.2 - Flood Operations Centre staffing -. Flood Officers

3 EVENT MOBILISATION AND STAFFING

4 FLOOD EVENT PROCEDURES

4.1 Introduction

Seqwater has prepared a Flood Procedure Manual that assigns responsibilities to Seqwater personnel around flood event preparation, mobilisation and operation, in relation to Seqwater's Dams, including Somerset and Wivenhoe Dams.

The relationship between the Flood Procedure Manual and The Manual of Operational Procedures for Flood Mitigation at Wivenhoe Dam and Somerset Dam is outlined in Figure 4.1.1.

Figure 4.1 .1 - Relationship behwent the Flood Procedure Rnamualan

The Flood Procedure Manual is an intemal documenand is registered in Seqwater's internal document control system (Qpulse). Controlled hardcopies are issued to the following personnel:

Table 4.1.2-Location of confrolit dhardooples of the Sequater Floci Procedure Manuat
The issue date for the current Flood Procedure Manual is January 2010.

4 FLOOD EVENT PROCEDURES

4.2 Flood Operations Centre preparedness

Prior to the January Flood Event, Flood Operations Engineer 2 was designated the Flood Operations Manager In accordance with the requirements of the Seqwater Flood Procedure Manual. In conjunction with Flood Operations Engineer 1 Ga Senior Flood Operations Engineer) Flood Operations Engineer 2 was responsible for the overall management of the Flood Operations Centre leading up to the Event and ensured:

Deleted: as	
	Formatted: Font color: Auto
	Deleted: one of the

- A Flood Operations Engineer and three Flood Officers were on close call at all times, and ready to attend the Flood Operations Centre if called;
- Sufficient Flood Operations Engineers and Flood Officers were available to staff the Flood Operations Centre if a flood event was declared;
- Contact details for Flood Operations Engineers and Flood Officers were up-to-date;
- Current copies of the following documents were available in the Flood Operations Centre:
- The Manual of Operational Procedures for Flood Mitigation for Wivenhoe Dam and Somerset Dam (Revision 7) ("the Manual");
- Wivenhoe Dam - Emergency Action Plan;
- Somerset Dam - Emergency Action Plan.
- The following facilities were available in the Flood Operations Centre:
- The data collection and modelling systems required to manage flood events at Somerset and Wivenhoe Dams;
- Sufficient stationary and forms;
- Landline telephone, mobile telephone, satellite telephone, Seq water radio network, facsimile and email communication systems;
- Power systems and back-up power systems required ensure computer system reliability during the Flood Event.

As defined by the Seqwater Flood Procedure Manual me role and responsibilities of the Flood Operations \qquad Manager are completely separate to the roles and responsibilities of flood Operations. Engineers: However a single person can hold both roles at any point in thee.

When one of the Flood Operations Engineers is on call, this person is referred to as the Duty Flood Operations Engineer. There is always, a single designated Duty Flood Operations Engineer on call 24 hours a day, seven days a week.

When on call, the Duty Flood Operations Engineer - one of the four Flood Operations Engineers described in Section 3.3 =ensured they s

Deleted: It should be noted that the role of t
Deleted: as defined by the
Seawater Flood Procedure
Manual
Deleted: i
Deleted: s
Deleted: Senior Flood Operations Engineers and Deleted: as defined by the Manual. Although the

- Were contactablegtall times by telephone;
- Had constantraccess to facilities that provided appropriate real-time monitoring of dam and catchment conditions
- Wererable to travel to the Flood Operations Centre in two hours to direct the mobilisation and operation of the Flood Event, without compromising the safety of the Dams or the intent of the Manual;
- ${ }^{2}$ incoming Duty Flood Operations Engineer, organised the handover from the current duty staff;
- As outgoing Duty Flood Operations Engineer, prepared a status summary sheet for Somerset and Wivenhoe Dams;
- Contacted the Flood Operations Manager if any issues arose with the potential to adversely impact the operations of Flood Operations Centre.

When on call, the nine Flood Officers described in Section 3.3 ensured they:

- Were contactable at ali times by telephone;
- Reported to the Duty Flood Operations Engineer if at any time while being on call they became unfit for duty;
- Were able to travel to the Flood Operations Centre within two hours of being called;
- Attended the close call handover meetings organised by the Duty Flood Operations Engineers.

4.3 Flood Operations Centre mobilisation

1. The Segwater Flood Procedure Manual reguires the Duty Flood Operations Engineer to declare a flood event and mobilise the Flood Operations Centre, if the Duty Flood Operations Engineer considers it likely the FSL of Somerset Dam or Wivenhoe Dam will be exceeded as a result of rainfall occurring in the Dam catchments and flood releases are likely. The Flood Operations Centre is mobilised as soon as a flood event is declared Flood Operations Engineer 2 was the Duly Flood Operations Engineer who declared the January 2011 Flood Event by emailat 07:42 on Thursday 6 January 2011 (see Appendix H)

When the Flood Operations Centre was mobilised, the Duty Flood Operations Engineer ensured that (he following actions were undertaken:

Deleted: When on call, a Senior Flood Operations Engineer or Flood Operations Engineer is referred to as the Duty Flood Operations

- Notified the Senior Flood Operations Engineers of the mobilisation;
- Commenced recording significant events in the Event Log
- Contacted the required Flood Officers to commence duly at the Flood Operations Centre;
- Contacted the Seqwater Operations Coordinator responsible for SomersetDam and Wivenhoe Dam, and provided instructions to send Dam operations staff to the Dams. The Operations Coordinator was also advised of the expected duration of the Flood Event to allow time to Qiganise suitable staffing arrangements for the duration of the Event;
- Established 09:00, Sunday 2 January 2011 as the start time forf he Event, for the purposes of modelling predictions:
- Established a suitable directory structure within the camputer network to manage the Flood Event data;
- Examined and cleaned all rainfall and stream_floycsata for the Event prior to use in the flood modelling systems;
- Derived inflow hydrographs for:
- Wivenhoe Dam
- Somerset Dam
- Lockyer Creek catchment
- Bremer River catchment
- Examined these derivedictiow hydrographs across a variety of appropriate rainfall scenarios;
- Inputted the derived doflow hydrographs for Somerset Dam, Wivenhoe Dam, Lockyer Creek catchment and Bremer River catchement into Somerset and Wivenhoe Dams operations spreadsheet and ran this program; \qquad
- Determinedxdate operations strategies for Somerset and Wivenhoe Dams based on the resulting data from the opectations spreadsheet and in accordance with the strategies outlined in the Manual;
- Adyysed Brisbane City Council, Ipswich City Council and Somerset Regional Council of the gate operations Slrategies to allow roads to be closed prior to inundation
- Directed gate operations at the Dams as appropriate by instructing the Dam Supervisors by email and facsimile of gate movements. Instructions were also given verbally by telephone prior to written instructions being released;
- Advised Seqwater's Dam and Source Operations Manager of gate operations by providing a copy of all Flood Operations Directives and regular updates including advice of longer term strategles to manage the Flood Event. This allowed Seqwater to provide appropriate flood event advice to the public and other stakeholders, including the Queensland Water Commission and the Water Grid Manager;
- Advised the Bureau of Meteorology, Brisbane City Council and the Dam Safety Regulator of the gate operations strategies and actual and projected water releases from Wivenhoe Dam.

4.4 Flood Operations Centre operations

During the Flood Event, the four Flood Operations Engineers worked closely together to ensure the following took place, in accordance with the Flood Procedure Manual:

- Suitable stafing arrangements were in place for the Flood Operations Centre and the impacted Dams for the duration of the Flood Event;
- Staff working in the Flood Operations Centre during the Event signed the Flood Event Shif Log at the start and end of a shift. However, because a number of staff were living in the building housing the Flood Operations Centre during the Event, some sign on and sign off details were not properly recorded. This has been recognised as an area for improvement for future flood events.

During the Flood Event, the Sentor Flood Operations Engineer set the overall strategy for the managestent of the Flood Event in accordance with the Manual. The Duty Flood Operations Engineers directed they operations of the Flood Control Centre in accordance with the overall strategy. In situations whers (wo or more Flood Operations Engineers were on duty simultaneously, these duties were shared eqgally. The Duty Flood Operations Engineers ensured the following actions took place during the Event, in $\frac{a}{a} c \mathrm{c}$ cordance with the Flood Procedure Manual:

- All significant events were recorded in the Event Log;
- The integrity of the ALERT System was maintained;
- Flood releases from the Dams were in accordance with the Manual and the RTFM was used to support the decision making processes around the releases;
- Software issues impacting on the operation of the ALERT System were identified and resolved.
- All notifications specified in the Flood Manuals and Emegenency Action Plans were recorded in the Event Log;
- Accurate plots of headwater levels were maintaipes for each of the Dams;
- Appropriate handovers took place at the end dreach shift to ensure incoming Officers had the following information:
- Reservoir storage elevations at eath Dam;
- Radial gate, sluice gate andregulator valve openings at each Dam;
- Flood release proceduressbéng applied and the reason for their selection;
- Status of compliance, With' the Flood Manuals and Emergericy Action Plans;
- Status of the comp(itilcation systems;
- Status of the datagathering network;
- Status of copdiler systems and Flood Modelling Systems;
- Any areas of concern associated with the management of the Flood Event;
- Areas 报每ich the discretion has been exercised in accordance with the Flood Manuals.
- Flood Qfficers on duly in the Flood Operations Centre undertook all duties as directed by the Duty Flood Operstivions Engineer:
- Arlibbane City Council, Ipswich City Council and Somerset Regional Council were contacted as appropriate do allow roads to be closed prior to inundation and for any necessary arrangements to be made for community isolation and/or necessary evacuations. (The Manual allows for immediate releases to be initiated if the safety of a Dam is at risk. However, in accordance with. Seqwater's duty of care to public safety when making Dam releases, every attempt is made to close impacted roads prior to inundation by water outlows from gate operations, and to make appropriate arrangements for community isolation and evacuations due to the risk to public safety.)
- Gate operations were directed at the Dams as approprate, by instructing the Dam Supervisors by email and facsimile about gate movements. Instructions were also explained verbally by telephone prior to the writen instructions being released;
- Seqwater's Dam and Source Operations Manager was advised of all gate operations by providing a copy of all Flood Operations Directives and regular updates, including advice of Ionger-term strategies to

4 FLOOD EVENT PROCEDURES

manage the Flood Event. This allowed Seqwater to provide appropriate flood event advice to the public and other stakeholders, including the Queensland Water Commission and the Water Grid Manager;

- The Bureau of Meteorology, Brisbane City Council and the Dam Safety Regulator were advised of the gate operation strategies and actual and projected water releases from Wivenhoe Dam.

As the flood event progressed a number of issues arose including the potential for the Flood Operations Centre to loose mains power and a breakdown in communlcalion between the main and back-up Flood Operations Centres. These issues were addressed through the procedures outtined above and the respecive building managers and Energex were were avare of the critical nalure of the function of the FOC. The main FOC located in Turbot Street did not loose mains power or telephone communications throughout the event, whilst the Back-up facility, located in George Street did resort to standby power for the period the CBD was affected by the flood. This did result in the wireless bridge which links the main and back-up FOCs dronrifor out for a shori period of time, but this link was quickly re-established once the slandby power was

4 FLOOD EVENT PROCEDURES

4.5 Somerset Dam and Wivenhoe Dam preparedness

Prior to the Flood Event, the Seqwater Operations Coordinator responsible for Somerset and Wivenhoe Dams ensured the following actions took place during in accordance with the Flood Procedure Manual:

- At least two Dam Operators were on close call for both Somerset Dam and Wivenhoe Dam at all times
- Sufficient Dam Operators were available to staff Somerset Dam and Wivenhoe Dam should a major food event be declared;
- Contact details for the Dam Operators were up-to-date;
- Current copies of the following documents were available at Somerset Dam and Wivenhoe Dam:

Deleted:

- The Manual of Operational Procedures for Flood Mitigation for Wivenhoe Dam and Somerset gem (Revision 7);
- Emergency Action Plan;
- Standing Operating Procedures;
- Operation and Maintenance Manual.
- The following facilities were available at Somerset Dam and Wivenhoe Dam:
- Sufficient stationary and forms;
- Landline telephone, mobile telephone, satellite telephone, Seqwater radia email communication systems;
- Power systems and back-up power systems to ensure computer 仓ystems and communication systems were able to operate reliability during the Flood Event
- All preventive maintenance work was undertaken at both Damsinaccordance with the Dam Operation and Maintenance Manuals.
- The flood release infrastructure and associated back-upsystems at both Dams was kept operationallyready;
- While on close call, Dam Operators ensured:
- They were contactable at all times bytelęponone;

1 - In the event of being "unfit for duty ghey reported to the Duty Flood Operations, Engineer currently on \qquad Deleted: ; close call;

- They were able to travel to the Dam they were assigned to within two hours of being called.

4 FLOOD EVENT PROCEDURES

4.6 Somerset Dam and Wivenhoe Dam mobilisation

Following notification the Flood Event had been declared, the Seqwater Operations Coordinator responsible for Somerset Dam and Wivenhoe Dam, ensured the following aclions were completed in accordance with the Flood Procedure Manual:

- The Principal Engineer Dam Safety was notified of the mobifisation;
- Significant events were recorded in the Event Log;
- The Dam Operators on close call were contacted and directed to travel to the Dams. Two Dam Operators were directed to each site and at least two Dam Operators remained on duty at all times during the Event;
- During each shift, Dam Operators were nominated to be the Dam Supervisors for the purposes of managing the Flood Event.

As each Dam Supervisor arrived at their assigned Dam, the Dam Supervisor completed the following actions in accordance with the Flood Procedure Manual:

- Checked communication existed with the Flood Operations Centre;
- Commenced recording significant events in the Event Log;
- Completed the Flood Readiness Checklist contained in the Flood Procedure Manual (see Appendix I);
- Undertook food operations as directed by the Flood Operations Centre
Deleted: F

4 FLOOD EVENT PROCEDURES

4.7 Somerset Dam and Wivenhoe Dam operations

As the Flood Event commenced, the Dam Supervisor at Somerset Dam and Wivenhoe Dam ensured the following actions took place in accordance with the Flood Procedure Manual. At the beginning of each shift, a new Dam Supervisor was appointed.

- All significant events were recorded in the Event Log;
- Flood releases were undertaken in accordance with directions provided by the Flood Operations Centre;
- All notifications required by the Manuals and Emergency Action Plans were made;
- Handovers at the end of each shift were conducted to ensure incoming Officers were aware of:
- Reservoir storage elevations at each Dam;
- Radial gate, sluice gate and regulator valve openings at each Dam;
- Status of the communication systems;
- Any areas of concern associated with the management of the Flood Event.
- The Duty Flood Operations Engineer was advised of any issues arising during the Evgent with the potential to adversely impact flood operations.
(Note: During the Event, Wivenhoe Dam experienced a temporary loss ofthains power however, this did not impact Dam operations as the on-site, standby diesel genseator provided full power Deleted: d during this time. Two other separate back-up power systems wergalso avallable to ensure the continued operation of the radial gates if needed.)

5 DATA COLLECTION SYSTEM PERFORMANCE

5.1 Background

A real time flood monitoring and forecasting system has been established to monitor rainfall and water levels
in the Dam catchments and to provide adequate, accurate and timely information for informed decision: making.

Field stations consisting of rainfall and water level gauges μ se the Event Reporting Radio Telemetry System (ERRTS) to communicate data to the Flood Operations Centre. More than one gauge may be located at an individual field station. Water level gauges are often located at the Department of Environment and Resource
Management (DERM) gauging stations;DERM is responsible for the maintenance of the water level gauges and Seqwater for the ERRTS equipment.

Rainfall gauges consist of a standard tipping bucket. Water level gauges vary in type and model but inctude shaft encoders, wet pressure transducers and dry pressure transducers. At a rainfall gauge, an evegtys defined as the tip of the bucket. At a water level rainfall gauge ${ }_{1}$ an event is defined as an incremodalincrease.
\qquad

Deleted: At these sites
Deleted: responsible

 or decrease in water level.

When an event is triggered at a gauge, data is transmitted via VHF radio through a series f , redundant radio repeaters to the Flood Operations Centre and other data collection centres. Each sigholhas a unigue \qquad identification number When the signal arrives at the Flood Operations Centre baze station, they are relayed to computer hardware platforms serial port via a decoder time stamped, read, decoded, accepted or rejected, filtered, validated and then stored in a gauge database in the Centre's Floodtcol and Enviromon databases. Redundant base stations at Mineral House and the Land Centre in Brisbane's CBD are synchronised with the Flood Operations Centre data base.

The Flood-Col and Enviromon databases contain gauge detailsfinduding:

- Gauge name;
- ALERT number;
- Type of gauge;
- Calibration information;
- Alarm thresholds;
- Rating curve information, if appicable.

Both Flood-Col and Enviromonallow filtered gauge data to be viewed in either a text or graphical format. r Information that can be viequed or edited includes height, discharge, rainfall pluviographs, rainfall hyetographs lake levels and Dam volun)es and applications are also available for viewing groups of gauges.

The combination of ERRTS field stations, rainfall gauges and water level gauges, radio network and data collection softoare is an ALERT system. ALERT or Automated Local Evaluation in Real Time System, has become a standard for flood warning system in Australia and the Jnited States of America and is widely used by the Rureau of Meteorology (B 0 M) and other flood warning agencies throughout the world.

Ftogirops is the modeling software used to anaiyse and produce forecast runoff. It extracts data from the Aobod-Col database, calculates areal rainfalls and generates hydrographs of runoff. Model parameters can be adjusted and forecast rainfall included as an option Results can be displayed and imported into gate operation models, The ALERT system, Flood-Ops and ancillary software make up the Real Time Flood Model (RTFM).

5 • DATA COLLECTION SYSTEM PERFORMANCE

5.2 Field station descriptions

Seqwater operates 75 rain gauges and 71 river gauge field stations within and around the Brisbane River Basin. Of these 146 sites, 129 operate under the ALERT system and the remaining 17 operate as telephone telemeter gauging stations, but are not directly available in the operational suite.

Manual gauge board readings are taken at Somerset and Wivenhoe Dams to confirm the ALERT data received from these sites. These manual observations form the basis of gate operations.

In addition to the Seqwater owned and operated network, the Flood Operations Centre also has access to Enviromon which collects data from an additional 225 rain gauges and nearly 200 water level gauges. throughout South East Queensland.

The location of the rainfall stations are shown in Figure 5.2.1 and the Seqwater water level network shown in Figure 5.2.2.

5 DATA COLLECTION SYSTEM PERFORMANCE

5 DATA COLLECTION SYSTEM PERFORMANCE

Prior to the January 2011 floods, four out of 75 rain gauges (95% availability) and six out of 71 river gauges (92% availability) were marked as being 'out of action'. In line with standard practice, the data collected from some gauges was also marked as 'suspect' at that time, and therefore required examination prior to being used in modelling. These gauges are listed in Table 5.2.3 and Table 5.2.4.

5 DATA COLLECTION SYSTEM PERFORMANCE

In many instances, more than one gauge is located on an individual station site to allow for the periodic nonoperation of individual gauges. Accordingly, due to this in-built network redundancy, the presence of these non-operational gauges did not impact on data quality during the Event.

5 DATA COLLECTION SYSTEM PERFORMANCE

The January 2011 floods damaged a number of stations. After the Event, eight out of 75 rain gauges (89% avail (abilty) and 16 out of 71 river gauges (77% availability) were marked 'out of action'. In line with standard pradice, the data collected from some gauges was also marked as 'suspect' during the Flood Event, and Therefore required close examination prior to being used in modelling. Details of all these stations are contained in Table 5.2.5 and Table 5.2.6.

Some gauges did not operate during the Flood Event as some sites were inundated with water, damaged by debris, impacted by lighting strikes or lost power. There were also some stations completely destroyed by the flood flows. By surveying the aftermath of the flood and its impacts along the river channels, it is easy to see how this occurred.

5 DATA COLLECTION SYSTEM PERFORMANCE

Rain ID	Site	Status date 19 Jan 2011	Comment
6633	Lyons Bridge AL-P	Out of action from 15:00 on 11 Jan 2011	Although this data was marked out of action in the system, it was also available for use through the BoM Environmon system.
6630	Lyons Bridge AL-B	Out of action from 09:00 on 11 Jan 2011	Although this data was marked out of action in the system, it was also available for use through the BoM Environmon system.
6568	O'Reillys Weir AL	Out of action from 19:34 on 11 Jan 2011	This site was severely damaged by flood water at the time indicated. This was late in the Event and rainfall after this time was minimats)
6641	Wivenhoe Dam TW AL-B	Out of action from 22:30 on 11 Jan 2011	This site was severely damaged by flood water at the time indicated. This was late in the Event and rainfall after this time was minimal. Manual readings are also available at this site.

5 DATA COLLECTION SYSTEM PERFORMANCE

Table 5.2.6-Additional Water Leveigauges marked out of achion or suspect diring the Ftood Event

For the duration of the Flood Event, just over 130,000 individual observations, 32,000 rainfall and nearly 100,000 water level readings were received from the ALERT network in the Flood Operations Centre. This provides an indication of the system load that is required to be managed during the Event.

Table 5.2.7 below shows the number of readings received from each rainfall and water level gauge.

5 DATA COLLECTION SYSTEM PERFORMANCE

Seqwater's hydrographic unit is responsible for the operation and maintenance of the rainfall and water level
newwork. This unit is assisted by Road Tek, a division of Main Roads.
Most rainfall stations are standalone instruments or are co-located with river level stations. Where possible, ALERT water level gauges take advantage of data provided by DERM owned and maintained gauging Formatted: Font color: Auto stations to provide a robust source of reliable water level sensing

A number of the sites damaged dunng the January 2011 Flood Event have already been reinstated by Seqwater staff.
Formatted: Font color: Auto

Header distance from edge: 1.25 cm , Footer distance from edge: 0.5 cm , Col \#1 width: $7.12 \mathrm{~cm}, \mathrm{Col}$ \#1 spacing: 1.27 cm, Col \#2 width: 7.12 cm , Not Force equal column width

6 EVENT DATA

6.1 Introduction

A real time flood monitoring and forecasting system has been established to monitor rainfall and water levels fin the Dam catchments and to provide adequate, accurate and timely information for informed decisionmaking. This system is described in detail in Section 5 . Following is a description of the operational rainfall and river height data collected during the January 2011 Flood Event using this system, as well as, a description of other supporting information used by the Flood Operations Centre to support decision-making during the Event

	Formatted: Font color: Red, Not Highlight
	Deleted: and
	Deleted: in
	Deleted: to support decisionmaking
	Deleted; that
	Deleted; e
	Deleted; that

> It should be noted, the data contained in this Section is operational data which was collected during the Event and upon which operational decisions were made. The data is considered accurate, however only real time validation of the data has been undertaken. Given the time. constraints for preparation of this Report, it is recognised that more information may become available over time to add to the Event data presented in this Section.

6.2 Forecast rainfall

Forecast rainfall tools provided by the Bureau of Meteorology ((BoM) that weregeramined and considered in decision making during the January 2011 Flood Event were:

- 24 hour Quantitative Precipitation Forecasts (QPF) for the Dam Gatehments.
- The BoN weather radar (available through www.bom.gov.ave
- BoM SIL.O meteograms forecast rainfall (based on BIM (ACCESS Model);
- BoD interactive weather and wave forecast rainfall maps (based on BoD ACCESS Model);
- BIM water and the land forecast rainfall (base doit an ensemble of several numerical weather prediction models);
- BoM severe weather warnings

Of these, QPF are considered the popery forecast tool as they are provided by BoB to give specific forecast information in relation to the Dargertchment areas. The QPF leading up to and during the Event are shown in Table 6.2 .1 following. In relation to the data shown in this table, the following observations can be made;

- The QPF provided ate asonable representation of the actual daily rainfall recorded until 16:00 Saturday 8 January 2011. The 21 forecasts issued to 16:00 Saturday 8 January 2001 overestimated rainfall during this period by only 21%. This is considered an excellent result. However the total catchment average rainfall recorded during this five-day period was only in the order of 100 mm
- In the five forecasts issued between 16:00, Saturday 8 January 2011 and 10:00, Tuesday 11 January 2011, the \& PF underestimates daily actual catchment average rainfall by between 160% to 340%, with an average error of 225%. This was the critical rainfall period, with the catchment average rainfall recorded Goring this two-and-a half day period being in the order of 300 mm
- For the two forecasts issued during the period between 10:00 Tuesday 11 January 2011 and 16:00 on Tuesday 11 January 2011, the QPF overestimates daily actual catchment average rainfall by between 196% to 625%, with an average error of 270%. The total catchment average rainfall recorded during this period was only in the order of 45 mm ,
- The QPF provided a reasonable representation of the actual rainfall recorded after 10:00 on Wednesday 13 January 2011.

6 EVENT DATA

As well as examining and modeling the QPFs, the ACCESS model result data provided by BoM allows three day and five day rainfall forecasts to be examined and considered in flood event decision making.

A summary of this data is shown in the following table that contains translated rainfall forecasting results using ACCESS model result data provided by BoM during the critical period of the Event (between 6 and 11 January 2011). The original BoM data has been translated to forecast catchment average rainfall results, based on a derived catchment centroid rainfall, estimated by using Seqwater's Flood Early Warning Modeling System.

6 EVENT DATA

Forecast date and time	Somerset Dam catchment average rainfall				Wivenhoe Dam catchment average rainfall (excluding Somerset Dam catchment)			
	3 Day	from	5 Day	from	3 Da	from	5 Da	sfrom
	Actual rainfall (mm)	$\begin{aligned} & \text { Forecast } \\ & \text { ralnfall } \\ & (\mathrm{mm}) \text {. } \end{aligned}$	Actual rainfall (mm)	$\begin{aligned} & \text { Forecast } \\ & \text { rainfall } \\ & (\mathrm{mm}) \text {. } \end{aligned}$	Actual ralnfall (mm)	Forecast rainfall (mm)	Actual rainfall (mm)	Forecast rainfall (mm)
06/01/2011 00:00	90	73	403	115	79	90	275	114
06/01/2011 12:00	150	85	515	133	87	51	335	(8) ${ }^{\circ}$
07/01/2011 00:00	298	189	568	206	180	133	347	144
07/01/2011 12:00	321	123	536	137	183	79	$322)^{\circ}$	89
08/01/2011 00:00	332	191	527	206	205	207	309	218
08/01/2011 12:00	447	165	527	169	284	136 <	309	139
09/01/2011 00:00	500	230	510	231	298	267	301	268
09/01/2011 12:00	441	140	446	'141	271	770	273	171
10/01/2011 00:00	278	463	280	465	169	171	170	171
10/01/2011 12:00	218	59	219	60	(140	389	141	390
11/01/2011 00:00	196	19	197	19	105	231	105.	231

Table 6.2.2 above shows:

- There are variations in excess of 700% between successive three-day catchment average rainfall forecasts made 12 hours apart;
- There are variations in excess of 700% between successive five-day catchment average rainfall forecasls made 12 hours apart;
- There are eight instances inwich actual rainfall recorded is greater than 200% (highest is more than $1,000 \%$) of the three-day(firecast rainfall;
- There are three instames in which the three-day forecast rainfall is greater than 150% (highest is 280%) of the actual rainfalkecorded;
- There are nine instances in which actual rainfall recorded is greater than 300\% (highest is over $1,000 \%$) of the five-day forecast rainfall;
- There are two instances in which the five-day forecast actual rainfall is greater than 200% (highest is 280%) of the actual rainfall recorded.

These results show that three day and five day forecasts only provide an indication of future rainfall and these forecasts cannot be used as a basis of flood operations decision making where public safety in both rural and urban areas is directly impacted. This forecasting information uses the most up-to-date technology available within BoM at the present time. Future improvements in this area will be examined with interest in order to maximise the flood mitigation benefits of the Dams.

6 EVENT DATA

6.3 Event rainfall totals

As discussed in Section 5, Seqwater uses a network automated rainfall stations within the Brisbane River catchment area to gather rainfall data during flood events. Data from this network is automatically collected in real time using a radio telemetry collection system and sent in real time to the Flood Operations Centre. Every millimetre of rainfall recorded at each station is sent immediately to the Flood Operations Centre as it is recorded.

Data sent to the Flood Operations Centre in this way is operational data that has not been validated. Both manual and automatic data checking was undertaken in the Flood Operations Centre at regular and routine intervals over the course of the Event.

Table 6.31 shows the daily rainfall totals collected by the Flood Operations Centre (both Flood-Col and Enviromon) at each of the rainfall stations during the Event. Stations highlighted in bold are configued in the flood models and used in modelling of flows.

Alert ID	BoM ID	Station	Location		Rainfall (mm) 24 hours ending 09:00					11101	$12 / 01$	13101	8 day total
			Latitude	Longitude	6101	$7 / 01$	$8 / 01$	$9 / 01$	$10 / 01$				
6500	540184	Mt Glorious-B	-27.3120	152.7470									
6511	541057	Mt Pechy	-27.3167	152.0817	44	16	16	7	<81	101	18	0	283
6514	540139	Gregor Ck-P	-26.9800	152.4040	27	39	11	25	221	77	25	1	426
6517	540140	Gregor Ck-B	-27.0000	152.4040				D^{29}					
6520	540141	Boat Mountain	-26.9789	152.2847	40	52	20	25	179	62	26	4	408
6523	540142	Cressbrook Dam	-27.2650	152.1950	32	28	(1)	7	94	120	11	1	307
6526	540143	Helidon	27.5440	152.1130	56	42	25	6	101	33	0	0	263
6529	540144	St Aubyns	-27.0619	151.8944	25	N^{26}	23	20	74	123	8	2	301
6540	540145	Yarraman	-26.8358	151.9692	32	40	21	20	113	130	0	1	357
6542	540146	Cooyar Ck	-26.7417	152.1367	- 3^{3}	55	28	18.	118	118	3	1	364
6550	540147	Walloon-P	-27.6170	152:6680	25	14	14	3	69	42	114	0	281
6553	540148	Rosentretters Br	-27.1383	152.32894	28	27	25	4	129	111	23	4	351
6555	540479	Atkinson Dam	-27.4320	152.4640	44	28	9	5	109	119	98	0	412
6556	540149	Glenore Grove	-27.5242	K 152.4081	16	24	13	4	84	77	129	0	347
6559	540150	Savages Xing	-27.4410	152.6680	4	27	5	5	113	246	144	0	544
6562	540151	Kalbar Weir	-27.9230	152.6010	42	39	7	4	15	67	55	0	229
6565	540152	Tenthill	-27.6360	152.2140									
6568	540153	O'Reillys Weir	- -27.4197	152.5892	10	36	6	2	98	146	206	0	504
6571	540154	Harrisville	-27.8150	152.6406	14	19	10	1	30.	76	53	0	203
6574	540155	Caboonbah	-27.1460	152.4900	24	23	39	9	130	154	54	0	433
6577	540156	Gatton	-27.5564	152.2731	17	36	21	4	87	68	88	0	321
6580	540157	Adams $\mathrm{Br} \chi^{+}$	-27.8294	152.5108	33	30	13	2	36	93	92	1	300
6583	540158	Showground Weir	-27.6386	152.3844	13	27	18	1	68	103	117	0	347

Alert ID	BoMID	Station	Location		Rainfall (mm) 24 hours ending 09:00								8 day total
			Latitude	Longitude	6701	$7 / 01$	8101	9101	$10 / 01$	$11 / 01$	12101	$13 / 01$	
6590	540160	Somerset Dam HW-B	-27.1200	152.5510	20	18	42	22		136	65	1	463
6593	540159	Somerset Dam HW-P	-27.1000	152.5510									
6596	540161	Crows Nest	-27.2308	152.0311	44	21	15) 115	98	18	0	322
6598	540162	Toowoomba	-27.5114	151.9536	44	18	27	9	81	117	24	1	321
6600	540163	Kilcoy	-26.9481	152.5836	12	38	18	< 24	179	96	61	2	430
6601	540494	Mt Binga	-26.9920	151.9850	38	39	35	22	121	118	13	2	388
6602	540164	Top of Brisbane	-26.4772	152.1567	45	52 र	C) 70	17	41	66	0	0	291
6603	540493	Blackbutt	-26.8860	152.1020	45	75	30	33	160	107	13	0	463
6604	540165	Toogoolawah	-27.0858	152.3722		26	22	12	177	103	27	2	385
6605	540492	Eskdale	-27.1670	152.1860									
6606	540166	West Woodbine	-27.7847	152.1497	53	17	5	4	17	88	33	0	199
6607	540491	Lindfield	-26.8370	152.5810	50	34	18	90	271	86	65	1	615
6608	540167	Jimna	-26.6610	1524510	29	44	28	42	117	47	22	1	330
6609	540490	Monsildale	-26.5820	152.3250	25	43	62	49	117	160	4	2	462
6610	540168	Kluvers Lookout	-27.207a	152.7030	4	52	24	17.	126	164	191	4	582
6611	540489	Redbank Creek	-27.2770	152.2890	32	40	21	7	130	170	27	1	428
6612	540488	Mt Stanley	-20.6820	152.2050	24	61	32	32	137	160	2	1	449
6613	540487	Hazeldean	-27.0280	152.5370	9	38	32	18	204	123	90	5	519
6614	540486	Westvale	-27.0170	152.6100									
6615	540169	Thomton	-27.8211	152.3800	23	31	12	5	46	123	98	0	338
6617	540170	Little Egypt $\sim^{\text {º }}$	-27.7042	152.0650	50	18	8	1	30	92	30	1	230
6619	540171	Mt Castle	-27.9636	152.3756	52	55	17	4	88	195	122	21	554
6621	540172	Nukinenaz	-27.0567	152.1072	11	43	19	13	114	113	10	2	325
Wednesday 24 February 2011 DRAFT 2 Section 6: Page 6													

EVENT DATA

Alert ID	BoM ID	Station	Location		Rainfall (mm) 24 hours ending 09:00								8 day total
			Latitude	Longitude	6101	7101	8101	$9 / 01$	10/01	11101	$12 / 01$	$13 / 01$	
6623	540173	Tarome	-27.9867	152.5008	31	55	9	0	26	81	82	0	284
6624	540474	Moogerah Dam	-28.0310	152.5450	23	55	16	1	-21	96	76	0	288
6626	540475	Maroon Dam	-28.1840	152.6340	20	19	1	5	34	78	46	0	203
6630	540175	Lyons Br-B	-27.4717	152.5236	25	25	13	$1)^{4}$	83	130	239	0	519
6633	540174	Lyons Br-P	-27.4717	152.5236	26	22	11	5	75	114	214	0	467
6636	540177	Wivenhoe Dam HW-B	-27.3550	152.5960	6	29	0^{8}	4	87	135	197	0	464
6641	540179	Wivenhoe Dam TW-B	-27.3900	152.5960	8	32	6	5	99	157	206	0	513
6643	540178	Wivenhoe Dam TW-P	-27.4100	152.5960	7	63	7	2	101	160	218	0	525
6646	540183	Lowood-B	-27.4700	152.5930	8	29	7	4	104	183	210	0	545
6649	540182	Lowood-P	-27.4900	152.5930	46	22	8	9	99	163	194	0	501
6651	540180	Amberley-P	-27.6780	152.6990	39	13	16	3	68	32	86	0	257
6653	540181	Amberley-B	-27.6783	152.6989	38	12	16	3	59	32	81	1	242
6656	540472	Bill Gunn Dam	-27.6320	152.3790	13	31	23	1	74	102	132	0	376
6658	540473	Lake Clarendon Dam	-27.5160	S 152.3530	21	35	20	5	88	76	134	0	379
6680	540138	Mt Glorious-P	-27.3220	152.7470	29	46	16	24	204	260	228	2	809
6690	540185	Mt Mee-P	-27.6700	152.7800	10	55	46	30	220	137	179	10	687
6701	540246	Mt Mee-B	-27.0700	152.7800	9	55	49	28	219	138	179	9	686
6702	540338	Woodford-B	1826.9300	152.7600	8	42	43	37	181	88	196	5	600
6705	540337	Woodford-P	-26.9500	152.7600	8	41	43	38	182	88	196	5	601
6708	540188	Devon Hills $\quad \Delta y$	-26.9000	152.3210	28	42	43	55	162	68	16	1	415
6711	540189	Baxters Ck	-27.1958	152.8000	3	37	23	17	127	170	192	0	569
6714	540190	Ferris Knob ${ }^{\text {c }}$	-26.8542	152.8167	0	33	24	90	250	78	224	11	710
6716	540191	West Bellthorpe	-26.8230	152.6780	50	30	14	104	312	134	95	7	746

EVENT DATA

Table 6.3.1-Daily rainfall totals by station for the duration of the January 2011 Flood Event
Section 6: Page 8 of 43

6 EVENT DATA

The following maps (Figure 6.3.2 to Figure 6.3.11) illustrate the data in Table 6.3.1.

Rainfall in the $\mathbf{2 4}$ hours to 09:00 on Wednesday 5 January 2011

In the 24 hours to 09:00 on Wednesday 5 January 2011, only small rainfall totals, generally less than 5 mm were recorded in the Brisbane Basin. The word "None" on the map signifies that no reports were received from the station during the period. Figures in red also indicate errors in the data.

Ftgure 6.3.2-Rainfalt in the 24 houts to 09:00, Wednesday 5 Jantrary 201 it

6 EVENT DATA

Rainfall in the $\mathbf{2 4}$ hours to 09:00 on Thursday 6 January 2011

In the 24 hours to 09:00 on Thursday 6 January 2011, widespread rainfall was recorded throughout the area,
with totals ranging from 20 mm to 56 mm . The highest totals in this period were concentrated in the Upper \qquad Brisbane catchment, around Boat Mountain and Cooyar.

6 EVENT DATA

Rainfall in the 24 hours to 09:00 on Friday 7 January 2011

Compared to the previous period, rainfall generally eased in the 24 hours to 09:00 on Friday 7 January.
Rainfall in the period was again wide-spread, however totals were generally between 10 mm to 30 mm , with an occasional isolated higher total in the \downarrow pper Brisbane River and Stanley River catchments.

Figure 6.3.4 Rainall in the 24 hours to 09:00, Fikiay 7 , danuary 20 il

6 EVENT DATA

Rainfall in the 24 hours to 09:00 on Saturday 8 January 2011

The highest totals in the 24 hours to 09:00 on Saturday 8 January 2011 were recorded in the headwater areas around Ferris Knob and Bellthorpe West, with totals around 100 mm . High rainfall continued to be recorded in the Upper Brisbane River around Devon Hills. Elsewhere in the basin downstream of Wivenhoe Dam, totals. Deleted: upper were generally less than 10 mm .

6 EVENT DATA

Rainfall in the 24 hours to 09:00 on Sunday 9 Jantary 2011

Rainfall throughout the basin was widespread in the 24 hours to 09:00 on Sunday 9 January 2011. Totals were generally below 30 mm , but with isolated higher totals just over 40 mm in the upper reaches of the Stanley
River catchments around Ferris Knob and around the centre of the Upper Brisbane River catchment around
Devon Hills.

Rainfall in the 24 hours to 09:00 on Monday 10 January 2011

The rainfall in the 24 hours to 09:00 on Monday 10 January 2011 was especially high in the Stanley River catchment. The highest daily Event total of 310 mm was recorded at Bellthorpe West. Falls in other parls of
the Stanley River catchment ranged from 180 mm to 250 mm in the same period. In the Upper and Middle Brisbane River catchments, 24-hour totals ranged from 73 mm at St Aubins to 284 mm at Mt Glorious just east of Wivenhoe Dam. Widespread rain between 100 mm and 200 mm was recorded in other parts of the catchment.

Rainfall in the Lockyer Creek catchment ranged from 15 mm at Woodbine West to nearly 80 mm at Toowoomba. The heaviest falls in the Bremer River system were concentrated in the lower reaches, with totals of up to 70 mm recorded. In the headwater of the Bremer River, totals were much lower. This was the
first day since the start of the Event that heavy rainfall was recorded in the Lower Brisbane River catchrerit, \qquad Deleted: lower with 24 hour totals up to 113 mm .

6 EVENT DATA

Rainfall in the 24 hours to 09:00 on Tuesday 11 January 2011

Heavy rain continued to be recorded throughout the Brisbane Basin in the 24 hours to 09:00 on Tuesday 11 January 2011, with the highest totals in the area around the Jower Middle Brisbane River and upper reaches of the Lower Brisbane River catchment, with totals up to 262 mm at Mt Glorious. In the Stanley River catchment, totals between 80 mm and 130 mm were again reported widely throughoul the catchment.

Deleted: lower
Deleted; middle
Deleted: lower

Particularly heavy rainfall was recorded in the upper reaches of Lockyer Creek around Toowoomba, which recorded 116 mm in the period, with most of this falling the previous afternoon. Very large totals were also recorded in the headwater area of Laidley Creek, where nearly 200 mm was reported at Mount Castle. In the Bremer River catchment, rainfall was still widespread, although totals were generally below 70 mm .
Totals in the Lower Brispane River area were generally below 30 mm , athough there were very high that around Fernvale.

Figute 6.3 .8 - Raintal in the 24 hours to 08.00 , ruesday it dardary 201 t

6 EVENT.DATA

Rainfall in the 24 hours to 09:00 on Wednesday 12 January 2011

High rainfall continued to be recorded in the upper reaches of the Stanley River, with falls in excess of 220 mm in the 24 hours to 09:00 on Thursday 12 January 2011.

In the لpper Brisbane River catchment, rainfall had eased with 24 hour totals generally less than 30 mm .
However, heavy rainfall continued in the area around Wivenhoe Dam and just south, with totals between 150 mm and 230 mm in the area, most of which fell in the previous afternoon.

Heavy rain continued in the Laidley Creek, Bremer River and Warrill Creek catchments, with tolals up to 120 mm .

Elsewhere in the \downarrow ower Brisbane River catchment totals ranged from 40 mm to 70 mm .

6 EVENT DATA

Rainfall in the 24 hours to 09:00 on Thursday 13 January 2011

By 09:00 on Thursday 13 January 2011, the rainfall event was virtually complete, with totals generally below 10 mm in the 24 -hour period, with only an isolated higher total of 22 mm at Mount Castle in Upper Laidley Creek.

Rainfall in the six days to 09:00 on Thursday 13 January 2011

Figure 6.2.11 below shows the rainfall distribution during the six-day period to 09:00 on Thursday 13 January 2011.

The highest totals were recorded in the headwater ridges in the Stanley River catchment and along the
D'Aguilar Range from Mt Mee to Mt Glorious. Elsewhere through the Stanley, \pper Brispane River and
Middle Brisbane River catchments, rainfall totals - while still significant - were half those recorded at elevated

Deleted: upper
Deleted: middle

stations.

This effect was not as pronounced in the Lockyer Creek and Bremer River catchments, where the totals over
| the period tended to be more uniform. In the Lower Brisbane River area, totals in urban areas were half of \qquad Deleted: lower those recorded around Fernvale and Lowood.

Figure.6.3.it Ratifall in the six days to 09:00, Thurstay 13 faruary 20 an

6 EVENT DATA

Over the nine-day period ending 09:00 on Thursday 13 January 2011, the highest rainfall total in any of the Seqwater operated gauges was 814 millimetres at the Mt Glorious gauge, just to the east of Wivenhoe Dam. Individual highest daily (24 hours to 09:00 on the date indicated) rainfall includes:

- Bellthorpe West

106mm, Sunday 9 January 2011

- Bellthorpe West

310mm, Monday 10 January 2011

- Mi Glorious

262mm, Tuesday 11 January 2011

- Lyons Bridge

242mm, Wednesday 12 January 2011
Average rainfall for each subcatchment in the Brisbane Basin is determined by applying a weighting to the rainfall depth at each available station within the subcatchment. Within the operational system, the Brisalne Basin is divided into the two subcatchments shown in the table below.

The Somerset catchment represents the average catchment rainfall in the Stantey River to Somarset Dam.
The Jpper Brisbane River catchment, as represented in Table 6.3.12, represents the tota Wivenhoo Dam

Deleted: upper
Deleted: upper
Deleted: middle
Deleted: upper
Deleted: m

Brisbane River catchments shown in Figure 6.3.13. For example, the weighted aveirage of the Xpper
Brisbane River catchment (359 mm) and Middle Brisbane River catchment ($\left.525 \xi^{5} \mathrm{~m}\right)$ shown on the map gives a catchment average of 401 mm for the Event.

Table 6.3.12 - Daity ranta! throughout the fotat Wrenhoe Dam cathoment (excluditg Somerset Dam catchment
Tretollowing map (Figure 6.3.13) illustrates the data contained in Table 6.3.12, summarised over the period of the Event during which significant rainfall was recorded. Catchment rainfall in the eight days to 09:00 Thursday 13 January 2011

6 EVENT DATA

The following, catchment average rainfall hyetographs (Figure 6.2.14 to Figure 6.2.19) do not necessarily reflect the lofglised high intensity rainfall recorded throughout the Basin at various times and locations.
and rainfalls can include houriy intensities al individual stations which can be up to five times the catyment average.

6 EVENT DATA

Flgure 6.3.15- Uprer Brisbant River average hourly rainfatis

6 EVENT DATA

Figure E.3.17 - Locivar Chen average hotrfy raintals

6 EVENT DATA

Sinve 6.3.18 -. Bremer River average houmy rainatls

Figure 6.3 .19 - Lotrer Etisbone River average houmy rainfalls
The average catchment rainfall graphs clearly show a number of individual and linked rainfall bursts over the duration of the Event. The wo most intense bursts occurred relatively late in the Event between the following periods:

- The morning and evening of Sunday 9 January 2011
- The early moming and afternoon of Tuesday 11 January 2011, interspersed with a period of lower rainfall.

6 EVENT DATA

An intense burst at the end of the Event, followed by a relatively sudden end to the rainfall, is characteristic of most of these temporal pattems. Tables of hourly rainfall for all stations used during the Event (demonstrating this pattern) are contained in Appendix O , with one table per day during the period Wednesday 5 January 2011 to Thursday 13 January 2011.

Significant hourly rainfall totals include:

[^2]
6 EVENT DATA

6.4 Event rainfall temporal patterns

Temporal patterns are critical to the flood modelling process and the resulting inlow hydrographs. They define the distribution of the rainfall with time, and indicate the distinct periods of heavy rainfall that occurred throughout the Brisbane Basin. Temporal patterns for selected representative stations are contained in Appendix T. The following conclusions can be drawn from examining this data:

- For this Event, the West Belthorpe gauge represents the temporal pattern of the Somerset Dam catchment.
- For this Event, the Gregors Creek gauge represents the temporal pattern of the catchment area in the upper reaches of the Brisbane River.
- The period of heaviest rainfall recorded in both the West Bellthorpe gauge and the Gregors Creekgenge occurred on the afternoon and evening of Sunday 9 January 2011.
- At Toowoomba, near the headwaters of Lockyer Creek, high intensity rainfall occurred on thegaflemoon of Monday 10 January 2011 and resulted in flash flooding. This rainfall was not closely relfegted in the catchment average rainfall patterns.
- Around the time the floodwaters (resulting from the first period of heavy rainfall) afy fived at Wivenhoe Dam from the upper reaches of the Brisbane River, the next critical period of heavyrginfall occurred on the morning of Tuesday 11 January 2011 in the area immediately around the vayenhoe Dam reservoir. This huge burst of inflow into the Dam required immediate action to avoid asituation that would risk the safety of the Dam.
- Hourly rainfall totals during the critical period of heavy rainfall, pilye morning of Tuesday 11 January 2011 in the area immediately around Wivenhoe Dam, are summarised in Table 6,4,1. The table shows heavy rainfall commenced about 05:00 and continued until 14:0Q Nithis is believed to have contributed to the very high level inflows into Wivenhoe Dam during this period

6 EVENT DATA

Table 6.4.f - Howhy rainfall totals reworded between 03.00 and 15:00, Tugsieny it Jamuary 20 it

6.5 Event water levels

Seqwater uses a network of 34 automated stream height stations within the Brisbane River catchment area to gather Dam level and stream height data during food events. Data from this network is automatically collected in real time using a radio telemetry collection system and is sent in real time to the Flood Operations Centre. Every recorded change in water level at each station is also sent directly to the Flood Operations Centre as it is recorded.

Data sent to the Flood Operations Centre in this way is operational data and is not validated. Both manual and automatic data checking is undertaken in the Flood Operations Centre at regular and routine intervals over the course of the Event.

While the vast majority of the water level data contained in this Report was collected automatically vip Seqwater ALERT network, manual observations of gauge boards at Somerset and Wivenhoe Damswére also collected via email and phone during the Event. These gauge board observations are more rellatfet than the automatically provided readings and, therefore, provided the basis for gate operations at the 2arns.

Table 6.5.1 includes details of the peak heights recorded by the automatic gauging statons used during the \qquad Event. Multiple peaks were recorded at a number of stations through the period and dere shown in the table in descending order. The table is based on data received in the Flood Operations \&edtre during the Event and has not been verified by field survey. The figures identified in italics are the mâimum heights recorded prior to fallure of the gauge.

Primary ALERT ID	Watercourse	Station	Gauge zero		Date and time	Peak helghts	
			m	Datum		Elovation	GH
6776	Stanley River	Peachester	125.03	AHD	9/01/2011 20:28	134.07	9.04
					11/01/2011 15:19	133.99	8.96
					8/01/2011 22:37	129.07	4.04
	Stanley River	Woodford	107.51	AHD	11/01/2011 18:35	116.95	9.44
					10/01/2011 5:56	116.09	8.58
					7/01/2011 19:26	112.61	5.1
6591	Stanley River	Somerset Dam	0.00	AHD	12/01/2011 4:57	104.99	104.99
					10/01/2011 19:42	103.39	103.39
					8/01/20117:54	100.43	100.43
6543	Cooyanderek	Damsite	160.68	SD	11/01/2011 2:06	170.90	10.22
					9/01/2011 17:28	170.14	9.46
					6/01/2011 15:13	168.56	7.88
6718	Brisbane River	Linville	115.30	AHD	11/01/2011 4:09	126.34	11.04
					9/01/2011 21:00	125.44	10.14
					7/01/2011 23:15	- 122.18	6.88
6709	Brisbane River	Devon Hills	99.00	AHD	9/01/2011 21:24	110.25	11.25
					11/01/2011 8:55	109.89	10.89
					8/01/2011 0:58	106.15	7.15
6521	Emu Creek	Boat Mountain	107.84	SD	11/01/2011 8:28	118.94	11.1
					10/01/2011 0:16	118.86	11.02
					10/01/2011 18:04	113.82	5.98
6515	Brisbane River	Gregors Creek	82.40	AHD	9/01/2011 22:17	96.89	14.5

6 EVENT DATA

Primary ALERT ID	Watercourse	Station	Gauge zero		Date and time	Peak heights	
			m	Datum		Elevation	GH
					11/01/2011 11:20	95,69	13.3
					8/01/2011 3:35	90.25	7.86
6524	Cressbrook Creek	Cressbrook Dam	0.00	AHD	11/01/2011 10:29	284.18	284.18
6554	Cressbrook Creek	Rosentretters	102.00	AHD	10/01/2011 16:27	108.80	6.8
					11/01/2011 14:12	108.12	$\begin{array}{r} 6.12 \\ \times 0^{5.7} \end{array}$
					9/01/2011 19:03	107.70	
6638	Brisbane River	Wivenhoe Dam	0.00	AHD	11/01/2011 19:00	74,97	74.94
6527	Lockyer Creek	Helidon	128.65	$A H D$	10/01/2011 14:53	<247.39	12.74
6566	Tenthill Creek	Tenthill	123.85	AHD			
6578	Lockyer Creek	Gatton	87.54	$A H D$	10/01/2011 17643)	102.34	14.8
6584	Laidley Creek	Showground Weir	97.00	AHD	11/01/2011 16:07	106.36	9.36
					10/01/20才 $19: 13$	106.30	9.3
					6/01/2011 17:10	106.26	9.26
6557	Lockyer Creek	Glenore Grove	67.12	AHD_{4}) ${ }^{\text {d/1/01/2011 17:02 }}$		82.45	15.34
				0	10/01/2011 23:33	81.73	14.62
					10/01/2011 7:04	80.13	13.02
6634	Lockyer Creek	Lyons Bridge	47.53	AHD	11/01/2011 17:27	64.84	17.31
					7/01/2011 3:12	60.54	13.01
					8/01/2011 5:21	59.70	12.17
6569	Lockyer Creek	O'Reilly's (19)	23.62	AHD	11/01/2011 19:41	47.30	23.68
6642	Brisbane River	WivenhoeDamdalvater	0.00	AHD	11/01/2011 15:35	46.64	46.64
6647	Brisbane River	Lowood	23.07	AHD	11/01/2011 23:46	45.98	22.91
		Pump Station					
6560	Brisbane River	Savages Crossing	18.4315.06	AHD	12/01/201.1 2:11	42.66	24.23
6756	Birsbane River	Burtons Bridge Kholo Bridge		AHD	12/01/2011 1:26	33.88	18.82
6757	Brisbane River				11/01/2011 15:28	.	12.77
	Brisbane River	Mt Crosby Weir	0.00	AHD	12/01/2011 10:03	26.12	26.12
6581	Bremer River	Adams Bridge	75.50	AHD	11/01/2011 19:00	80.55	5.05
					10/01/2011 14:45	80.05	4.55
					6/01/2011 14:16	80.01	4.51
6737	Weston Creek	Kuss Road	45.06	AHD			
6734	Bremer River	Rosewood	35.42	SD	11/01/2011 15:32	40.33	4.91
					10/01/2011 23:32	38.63	3.21
					7/01/2011 0:17	38.41	2.99
6551	Bremer River	Walloon	22.97	AHD	11/01/2011 16:54	31.87	8.9

Wednesday 24 February 2011
DRAFT 2
Section 6: Page 28 of 43

6 EVENT DATA

Primary ALERT ID	Watercourse	Station	Gauge zero		Date and time	Peak heights	
			m	Datum		Elovation	GH
					11/01/2011 3:15	$\therefore 29.37$	6.4
					7/01/2011 4:18	28.83	5.86
6563	Warrill Creek	Kalbar Weir	74.60	AHD	11/01/2011 19:36	80.29	5.69
					10/01/2011 16:15	79.19	4.59
					6/01/2011 15:39	77.35	2.75
6572	Warrill Creek	Harrisville	45.69	SD	11/01/2011 19:44	51.60	5.91
					10/01/2011 22:59	50.80	5.11
					7/01/2011 18:41	50.09	4.31
6652	Warrill Creek	Amberley	19.87	AHD	12/01/2011 8:26	27.90	8.12
					8/01/2011 2:47	+25.07	5.2
2168	Bremer River	lpswich	0.00	AHD	12/01/2011 12:58	15.96	15.96
6755	Brisbane River	Moggill	0.00	AHD	12/01/2011, 4847	17.72	17.72
6731	Brisbane River	Jindalee	0.00	AHD	12/01/2011 17:50	12.90	12.9
6749	Brisbane River	City Gauge	0.00	AHD	13/6772011 2:57	4.45	4.45

Table 6.5.1-Peak heights recorded al automationting sfations during the January 20 it flood Event
Height hydrographs (Figure 6.5.2 to Figure 6.5.12) for selected ${ }^{\text {Rey }}$ slations within the Brisbane River Basin are plotted below. During the Event, Flood Officers were responsible for basic data checking. A full set of the

6 EVENT DATA

Stanley River at Woodford

The Stanley River at Woodford is a key gauging station upstream of Somerset Dam, however it only represents around 20% of the catchment to the Dam. This gauge operated reliably and provided sufficiently accurate operational data for modelling purposes during the Event.

Figure 6.5.2-Gauge heigh, Stantey River al Woodrord

6

Somerset Dam

There are two automatic gauges at Somerset Dam, which provided readings slightly under the manual gauge board readings. As discussed previously, Dam operations were based on the data provided by gauge board readings.

6 EVENT DATA

Brisbane River at Gregors Creek

The Brisbane River at Gregors Creek is the key gauging station upstream of Wivenhoe Dam. When combined with the outfow from Somerset Dam, this gauge represents almost 75% of the catchment to the Dam. This gauge operated reliably and provided sufficiently accurate operational data for modelling purposes during the Event.

Wivenhoe Dam

There are two automatic gauges at Wivenhoe Dam. Sensor 6638 was marked as 'out of action' (OOA) for the Event. The other sensor, located around 50 m upstream of the gates, matched the manual gauge board readings until around midday on Tuesday 11 January 2011. It was at this point the large gate openings caused the local water level to lower in the vicinity of the gauge. This discrepancy, which was up to 0.8 m at times, was observed during this period, however, as previously discussed, gate operations were, in fact, undertaken based on accurate manual gauge board observations. The discrepancy is shown clearly in Figure 6.5.6.

6 EVENT DATA

Figure 6.5.6-Gauge height Wivenhoe Dam

Lockyer Creek at Lyons Bridge

Lockyer Creek at Lyons Bridge is a key gauging station for determining outflows from Lockyer Creek into the Brisbane River. While the O'Reillys Weir gauge is located further down the catchment, it is influenced by backwater due to releases from Wivenhoe Dam. Therefore, readings from the O'Reillys Weir gauge during a large Event are not considered reliable. The Lyons Bridge gauge operated reliably and provided sufficiently accurate operational data for modelling purposes during the Event.

Figuro 6.5.7-Gauge height, Lockyer Creek at Lyons Britge

6 EVENT DATA

Brisbane River at Savages Crossing

Savages Crossing is located just downstream from the junction of the Brisbane River and Lockyer Creek. This gauge is considered to more accurately represent the combined Lockyer and Brisbane flow than the upstream station at Lowood. This gauge operated reliably and provided sufficiently accurate operational data for modelling purposes during the Event

Bremer River at Walloon

Walloon is a key gauging station used to determine total oufflow from the Bremer River. It operated reliably and provided sufficiently accurate operational data for modelling purposes during the Event.

Figure 6.5.9-Gatuge hobht, Bremer Rwer at walloon

Warrill Creek at Amberley

Amberley is a key gauging station on Warrill Creek, and when combined vith Walloon, it is a key gauging station used to determine total outflow from the Bremer River. This station operated reliably and provided sufficiently accurate operalional data for modelling purposes during the Event

6 EVENT DATA

Brisbane River at Moggill

Moggill is the key gauging station at the junction of the Brisbane and Bremer Rivers. It represents the combined flow of these two rivers. This gauge operated reliably and provided sufficientiy accurate operational data for modelling purposes during the Event.

6 EVENT DATA

Brisbane River at Whyte Island

The Brisbane River gauge at Whyte Island is located near to the mouth of the river and records tide levels.
While tide levels do not directly impact dam operations, flood levels in the Lower Brisbane River are tide dependent and the Flood Operations Centre needs to be cognisant of the tides.

During the January 2011 Flood Event, recorded tides at Whyte Island were up to 0.5 m lower than the previous week.

6 EVENT DATA

6.6 Dam inflows and outflows

The inflows and outflows from Somerset and Wivenhoe Dams appear in Table 6.6.1 and are shown in more detail in Section 9 and Appendix B. Dam inflow is estimated by reverse routing. Reverse routing is calculating \qquad Formatted: Font color: Red the rate of change of the storage and adding the Dam oulflow.

Item	Unit	Somerset Dam	Wivenhoe Dam*
Inflow volume	ML.	825,000	2,650,000
Outflow volume	ML	820,000	2,650,000
Inflow peaks	$\mathrm{m} 3 / \mathrm{s}$	5,350 on 09/01/2011 15:00 4,170 on 11/01/2011 14:00	$\begin{aligned} & 10,100 \text { on 10/01/2011 8:00, } \\ & 11,600 \text { on } 11 / 01 / 2011 \text { 13:00 } \end{aligned}$
Oulflow peaks	$\mathrm{m} 3 / \mathrm{s}$	1,690 on 10/01/2011 16:00 1,460 on 12/01/2011 11:00	
Peak water level	m AHD	105.11 on 12/01/2011 06:00	$74.97 \text { on 1169\%2011 19:00 }$

*Wivenhoe Dam inflow figures include Somerset Dam outflows

Table 6.6.t-Summary infiows and ofigivs for Somersel and Wivenhoe Dams
The inflow into Somerset Dam is characterised by dual peaks; the first peakion the afternoon of Sunday 9 January 2011 being higher than the second on the afternoon of Tuesdq) 11 January 2011 (nearly 48 hours apart). The peak of the outlow occurred late on Monday 10 Januant 2011 when five sluices were opened. These were quickly closed on the morning of Tuesday 11 January 2011 when Wivenhoe Dam levels began rising quickly. The maximum water level in Somerset Dam of 450.11 m was reached on the morning of Wednesday 12 January 2011. This information is summarised in the following graph, Figure 6.6.2.

Figure 5.6 .2 - Somerset Dam water levels, Jamary 20 : Fhood Event
Similar to Somerset Dam, the inflow into Wivenhoe Dam is also characterised by dual peaks. The first peak on the morning of Monday 10 January 2011 was lower than the second on the afternoon of Tuesday 11 January 2011 (30 hours apart). The peak of the outflow occurred at 19:00 on Tuesday 11 January 2011. Flow was

6

reduced quickly later that night as the Dam water level stabilised, however it was increased again during Thursday 13 January 2011 to achieve the drainage required within seven days after the llood peak passed below Moggill. The peak water level in Wivenhoe Dam of 74.97 m was reached at 19:00 on Tuesday 11 January 2011. This information is summarised in the following graph, Figure 6.6.3.

6.7 Other data sources

Other decision-making support tools examined and considered in conjunction with the modelling results \qquad ... Formatted: Font color: Auto include:

- Flood model results (available via BoM registered user service)
- Enviromon, the BoM replacement software for Flood-Col. This includes all available ALERT stations in South East Queensland, including a large number of non-Seqwater stations.

During the Event, detailed discussions were also held with the BoM Flood Waming Centre. These discussions centred on model results, rainfall forecast information and actual and projected Dam inflows and outlows. BOM also provided Lockyer Creek and Bremer River outlows to compare against modelled results generated by the Flood Operations Centre. Generally, Flood Operations Centre modelling correlated well with BoM modelling results.

Similar discussions were held with Brisbane City Council and the Council also provided stagedamage data for consideration by the Flood Operations Centre during the Event.

In addition to the sources listed above, for comparison purposes, the $\square E R M$ website Wuw. derm.ald.gov.au) was used to examine and check river height and flow estimations at selected gauging stations

7 FLOOD MODEL VALIDITY AND PERFORMANCE

7.1 Background

A real time flood monitoring and forecasting system has been established to monitor rainfall and water levels in the Dam catchments and to provide adequate ${ }_{\lambda}$ accurate and timely information for informed decision, making. This system is described in detail in Section 5 . As the real time rainfall and river height data is \qquad
Deleted: received in the Flood Operations Centre, the data is processed using a Real Time Flood Model (RTFM) to
estimate likely Dam inflows and evaluate a range of possible inflow scenarios based on forecast and recorded Deleted: d rainfall in the Dam catchments.
| The RTFM comprises a suite of hydrologic computer programs that use real time data to assist in the operation of the Dams during flood events. Seqwater is responsible for providing and maintaining the RTFME
| and for ensuring sufficient data is available to allow its proper operation during a flood event. Flood Operations Engineers use the RTFM for flood monitoring and forecasting during flood events to operate, the Dams in accordance with the Manual. This is done by optimising releases of water from the Damsto minimise the impacts of flooding in accordance with the Manual's objectives and procedures.

Seqwater is continually improving the operation of the RTFM Py : \qquad

Deleted: is
Deleted: utilise
Deleted: the
Deleted: of the RTFM
Deleted: contained in the
Manual
Deleted: over time
Deleted: F
Deleted: E

- Implementing improvements based on flood event audits and reviews;

Deleted: E

- Improving RTFM calibration as further data becomes available;
- Updating software in line with modern day standards;
- Improving the coverage and reliability of the data collection netwark toptimise data availability during flood events.

This Section describes the RTFM in detail and assesses the partomance of the RTFM during the January 2011 Flood Event.

7.2 Model description

The current RTFM was developed in 1994 aspalt of the Brisbane River and Pine River Flood Study, (DNR, 1994) and consists of two integrated modurgs:

- FLOOD-Col;
- FLOOOD-Ops.

FLOOD-Col is the data copture module whilst FLOOD-Ops is the data analysis module. The system is accessed through a graphical User Interface (GUI) that allows the operator flexibility in managing the system. The modelling systen' was developed under a UNIX operating environment using OSF/Motif GFUI under the X Window system In 2008, the system was ported to a LINUX operating environment and is currently running on a DELL RowerEdge 1800 Server. The RTFM performs the tasks outlined below.

- Autpmatically and continuously collects, filters and stores rainfall and water level data in real time.

- Assigns temporal and spatial distributions of actual and forecast rainfall for extension into the future;

Evaluates the spatial and temporal distribution of antecedent catchment soil moisture conditions on a daily basis;

- Perfoms hydrologic routing of stream flows in an integrated environment;
- Provides estimales of storage performance and resulting downstream releases;
- Prepares summary output in textual and graphical format for storage operation and resulting downstream flood levels and flows.

As described in Section 5, the primary source of raw data for the RTFM are the rainfall and water level gauges located within and around the Dam catchments. Data collection is completely independent to data analysis
within the RTFM system. Filtered data obtained from the gauges can be viewed in a textual or graphical format. Facilities for viewing groups of gauges are also available. The types of information that can be viewed or edited include height, discharge, rainfall pluviographs, rainfall hyetographs, lake levels and dam volumes.

The data analysis system and modelling within the RTFM has been developed around the concepts of Regions, Processes and Cases. These are each explained individually below.

Regions

Regions are land areas located above a stream gauging station, which can be assigned Processes depending upon the nature of the Region. For example, a sub-catchment Region is assigned a soil moisture accounliag Process and a runoff-routing Process, whereas a reservoir Region is assigned only a reservoir routing Process. A Region's relationships with neighbouring Regions are defined for each Process associatedwith the Region. Generally, outflow from one Region is inflow into its adjoining downstream Region.

The Region database contains the following information;

- Extent and location of sub-areas within Regions and Regions within catchments;
- Connectivity of sub-areas within Regions and Regions with catchments;
- The list of Processes associated with each Region;
- Process module input definitions.

Figure 7.2.1 shows the Region layout adopted in the RTFM systen

7 FLOOD MODEL VALIDITY AND PERFORMANCE

7 FLOOD MODEL VALIDITY AND PERFORMANCE

Relevant statistics relating to each Region as defined in the RTFM are shown in Table 7.2.2.

Processes

A Process is a computational model of a physical mechanism. The Processes contained in the RTFM are soil moisture accounting, runoff-routing, reservoir routing and base flow. These Processes are explained in detail below.

Soil Moisture Accounting

Soil Moisture Accounting is used to provide en indication of catchment saturation at the commencement of a flood event. Relationships have been derived which relate conceptual soil moisture storage volumes with rainfall loss rates. The RTFM contains a number of different process models that perform similar functions. For example the Soil Moisture Accounting Module consists of several different model types, S which are as follows:

- Antecedent Precipitation Index (API);
- Residual Baseflow Index
- SACRAMENTO Model.

These models are described in detail in the Brisbane River and Pine River Flood Ş(id) Report Series (DNR, 1994), Report on Regional Loss Model Relationships, June 1994.

During the January 2011 Flood Event, the API model was used to derive iniliar estimates of rainfall loss rates during the' early period of the Event. These initial estimates were Apdates as initial stream rises were detected. This enabled the event loss rates to be closely estimated by matching model results with the actual data received from the water level gauges in the Dam catcrments. . Relationships derived by the Bureau of Meteorology that link API and initial loss rate were whif sed during the Event. These equations are of the following form:-

Initial Loss (Summer Period)

- $\mathrm{IL}=62.5-0.4386^{*} \mathrm{API}$

Where:

- IL = Initial Loss (mm)
- API = Antecedent Precipileation Index based upon 30 day rainfalls (mm)
- Minimum API $=5 \mathrm{~mm}$,
- Maximum API $=150$ m
- Runoff-routing

Runoff-routing is used to estimate the surface runoff from rainfall within a Region. This Process uses concentrated storages distributed over a Region, which have a non-linear storage-discharge relalionship. This Process originated as WT42 but was rewritten in ANSI C for the inclusion into the RTFM. This enabled the system to use improved data structures to access data more efficiently in real time. The process was also modified to operate in a manner that allowed separate Regions to be run as a series of linked cascading models. This allows for more effeclive use of spatially varying data.

The runoff-routing Process was calibrated using ten historical flood events (up to 1994) and has been used to successfully simulate operational floods in February 1999, March 1999, February 2001, February 2010 March 2010 and October 2010. Table 7.2.3 below shows the region runoff-routing parameters that are used in the RTFM.

7 FLOOD MODEL VALIDITY AND PERFORMANCE

Table 7.2.3-- Region runoff-routing parameters

- Reservoir routing

Reservoir routing is used to estimate the oulfow from a reservoir within a Region. This Process is incorporated into the RTFM based on level pool routing algorithms. The development of this Process to account for Somerset Dam and Wivenhoe Dam was complex as it needed to fully account for the rules used to operate these dams during flood events including the requirement for conjunctive operation to allow the flood mitigation benefits of the Dams to be maximised.

The Process originally incorporated into the RTFM is an adaptation of a stand alone computer program known as WIVOPS that incorporates the flood operation objectives described in the October 2004, Version 6 of the 'Manual of Operational Procedures for Flood Mitigation for Wivenhoe Dam and Somerset Dam', WIVOPS was further modified in May 2005 to incorporate the Stage I auxiliary spillway works as defined in
the Wivenhoe Dam Alliance Report entitled, 'Design Discharges and Downstream Impacts of Wivenhoe Dam Upgrade', Report Number Q1091, June 2004.

The current operational Process used in the RTFM for reservoir routing uses Dam inflow estimates and catchment stream extracted from the FLOOD-Ops and imports this data into customised gate operation spreadsheets for use in determining appropriate gate operation strategies in accordance with the Manual. This system has been proven to work very effectively.

- Base.flow

Base flow is used to estimate residual stream flow that is additional to surface run-off. FLOOD-Ops only estimates surface runoff which is generally the major component of the total runoff and accurate assessment of the total runoff is required to accurately model rises in dam storage levels. The bases tow component was introduced to assist in determining more accurately the total inflow volumes intotherdams.

The base flow model (after Boughton) has the form:

- Base Flow $=\left(\left(\right.\right.$ Base Flow $\left.\left.\left._{t-1} \times B R\right)+\left(B C \times Q_{t}\right)^{\wedge} B M\right)\right)$

Where:

- Base Flow = Baseflow at time $t(\mathrm{~m} 3 / \mathrm{s})$ \qquad 4

Formatted: Subscript

- $\quad B R=$ Base Flow Recession Constant $(\sim 0.975$ or less than unity $) \subset$
- $Q_{t}=$ Modelled Surface Runoff at time $t(\mathrm{~m} 3 / \mathrm{s})$
- $B C=$ Surface Runoff Factor (~ 0.002)
- $\mathrm{BM}=$ Exponent (~ 1.0)

As stated above, FLOOD-Ops only estimates surface runoff and does not calculate base flow as this is added in the gate operations spreadsheets. This should be noted when comparing output data from FLOOD-Ops to the final estimated dam inflow volumes. Base flow coefficients can be adjusted during flood events to allow matching of model resulfsyith actual data.

At the start of the January 2011 Flood Event, a residual base flow into the Dams resulting from the post Christmas flood was evident. As a result, the starting base flow used in the RTFM was relatively high and was adjusted to match the water tevet rises in the dams in the absence of surface runoff. As surface runoff increased during the event, the bate flow component of the total runoff hydrograph decreased and by the end of the event was between) 8% and 10% of the total inflow volume into the Dams. Final event estimates of base flow in volumetfigterms, for the two dams were, $114,000 \mathrm{ML}$ for Somerset Dam and 250,000 ML for Wivenhoe Dam gutgra total event inflow volume of $2,650,000 \mathrm{ML}$. Figure 7.2 .4 below shows the estimated base flevfemponent in comparison to the total surface run-off into Wivenhoe Dam from the Upper Brisbane ${ }^{2}$ vier.

7 FLOOD MODEL VALIDITY AND PERFORMANCE

Figure 24 (9) Upper Brisbana River inflow to Wrenhoe Dam

Cases

A Case is an event-based sequence of processes applied to a number of Regions. Generally, all Regions are included in a Case, which is identified by a unique Case name. The following items are required to define a Case:

- Name and description of Case;
- Simulation start time, current time, simulation finish time and computational time step;
- Rainfall from simulation start time to the current time;
- Rainfall loss model type, required rainfall loss rates and spatial distribution;
- Forecast rainfall duration, depth, spatial and temporal distribution;
- Regions included in Case;
- Hydrologic model routing parameters;
- Reservoir start volume and operating procedure.

In determining appropriate operational strategies, reference is made within these singulition Cases to model estimates at the following locations:

- Wivenhoe Dam Inflow;
- Somerset Dam Inflow;
- Lockyer Creek at O'Reillys Weir (6569);
- Bremer River at David Trumpy Bridge (2168);
- Brisbane River at Lowood (A-6650 and B-6647);
- Brisbane River at Moggill (6755).

The output from a case provides model results that are used in flood event decision_making.

7 FLOOD MODEL VALIDITY AND PERFORMANCE

7.3 Model performance during the Event

Data
As discussed in detail in Section 5 and Section 6, there were no significant issues observed with the RTFM data collection system during the January 2011 Flood Event.

Ratings

A Rating is a unique relationship between height and flow at a water level recording station. A Rating is used to convert the recorded water level to an estimated flow rate. A full list of the ratings in the RTFM is provided in AppendixR

Ratings are generally derived from field measurements of flow and extrapolated by a variety of techigidues for flows that are beyond the range of available field measurements to allow coverage of a full range copotential gauge heights. Therefore there can be considerable uncertainty in the estimation of high flows trof recorded water level data, especially at high heights such as those experienced during the current esent.

During the January 2011 Flood Event actual water levels exceed the range of availabs field measurements at a number of gauges. This factor caused additional uncertainty to be associated wibl the results provided by the RTFM, but this could not be avoided. However, overall this factor did not haver a major impact on Flood Event decisionmaking

Soil Molsture Accounting Model
The spring and early summer rainfall totals were above average tor all Regions. Flood producing rainfall was recorded in October 2010 and again throughout late Novembes 2010 and December 2010. Four separate flood events were experienced during this period with the Bpxing Day flood finishing on Sunday 2 January 2011. As a consequence of these foods, the catchmefits were relatively saturated at the commencement of the January 2011 Flood Event as evidenced by the estimates of initial loss shown in the table below.

The Tenthill (TEN) and Laidley (LAI) regions.ifithe Upper Lockyer Creek catchment along with the Kalbar (KAL), Amberley (AMB) and Purga (PUR)regions in the Bremer River catchment, show the effect of isolated storm rainfalls that fell between Tuesday 4 and Wednesday 5 January 2011. The values shown in Table 7.3.1 were used as a starting point for the cratibration' of the runoff-routing Process.

Loss rate estimates of regions - 6 Jamuary 2011

Region code

API Initlal Loss (mm)

Sacramento Initlal Loss (mm)

Sacramento Continuing Loss ($\mathrm{mm} / \mathrm{hr}$)

Upper Brisbane River			
Seoo	28.0	26.5	3.5
LIN	22.6	13.6	3.3
$)^{25}$ EMU	30.7	25.2	2.1
CRE	33.3	29.6	3.3
GRE	29.2	23.7	3.9
Stanley River			
SDI	22.2	12.3	2.5
Middle Brisbane River			
WDI	23.5	31.7	2.8
SAV	34.2	37.3	3.0
MTC	33.1	33.0	3.8

[^3]DRAFT 2
Section 7: Page 10 of 23

7 FLOOD MODEL VALIDITY AND PERFORMANCE

Table 7.3.1-Region foss rate esfimales at 5 fanuary 2011

During the Event, continuing loss rates werechanged to ensure the overall shape and volume of the Flood Event was being matched to an acceptablelevel. Given the multi-peaked nature of the hydrographs and the prolonged duration of the event, the oonttinuing loss rates tended to reduce as the event progressed and Table 7.3.2 shows the final Event values (sed in the RTFM.

To continue to produce accurate modelling outputs, the final continuing loss rates adopted were substantially lower than the values initflily used. This clearly indicates the increasing impact of catchment saturation over the duration of the FlogaEvent.

7 FLOOD MODEL VALIDITY AND PERFORMANCE

The continuing loss rates contained in-Fable 7.3.2 are well within the range of those used to model historic flood events including the Januand 974 event and certainly within the calibration range of the RTFM. However, while the continuing ioss rate has some physical basis, it must also be understood that the continuing loss rate is also an indicator of the quality of the recorded data. The consistency of continuing loss rate estimates between events provides a positive indication that rainfall network provides adequate coverage and that stream gauger ratings are relatively reliable.

Cases

Two basic-gaze scenarios were examined during the event, these being:

- Ne Forecast Rainfall - accounted for rainfall on the ground to the time of the simulation run;
- 6 forecast Rainfall - included an extension of rainfall based upon Bureau of Meteorology forecasts (eithe QPF or SILO).

As is standard practice, during the initial phases of the Event, numerous simulations were conducted. This allows an understanding of the Event to be developed. During this period between rainfall commencing and runoff being recorded at water level gauges, the purpose of the modelling is focused on matching the rising limb of the hydrographs. Once the start of rise of the hydrograph is matched sufficiently, the focus of the modelling is on estimating the peak flow and the volume of the flood, especially for stations located above the Dams. Normally, peak flow rates and flood volumes are matched to at least within 20% of recorded values.

The No Forecast Rain and Forecast Rain scenarios are then examined to establish appropriate operational strategies within lower and upper bound model estimates. Matching of flows at all available gauging stations
is attempted, with emphasis placed upon the key locations. These key locations for each catchment (with associated ALERT sensor identification numbers) are listed below:

- Upper Brisbane River

Brisbane River at Gregors Creek (A) 6515 and (B) 6518

- Middle Brisbane River Brisbane River at Wivenhoe Dam Headwater (A) 6637 and (C) 6638
- Stanley River

Stanley River at Woodford (A) 6706 and (B) 6703
Stanley River at Somerset Dam Headwater (A) 6594, (B) 6591 and (C) 6592

- Lockyer Creek

Lockyer Creek at Lyons Bridge (A) 6634 and (B) 6631

- Bremer River

Bremer River at Walloon (A) 6551 and (B) 6743
Warrill Creek at Amberley (A) 6652 and (B) 6654
Tha recorded headwater levels and gate settings at each of the Dams are also used to insure the modelled inflows are appropriate before using projected inflows to determine future gate ongraions. Manually read gauge board readings obtained from the storage operators are used to vatidate ther automatic gauge information at the Dams and are used in preference to automatic gauge information for operational decision making.

Further points to note in regard to the field stations are as follows:

- At L.yons Bridge both the (A) and (B) stations are subjectroypass flows at now magnitudes greater than $600 \mathrm{~m}^{3} / \mathrm{s}$. Therefore, the recorded nows are considered fo inder estimate larger flood magnitudes. There is also an inconsistency between the (A) and (B) siterating curves. The (A) station was adopted in this Event;
- There is an inconsistency between the Ampertey (A) and Amberley (B) site rating curves. The (A) station was adopted in this event;
- David Trumpy Bridge is a height ondy station as it is also impacted by tidal flows and it too is back-water affected from large llows in the Brisbane River.

During the Event, some Caseswere over-written. This occurred because Cases are generally created by using the most recent Caseg a base. If the Case being used as a base is not explicilly saved, it will be lost. This does not present a problem from an operational sense as historical Cases quickly become "out of date" as further rain falls in (thte) Dam catchments. "Out of date" Cases have little bearing on current time operational decision making asimey do not consider all of the rain that has fallen since the commencement of the flood event to the current time. Cases can also easily be re-created at any time during or after the flood event as all Case data is archived. Table 7.3.3 provides a list of preserved Cases developed during the Flood Event.

7 FLOOD MODEL VALIDITY AND PERFORMANCE

7 FLOOD MODEL VALIDITY AND PERFORMANCE

Overall, the RTFM provided sufficient information to properly suppofifiobd operations decision making. Water level estimates approximated recorded gauge water levels did nofrequire significant scaling to match
recorded lake levels. Generally there was also agreement with ihe flows estimated by BoM that were made available via their registered user service. An example of thisis shown in Figure $7.3 \mathbf{2}$.

Figure 7.35 - Conipanson of modelestmates
There was correlation between the results provides between the RTFM and the results provide from the back-

The model performance also reflects the robustness of the original model calibrations which were biased towards the larger historical flood events such as January 1974. It is noted that the January 2011 Eyent has a magnitude that requires extrapolation of the model parameters beyond that for which they were previously benchmarked. It is considered that the availability of numerous rainfall stations in the catchment most significantly contributes positively to the overall model performance.

In respect of the application of the runoff-routing models in a forecasting mode, it should be noted that the projected flows are not updated using the recorded flows to the time of the simulation but rather, the projected flows are derived from recorded rainfalls with or without a forecast rainfall extension.

Summaries of the results across the four key catchments are contained below.

- Upper Brisbane River Catchment Model

The Upper Brisbane River Catchment Model performed well at all locations as evidenced by the comparisons at Gregors Creek. There was some difficulty encountered in the modelling of flows) the Upper and Middle Brisbane Rivers when trying to match the rapid lake level rise in Wivenho@Dam that occurred on Tuesday 11 January 2011. However, this was due to an absence of data yahert than a flaw in the model, as back calculations showed the intense rainfall falling during this period kngstnot adequately captured in the available rain gauges. This issue is discussed in more detail in Section G

- Staniey River Catchment Model

The Stanley River Catchment Model performed adequately and accurata infow estimates into Somerset Dam were obtained from the modeling results. However, because theytoodford gauge only commands a relatively low percentage (20%) of the total catchment area of Somasset Dam, some scaling was needed to match estimated inflow volumes to recorded lake levels. This lis, because substantial event runoff was generated on the Jimna and D'Aguilar Ranges that flowed ditegly into Lake Somerset. Therefore, the flow at Woodford was not totally representative of all the contribgting catchment of the Stanley River. Again, this is a data availability issue rather than a modelling isssué.

- Lockyer Creok Catchment Model

The Lockyer Creek Catchment Model performedwell and generally matched with catchment flows estimated by BoM. The flash flooding epis ode experienced on the Toowoomba Range escarpment on the aftemoon of Monday 10 January 2011. (Sty)wed the intense rainfall falling during this period was not adequately captured in the available fain gauges.

Two stream gauges in the Upp\&ilockyer Creek catchment failed during the course of the Event due to overtopping, whilst the most (gownstream gauge became back-water affected before it failed. Therefore, stream flow matching of the'modelling resulls was undertaken at Glenore Grove and Lyons Bridge. For flows larger than $600 \hat{h}^{s} s$, Lyons Bridge suffers from bypass flows and therefore it tends to under estimate larger flood events This is evident of the results contained in the following tables and was accounted for during the Evert when estimating flows at Moggill. Comparisons between model results shared with BoM confirm that the peak flow in Lockyer Creek was in excess of $3,000 \mathrm{~m}^{3} / \mathrm{s}$.

- Bremefiver and Warrill Creek Catchment Model

ThG Bremer River and Warill Creek Catchment Model performed well and generally matched with catchment flows estimated by BoM. Some timing differences were noted, particularly on Warrill Creek.
the rating of the Bremer River at Walloon was exceeded during the event and so this curve will need to be extrapolated post-event to define the peak flow at this location. Upstream stations on the Bremer River indicated good matching for the event.

Table 7.3 .5 contains calibration results showing the values of peak flow and flood volume to the date and time of the model run. Timing issues result in over or under estimation of peak values and in many instances the recorded values are not necessarily peak values, but rather the latest value on the rising limb. Plots of comparisons between recorded and modelled hydrographs are presented in Appendix S.

It should be noted that the results in Table 7.3.G are surface run-off results only and contain no baseflow.

| Deteted: 5 |
| :--- | :--- |
| Deleted: T | and the final modelling results.

7 FLOOD MODEL VALIDITY AND PERFORMANCE

Finally, the results shown in Table 7.36 are based on unverified stream height data and associated Ratings. \qquad Deteted: 5
Although the values shown in the Tables are presented to the nearest $\mathrm{m}^{3} / \mathrm{s}$ or ML , the level of precision should be not be inferred from this level of reporting.

Rui 5-02:00 Friday 7 January 2011
This run was completed 19 hours after mobilisation of the Flood Operations Centre. Flows in the Upper Brisbane River had just peaked, whilst the Lockyer Creek and Bremer River catchments continued to rise.

Stream gaug	Estimated		Modelled		Difference	
	Peak flow $\left(\mathrm{m}^{3} / \mathrm{s}\right)$	Flood volume (ML)	Peak flow $\left(m^{3} / s\right)$	Flood volume (ML)	Peak flow $\left(m^{3} / \mathrm{s}\right)$	Flood voliume (ML)
Gregors Creek	986	40,737	1,302	67,830	316	27,093
Woodford	14	(2,227	44	797	30	-1,430
Lyons Bridge	412	22,230	315	14,327	-97	-7,903
Walloon	33 L	7,429	88	6,291	-248	$-1,138$
Amberley	73	8,125	124	4,893	51	$-3,232$

Run7. $09: 00$ Friday 7 January 2011
This run was completed 26 hours after mobilisalion of the Flood Operations Cenlre. Warril Creek continued to rise bul all other streams had peaked and were receding.

Stream gauge	Estimated		Modelled		Difference	
	Peak flow $\left(m^{3} / s\right)$	Flood volume (ML)	Peak flow $\left(\mathrm{m}^{3 / \mathrm{s}}\right)$	Flood volume (ML)	$\begin{aligned} & \text { Peak flow } \\ & \left(\mathrm{m}^{\text {m }} \mathrm{s}\right) \end{aligned}$	
Gregors Creek	986	59,062	1,302	84,378	316	25,316
Woodford	14	2,394	63	1,446	49	-948
Lyons Bridge	422	32,566	447	24,429	25	-8,137
Walloon	412	16,791	89	8,449	-323	-8,342
Amberley	117	10,629	124	6,938	7	-3,691

7 FLOOD MODEL VALIDITY AND PERFORMANCE

Run 8 - $14: 00$ Friday 7 January 2011
This run was completed 31 hours after mobilisation of the Flood Operations Centre. Rainfall in the Upper Brisbane River and Stanley River had resulled in renewed rises at Gregors Creek, with Woodford now starting to respond.

Stream gauge	Estimated		Modelled		Difference	
	$\begin{aligned} & \text { Peak flow } \\ & \left(\mathrm{m}^{3} / \mathrm{s}\right) \end{aligned}$	Flood volume (ML)	$\begin{aligned} & \text { Peak flow } \\ & \left(\mathrm{m}^{3} / \mathrm{s}\right) \text {) } \end{aligned}$	Flood volume (ML)	Peak flow $\left(\mathrm{m}^{3} / \mathrm{s}\right)$	Flood volume (ML)
Gregors Creek	986	69,618	1,302	93,636	316	24,018
Woodford	43	2,792	124	2,939	81	Pr_{148}
Lyons Bridge	422	39,179	484	32,904	61	-6,275
Walloon	412	20,384	126	10,418	-286	-9,965
Amberley	137	12,941	130	8,730	-7	-4,212

Run 10 - $14: 00$ Saturday 8 January 2011
This run was completed 55 hours after mobilisation of the Flood Operations Centre. The Upper Brisbane River had peaked for a second lime and was now receding. The Stanley River and Warrill Creek were also falling. Secondary peaks in Lockyer Creek and Bremer River were now falling.

Stream gainge	Estimated		Modelled		Difference	
	Poak flow $\left(\mathrm{m}^{3} / \mathrm{s}\right)$	Flood volume (ML)	Peak flow $\left(\mathrm{m}^{3} / \mathrm{s}\right)$	Flood volume (ML)	Peak flow $\left(\mathrm{m}^{3} / \mathrm{s}\right)$	Flood volume (ML)
Gregors Creek	1,387	150,518	1,767	209,354	381	58,837
Woodford	79	$8.35{ }^{\circ}$	134	7,628	55	-728
Lyons Bridge	422	67,238	485	65,809	62	-1,429
Walloon	412	30,148	181	24,936	-231	-5,212
Amberiey	164	25,976	210	24,026	46	-1,950

Run $12.01: 00$ Sunday 9 January 2011
This run was completed 66 hours after mobilisation of the Flood Operations Centre. All streams appeared to be receding, although heavy rainfall falling on all catchments suggested another rise was likely to occur.

Stream gauge	Estimated		Modelled		Difference	
	Peak flow $\left(\mathrm{m}^{3} / \mathrm{s}\right)$	Flood volume (ML)	$\begin{aligned} & \text { Peak flow } \\ & \left(\mathrm{m}^{3} / \mathrm{s}\right) \text {, } \end{aligned}$	Flood volume (ML)	Peak flow $\left(\mathrm{m}^{3} / \mathrm{s}\right)$	Flood volume (ML)
Gregors Creek	1,387	168,163	1,767	224,123	381	55,960
Woodford	79	9,905	134	9,993	55	88
Lyons Bridge	422	76,656	485	74,942	62	-1,714
Walloon	412	32,134	251	29,399	-161	$-2,734$
Amberley	164	30,702	210	26,004	46	-4,697

7 FLOOD MODEL VALIDITY AND PERFORMANCE

Run 14-08:00 Sunday 9 January 2011

This run was completed 73 hours after mobilisation of the Flood Operations Centre. Large increases in flows were expected in the Upper Brisbane River, Stanley River and Bremer River as a result of continuing rainfall. Inflows into Somerset Dam and Wivenhoe Dam were expecled to exceed $500,000 \mathrm{ML}$.

Stream gauge	Estimated		Modelled		Difference	
	Peak flow $\left(\mathrm{m}^{3} / \mathrm{s}\right)$	Flood volume (ML)	Peak flow $\left(\mathrm{m}^{3} / \mathrm{s}\right)$	Flood volume (ML)	Peak flow $\left(\mathrm{m}^{3} / \mathrm{s}\right)$	Flood volume (ML)
Gregors Creek	1,387	175,953	1,767	235,715	381	59,761
Woodford	79	10,863	229	13,359	150	5 2.496
Lyons Bridge	422	80,713	485	79,538	62	-1,175
Walloon	412	32,737	412	38,411	6	5,674
Amberley	$\therefore 164$	32,719	210	27,172	- 46	-5,547

Run 17: 14:00 Sunday 9 lanuary 2011
This run was completed 79 hours after mobilisation of the Flood Operations Cenlre. Rapid rises occurred In the Upper Brisbane River, with associated increased runoff volumes into both Somerset Dam and Wivenhoe Dam.

Stream gauge	Estimated		Modelled		Differenco	
	Peak flow $\left(\mathrm{m}^{3} / \mathrm{s}\right)$	Flood volume (ML)	Peak flow $\left(\mathrm{m}^{3} / \mathrm{s}\right)$	Flood volume (ML)	Peak flow $\left(m^{3} / \mathrm{s}\right)$	Flood volume (ML)
Gregors Creek	1,387	190,752	1,767	265,570	381	74,818
Woodford	79	$12,6{ }^{\circ}$	313	19,195	233	7,030
Lyons Bridge	422	83,681	485	82,959	62	-722
Walloon	412	33,088	551	48,994	139	15,906
Amberey	164	34,158	210	29,641	46	-4,517

Rum 21 - 19000 Sunday 9 January 2011
This run was completed 84 hours atter mobilisation of the Flood Operations Centre. Heavy rainfall in the Upper Brisbane River and Stanley River catchments suggested peak flov, rates similar to February 1999.

Deleted: s
Inflows into Somerset Dam and Wivenhoe Dam were expecled to exceed $1,000,000 \mathrm{ML}$.

Stream gainge	Estimated		Modelled		Difference	
	Peak flow $\left(\mathrm{m}^{3} / \mathrm{s}\right)$	Flood volume (ML)	$\begin{aligned} & \text { Peak flow } \\ & \left(\mathrm{m}^{3} / \mathrm{s}\right) \end{aligned}$	Flood volume (ML)	$\begin{aligned} & \text { Peak flow } \\ & \left(m^{3} / \mathrm{s}\right) \end{aligned}$	Flood volume (ML)
Gregors Creek	5,156	243,878	6,877	350,681	1,720	106,803
Woodford	333	15,543	682	30,089	349	14,547
Lyons Bridge	422	86,218	485	86,639	62	420
Walloon	412	33,624	551	58,159	139	24,535
Amberley	164	35,441	210	31,218	46	-4,223

7 FLOOD MODEL VALIDITY AND PERFORMANCE

7 FLOOD MODEL VALIDITY AND PERFORMANCE

7 FLOOD MODEL VALIDITY AND PERFORMANCE

This run was completed 126 hours after mobilsation of the Flood Operations Cenire. The Upper Brisbane: River catchment had peaked however, continuing heavyrainfall adjacent to Wivenhoe Dam caused further rapid increases in the lake level. Somerset Dam inflows also increased rapidly. Lockyer Creek continued to rise quickly and the Bremer River catchment also experienced substantial renewed iises.

Stream gaugo	Estimated		Modelled		Difference	
	Peak flow $\left(\mathrm{m}^{3} / \mathrm{s}\right)$	Flood volume (ML)	Peak flow $\left(\mathrm{m}^{3} / \mathrm{s}\right)$	Flood volume (ML)	Peak flow $\left(\mathrm{m}^{3} / \mathrm{s}\right)$	Flood volume (ML)
Gregors Creek	7,351	801,607	7,594	951,452	243	149,845
Woodford	820	82,317	844	87,121	24	$\cdots{ }^{51} 4,805$
Lyons Bridge	1,128	183,678	1,861	202,421	733	18,743
Walloon	1,210	90,488	903	66,984	-307	-23,504
Amberley	394	63,991	968	80,639	574	16,648

Rui 41 - $19: 00$ Tuesday 11 Jamiary 2011
This run vas completed 132 hours after mobilisation of the Flood Operations Centre. Wivenhoe Dam had peaked. Woodford was ising rapidly and Somerset Dam inflows, also increased. Lockyer Creek appeared. to have peaked, but the model grossly ovetestimated the rated flow. However, compailsons with BoM. estimates indicaled the modelled flows may be reasonable. The Bremer River al Walloonexceeded its. rating curve, whilst Warrill Creek conlinued to rise.

Stream gauge	Estimated		Modelled		Difference	
	Peak flow $\left(\mathrm{m}^{3} / \mathrm{s}\right)$	Flood volume (ML)	$\begin{aligned} & \text { Peak flow } \\ & \left(\mathrm{m}^{3} / \mathrm{s}\right) / \end{aligned}$	Flood volume (ML)	$\begin{aligned} & \text { Peak flow } \\ & \left(\mathrm{m}^{3} / \mathrm{s}\right) \end{aligned}$	Flood volume (ML)
Gregors Creek	7,351	871,338	7,594	1,035,877	243	164,538
Woodford	1,341	108,327	844	103,130	-496	-5,198
Lyons Bridge	1,162	208,518	3,733	268,192	2,571	59,675
Walloon	(1,2)0	116,624	1.408	94,997	198	-21,628
Amberley	622	75,667	1,138	104,382	516	28,715

Rum 43 -08:00 Wedmesday 12 January 2011.
This run was completed 145 hours after mobilisation of the Flood Operations Centre. All streams had, peaked except for Warril Creek.

Stream gauge	Estimated		Modelled		Difference	
	Peak flow $\left(\mathrm{m}^{3} / \mathrm{s}\right)$	Flood volume (ML)	Peak flow $\left(\mathrm{m}^{3} / \mathrm{s}\right)$	Flood volume (ML)	Peak flow $\left(\mathrm{m}^{3} / \mathrm{s}\right)$	Flood volume (ML)
Gregors Creek	7,351	923,781	7,594	1,112,372	243	188,591
Woodford	1,341	147,688	844	123,271	-496	-24,417
Lyons Bridge	1,162	257,121	4,013	435,463	2,851	178,342
Walloon	1,210	172,307	1,408	139,207	198	-33,100
Amberley	730	107,495	1,138	133,975	408	26,479

7 FLOOD MODEL VALIDITY AND PERFORMANCE

Run 45 - $12: 00$ Wedres day 19 January 2011
This run was completed 317 hours after mobilisation of the Flood Operations Centre. Gate operations ceased at Wivenhoe Dam. Liflle rair fell on the catchment in the week following the peak on Tuesday 11 January 2011. This was the final simulation run. Minor adjustments to loss parameters resulted in minor changes to the model calibration results compared to Run 43. Inflows into Somerset Dam and Wivenhoe Dam approached $2,350,000 \mathrm{ML}$ (excluding base flow).

Stream gauge	Estimated		Modelled		Difference	
	$\begin{aligned} & \text { Peak } \\ & \text { flow } \\ & \left(\mathrm{m}^{3} / \mathrm{s}\right) \end{aligned}$	Flood volume (ML)	Peak flow $\left(\mathrm{m}^{3} / \mathrm{s}\right)$	Flood volume (ML)	Poak flow $\left(\mathrm{m}^{3} / \mathrm{s}\right)$	Flood volume (ML)
Gregors Creek	7,351	1,000,750	8,098	1,150,594	746	149,844
Woodford	1,341	169,736	844	132,950	-4996	$-36,786$
Lyons Bridge	1,162	384,482	2,904	518,567	1,742	134,085
Walloon	1,210	198,434	1,408	158,052	() 198	-40,383
Amberley	736	193,908	1,138	175,781	402	-18,127

8 PRELIMINARY ASSESSMENT OF EVENT MAGNITUDE

8.1 Introduction

The significance of this Event can be determined by comparing rainfall, water levels and flood volumes measured during the period with historical records and then underlaking a statistical analysis of this information. Australian Rainfall and Runoff (ARR) categorises events according to their Annual Exceedance
Probability (AEP), as illustrated in Figure B.1.1. The Bureau of Meteorology adopts a flood classification
system based on minor, moderate and major flood levels which are defined by BoM in conjunction with local Councils.

Figure 8,i.1-anual Exceedance Probabity (AEP)

It should be noted that the assessments carried out in this Section of the report are preliminary only and are based upon operational data collected during the event. Given that time constraints for preparation of the report, it is recognised that more Information may become available on which to base a more rigorous assessment of the event magnitude.

Rainfall totals and intensities can be compared with those recorded during other significant events to determine the signficance of the January 2011 Event. Rainfall stations in the Brisbane catchment have good record lengths, "itaty in some cases, are greater than 100 years and therefore provide an effective basis for analysis. The,analysis of rainfall intensity rather than depth provides a good indicator of the magnitude of floods in iengs of peak flows and volumes.

Wateremel stations generally have shorter record lengths than rainfall stations, leading to a greater level of dinsertainty when comparing recorded and historic water level data to determine event significance. Automatic stations have only been in widespread use since the 1960 s, so continuous water level records are generally only available for maximum periods of around 50 years.

Detailed flood frequency analysis consisting of at-station statistical analysis of flow records, requires extensive investigation based on a reassessment of station ratings to account for the current Event. This reassessment work is currently being undertaken by the Department of Environment and Resource Management (DERM) and was not available at the time of writing this Report. However, some preliminary flood frequency analysis was undertaken using available records and this information is included in this Report.

8 PRELIMINARY ASSESSMENT OF EVENT MAGNITUDE

8.2 Rainfall depth and intensity comparison

In the four weeks prior to Thursday 6 January 2011, rainfall in South East Queensland had been well above the December average. In some areas, rainfall exceeded the December average by as much as 400 mm .
These results can be seen in the following map (Figure $8: 2.1$) provided by BoM:

Figure 8.2.4-Queenstand Reinfell (mm), Decenter 2010
FFięre had already been two significant rainfall events in mid and late December 2010 which required large
6eases from Somerset and Wivenhoe Dams. As a result of these events and the above average rainfall that
had been experienced, the Brisbane catchment was wetter than would normally be expected at this time of year and primed to generate runoff from relatively low rainfall events.

Historic comparison

Table 8.2.2 shows a comparison between the event rainfall totals from the January 1974, February 1999 and January 2011 flood events. The comparison could not include the February 1893 events as the available rainfall records are inadequate to allow a proper comparison.

8 PRELIMINARY ASSESSMENT OF EVENT MAGNITUDE

The first feature to notice in Table 8.2.2 is that the duration the events vary from three days to eight days. This has implications for the runoff generating efficiency of the rainfall, as the longer the event duration, the more saturated the catchment becomes and the greater the proportion of runoff per period. This was particularly relevant for the January 2011 Flood Event as the catchment was already relatively saturated at the beginning of the Event.

Table 8.2.2 also shows that the depth of rainfall in the February 1999 flood is much less than the other two events. While the five day totals in the January 1974 and January 2011 are quite similar, the distribution of rainfall with time is quite different and this had a major impact on the volume of runoff generated during each event.

	Daily catchment average rainfalls (mm) January 1974						
24 hours to	Stanley	Upper	Lockyer	Bremer	Warrill	Purga	Lower
24/01/1974 09:00	0	0	0	0	0	0	0
25/01/1974 09:00	129	70	57	57	44		89
26/01/1974 09:00	187.	141	172	211	181	188	318
27/01/1974 09:00	398	290	346	465	410°	428	530
28/01/1974 09:00	471	339	410	536	468	502	574
29/01/1974 09:00	479	344	412	536	470	503	577

,	Daily catchment average rainfalls (nm) February 1999						Lower
24 hours to	Stanley	Upper	Lockyer	Bremer	Warrill	Purga	
08/02/1999 09:00	0	0	0	0	0	0	0
09/02/1999 09:00	294	223	+138	131	102	107	129
10102/1999 09:00	350	245	150	145	115	119	137
11/02/1999 09:00	355	(248)	152	148	117	121	140
12/02/1999 09:00	355	248	153	148	117	121	141

24 hours to	Daily catchment average ralifalls (mm) January 2011						Lower
	Stanley	Upper	Lockyer	Bremer	Warrill	Purga	
06/01/2011 09:00	0	0	0	0	0	0	0
07/01/2011 09:00	20	27	25	26	24	20	19
08/01/2011 09:00	50	64	65	61	75	43	45
89) $01 / 201109: 00$	80	98	85	76	89	57	71
10/01/2011 09:00	129	117	90	80	92	60	76
11/01/2011 09:00	328	254	163	121	118	94	152
12/01/2011 09:00	423	371	275	182	196	163	202
13/01/2011 09:00	541	424	363	337	299	227	310

Table 8.2.3 compares the most intense periods of rainfall recorded for the January 1974, February 1999 and January 2011 flood events during various time periods, with the highest totals for each period highlighted in red. Generally, the January 2011 Event contains the highest rainfall totals of the three events.

8 PRELIMINARY ASSESSMENT OF EVENT MAGNITUDE

Ralnfall totals for selected durations (mm)						
Duration	Somersot Dam catchment			Wivenhoe Dam catchment (excluding Somerset Dam catchment)		
Hours	Jan-74	Feb-99	Jan-11.	Jan-74	Feb-99	Jan-11
1	19	21	25	9	11	14
3	51	53	68	4. 25	28	40
6	90	81	118	47	51	74
12	152	134	162	90	87	
18	193	186	199	127	135	$135{ }^{1}$
24	220	230	221	152	156	144
48	299	325	342	225	231	$S^{\prime} y_{255}$
72	421	351	446	295	246	292
96	474	356	464	341	$24 \hat{9}{ }^{\prime}$	307
120	482	357	529	345	250	389

Figures 8.2.4 and 8.2.5 shows a comparison of the average hourly catchment rainfall patterns in the Somerset Dam and Wivenhoe Dam catchments during the January 1974, Feptafy 1999 and January 2011 flood events. Each of the graphs have been plotted on the same horizortal (eight days) and vertical ($25 \mathrm{~mm} / \mathrm{hr}$) scales to enable direct comparison.

The plots of the January 1974 and February 1999 flood ejents utilise all available rainfall data including daily rainfall records, while the plots of the January 2011 Rlgod Event only utilises the operational data collected during the Event. All three plots use the same approach of weighting the four nearest rainfall stations to estimate the average catchment rainfall for each subarea in Seqwater's URBS model. Weights were determined using the inverse distanced squatad method. The catchment average rainfall is then calculated by weighting each subarea in relation to the otat catchment area.

Somerset Dam catchment (Figure8.8.4)

In the Somerset Dam catchment, the rainfall intensities in the 1974 flood were generally between $3 \mathrm{~mm} / \mathrm{hr}$ to $8 \mathrm{~mm} / \mathrm{hr}$ over the four day furation of the event. By comparison, intensities in the February 1999 flood were slightly higher but overamuch shorter period. In January 2011, there are several burst of rainfall between $5 \mathrm{~mm} / \mathrm{hr}$ and $10 \mathrm{~mm} / \mathrm{b}$, over short durations, leading up to a prolonged period of heavy rain where two periods of very intense ralityere experienced (in the 12 hours ending 18:00 Sunday 9 January 2011 and the 12 hours ending $18: 00$ fuesday 11 January 2011). During these periods, intensities were more than double those recorded 19674 and 1999.

8 PRELIMINARY ASSESSMENT OF EVENT

 MAGNITUDE

In the, Wivehhioe Dam catchment, the rainfall intensities during the 1974 flood were generally between $3 \mathrm{~mm} / \mathrm{hr}$ to 8 mmon cover the four day duration of the event. By comparison, intensities in the February 1999 flood were slightyhigher but over a much shorter period. In January 2011, the average catchment rainfall tended to build upslowly over the first four days during which time a number of small floods were experienced. The first burst of heavy rainfall occurred in the 12 hours to $00: 00$ Monday 10 January 2011. This was followed by a shorter two hour burst on the afternoon of Monday 10 January 2011. The final and heaviest catchment burst occurred in the eariy hours of Tuesday 11 January 2011. Rainfall intensities in the January 2011 Event were neariy double those of January 1974.

8 PRELIMINARY ASSESSMENT OF EVENT MAGNITUDE

8 PRELIMINARY ASSESSMENT OF EVENT MAGNITUDE

8.3 Rainfall intensity frequency duration analysis

Intensity Frequency Duration (IFD) analysis refers to the statistical analysis of rainfall intensities. Rainfall is typically described as depth in millimetres (mm) falling over a specified duration or period in hours. The rainfall rate or intensity is usually defined as the depth of rainfall per hour.

To determine the severity of a particular rainfall event, the intensity over particular periods of interest is compared with historical records to determine its frequency of occurrence. The Annual Exceedance Probability (AEP) is used to define this frequency of occurrence and is defined by BoM as "the probability that a given rainfall total accumulated over a given duration will be exceeded in any one year."

Depth and intensity may be used in IFD analysis however BoM prefers to simply use rainfall intensity (madin). There are two generally accepted methods for IFD analysis:

- Australian Rainfall and Runoff (IEAust 1987);
- CRC-FORGE (Hargraves, 2004 \& 2005).

Appendix B contains the analysis for both of these methodologies for a range of rainfllyauges in the Dam catchments for the January 2011 Flood Event. The Australian Rainfall and Rungf (í"Aust 1987) results are also available in real fime within the RTFM and are used to assess the progression of flood events.

In the Brisbane River Catchment the CRC-FORGE method and Australian Rainfall and Runoff produce similar estimates for 1% AEP for durations from 24 hours to 72 hours. The GRE'FORGE method is the only IFD method used in relation to dams that provides design rainfall estipnates for durations up to 120 hours.

The CRC-FORGE method is based upon a regional rainfall ffequency analysis that derives rainfall depth estimates of large to rare flood events and uses the coneepl of an expanding region focused at the site of interest. When using CRC-FORGE, design rainfall estimates for frequent events (1 in 50 and 1 in 100 AEP) are based on pooled data from a few stations around the focal point, while design rainfall estimates at the AEP limit of extrapolation (1 in 2,000) are based on pipeléd rainfall data from up to several hundred stations. Before data from different sites can be pooleg maximum annual rainfalls from each site need to be standardised by dividing by an index variabe? The index variable may be the mean annual maximum for the site, or rainfall of any specified AEP thakis'reasonable and accurately determined from a short record. An Areal Reduction Factor (ARF) is alsôintroduced to correct the variation of rainfall intensity over a large catchment area and to convert poigtrainfall estimates to areal estimates.

The CRC-FORGE methodwas developed using daily rainfall totals. It should be noted that there is some uncertainty in the AEP efillmates of the recorded rainfall produced by the CRC-FORGE method for durations less than 24 hours. The shorter durations are extrapolated using ratios calculated from Australian Rainfall and Runoff. There are experimental techniques available for investigating the AEP for the shorter duration rainfalls but time constraints associated with the preparation of this report have not allowed this to be included in the analysist. Given the focus of this IFD analysis is mostly on longer duration storms, the approach undertaken for this report is considered appropriate.

8 PRELIMINARY ASSESSMENT OF EVENT MAGNITUDE

Point IFD Analysis

For the January 2011 Event, the CRC-FORGE method was used to derive rainfall estimates for frequent to rare flood events for storm durations from 15 minutes to 120 hours, for both point and areal estimates. As discussed above there is some uncertainty associated wilh design rainfall estimates below 24 hour duration so there curves are shown dotted in the plots below. Point IFD analysis was carried out for each gauge in the rainfall network listed in Table 8.3.1.

ALERT	Station	Loca	tion	ALERT	Station	Loc	
10		Latitude	Longilude	10		Latitude	Longitude
8511	Mount Pechey	-27.3170	152.0820°	6619	Mount Castle	-27.9636	+152.3756
6514	Gregors Creek	-26.9800	152.4040	6621	Nukinenda	-27.0567	152.1072
6520	Boat Mountain	-26.9789	152.2847	6623	Tarome	. 28.9867	152.5008
6523	Cressbrook Dam	-27.2650	152.1950	6636	Wivenhoe Dam	-27.3550	152.5960
6529	Saint Aubins	-27.0819	151.8944	6643	Wivenhoe Dam	-27.4100	152.5980
6540	Yarraman	-26.8358	151.9692		Talwater 1		
6542	Dam Site	-26.7417	152.1367	6649	Lowood	-27.4900	152.5930
8550	Walloon	-27.6170	152.6680	6651	Anceitey	-27.6780	152.6990
6553	Rosentretters	-27.1383	152.3294	6680	Mount Glorious	-27.3220	152.7470
6556	Glenore Grove	-27.5242	152.4081	8763	Woodford	-26.9500	152.7600
6559	Savages Crossing	-27.4410	152.6680	6708	Devon Hills	-26.9000	152.3210
6571	Harrisville	-27.8150	152.6406	6711	Baxters Creek	-27.1958	152.8000
6574	Caboonbah	-27.1460	152.4900	6714	Fernis Knob	-28.6542	152.8167
6577	Gatton	-27.5564	+	6718	Bellthorpe West	-26.8230	152.6780
6580	Adams Bridge	-27.8294	152.5108	8730	Jindalee	-27.5322	152.9239
6563	Showground Weir	-27.6380)	6733	Rosewood	-27.6600	152.6030
6596	Crows Nest	-27.2308	152.0311	6739	Washpool	-27.8290	152.7550
6598	Toowoomba	8×5114	151.9536	6748	Brisbane City	-27.4730	153.0300
8600	Kikcoy	-26.9481	152.5836	6751			1527980
6604	Toogoolawaty	-27.0858	152.3722				
6606	Woodbine West	-27.7847	152.1497	6760			
6608	$\operatorname{Jimn} \widehat{\gamma}$	-26.6810	152.4510				
6810	Kluvers Lookout	-27.2070	152.7030				
				6766	Lake Kunwongbah	-27.2500	152.9500
	horton	-27.8211	152.3800	6769	Drapers Crossing	-27.3500	152.9167
	Little Egypt	-27.7042	152.0650	6778	Samford	-27.3610	152.8790

Significant stations in each catchment were selected for inclusion in this section of the Report. The remainder of the IFD tables and curves for other stations are included in Appendix P.

Table 8.3.2 summarises the highest AEPs at particular stations estimated from an IFD analysis of the entire list of stations in the tables above. The table shows that for durations of more than three hours, the highest AEPs of the recorded rainfall were 1 in 500 or greater.

8 PRELIMINARY ASSESSMENT OF EVENT MAGNITUDE

January 2011 Flood Event - Highest rainfall intensitios					
Duration	ALERT ID		Recorded Intensity		AEP
			\̌̌. mmihr		$1 \mathrm{in} Y$
3 H	6559	Savages Crossing	70.5	09:34 11/01/2011	500-1000
6 H	6559	Savages Crossing	47.8	12:49 11/01/2011	>2000
	6649	Lowood	40.0	14:04 11/01/2011	
12 H	6559	Savages Crossing	30.7	14:34 11/01/2011	>2000
	6643	Wivenhoe Dam	29.4	16:29 11/01/2011	
	6649	Lowood	29.0	14:49 11/01/2011	
18 H	6649	Lowood	19.6	19:34 11/01/2011	- 22000
24 H	6649	Lowood	14.8	19:19 11/01/2011	> 2000
48 H	6649	Lowood	9.0	14:49 11/01/2064	> 2000
72 H	6649	Lowood	6.4	01:19 12/01/2011	1000-2000
96 H	6649	Lowood	4.9	01:19 12\%1/2011	500-1000
120 H	6649	Lowood	4.0	01:04 12/01/2011	500-1000

8 PRELIMINARY ASSESSMENT OF EVENT MAGNITUDE

Gregors Creek

This station is located near the Brisbane River around 49 km north of Wivenhoe Dam and is close to the centre of the Wivenhoe Dam catchment. Figure 8.3 .3 below shows the heaviest rainfall up to 18 hours was recorded on the afternoon of Sunday 9 January 2011. For durations less than three hours, the AEP was not particularly signilicant however, between 18 and 24 hours, the AEP of the rainfall was in the 1 in 100 to 1 in 200 range. By 20:00 Tuesday 11 January 2011, the longer rainfall periods up to 120 hours are consistentiy in the 1 in 100 to 1 in 200 range.

Duration	Recorded intensity $\mathrm{mm} / \mathrm{hr}$	End time	$\begin{aligned} & \text { AEP } \\ & 1 \ln Y \end{aligned}$
15 M	70.0	9/01/2011 15:20	< 5
30 M	52.6	9/01/2011 15:35	<5
1 H	42.2	9/01/2011 16:05	<5
3 H	30.4	9/01/2011 18:05	20
6 H	25.0	9/01/2011 19:05	50-100'
12 H	16.0	9/01/2011 22:20	106-200
18 H	12.1 .	9/01/2011 $23: 35$	100-200
24 H	10.0	10/01/2011,1835	100-200
48 H	6.6	11/01/20115:05	100-200
72 H	4.8	11/atet1 20:20	100-200
96 H	3.6	11/01/2011 20:20	50-100
120 H	3.2 C	11/01/2011 20:20	100-200

Figure 8.3.3 - Rainfat intensity, Gregors Creek

8 PRELIMINARY ASSESSMENT OF EVENT MAGNITUDE

Cooyar Creek Dam Site

This station is located within the lower reaches of Cooyar Creek, around 85 km north north-west of Wivenhoe
Dam, near the northern boundary of the Wivenhoe Dam catchment. Figure 8.3 .4 below shows the shorter
Deleted: 7
duration rainfall up to 24 hours was not statistically significant and mostly occurred in the period up to late Monday 10 January 2011 to early Tuesday 11 January 2011. By Tuesday 11 January 2011, the longer rainfall peniods up to 120 hours are consistently in the 1 in 50 to 1 in 100 range.

Duration	Recorded Intensity $\mathrm{mm} / \mathrm{hr}$	End time	$\begin{aligned} & \text { AEP } \\ & 1 \mathrm{In} Y \end{aligned}$
15 M	60.4	10/01/2011 23:04	< 5
30 M	55.6	10/01/2011 23:19	<5
1H	38.2	10/01/2011 23:49	<5
3 H	22.2	11/01/20110:49	<5
6 H	16.3	11/01/2011 4:49	20
12 H	9.8	11/01/2011 5:49	20\% ${ }^{2}$
18 H	6.9	9/01/2011 23:49	20
24 H	5.4	10/01/2011 2:04	20
48 H	5.2	11/01/2011 5:49	50-100
72 H	3.6	11/01/20 6114 14:49	50-100
96 H	3.0	11/01/2011 4:49	50-100
120 H	2.9	(1)/01/2011 7:34	200-500

Figure 8.3.4-Rainati monsity, Cooyar Creek

8 PRELIMINARY ASSESSMENT OF EVENT MAGNITUDE

Glenore Grove

This station is located within the lower reaches of Lockyer Creek, around 24km south west of Wivenhoe Dam.
Figure 83.5 below shows the most intense rainfall for all durations ended in the evening of Tuesday 11
with
January 2011. The rainfall which fell in the afternoon of that day was up to 1 in 500 AEP and coincided with
the arrival of floodwaters from the previous afternoon's heavy rainfall in the upper reaches.

Duration	Recorded intensity	End time	AEP
	$\mathrm{mm} / \mathrm{hr}$		$1 \ln \mathrm{Y}$
15 M	87.2 \%	11/01/20116:18	<5
30 M	76.0	11/01/2011 6:18	< 5
1 H	54.7	11/01/20116:48	< 5
3 H	26.0	11/01/2011 13:48	20
6 H	21.2	11/01/2011 15:18	50-100
12 H	16.6	11/01/2011 15:18	200-500\%
18 H	11.2	11/01/2011 19:33	100-200
24 H	8.4	11/01/2011 19:48	250-100
48 H	5.7	11/01/2011 15:18	100-200
72 H	4.1	11/01/2011198.48	100-200
96 H	3.1	11/01/2011 19:48	50-100
120 H	2.6	110 ¢2011 19:48	50-100

Figura 8.3.5-- Rainatl intensity, Glenore Grove

8 PRELIMINARY ASSESSMENT OF EVENT MAGNITUDE

Toowoomba

This station is located within the watershed of the Condamine River Basin and Lockyer Creek, around 66km south-west of Wivenhoe Dam. Figure 83.6 below shows the most intense rainfall for periods of less than 12 \qquad hours ended on the aflernoon of Monday 10 January 2011. The rainfall for these durations is not particularly significant, being in the frequent to large range. However, despite its location, the rainfall at this gauge is not considered to accurately represent the rainfall which caused the flash food in the Lockyer Valley on the afternoon of Monday 10 January 2011.

Figure 8.3.6- Rematimensity, Toovomba

8 PRELIMINARY ASSESSMENT OF EVENT MAGNITUDE

Lowood

This station is located only 8.5 km south of Wivenhoe Dam, in the area which recorded some of the highest
Event rainfall totals. Figure 8.3 .7 below shows the rainfall at this location had AEPs for durations above 6 to 48
hours to be above 1 in 2000 and is estimated to be in the rare range. The IFD graph shows the 12 hour duration rainfall was significantly above the 1 in 2000 AEP and extended into the extreme range. The timing of the short duration rainfall should also be noted. On the afternoon of Tuesday 11 January 2011, this rainfall coincided with the arrival of floodwaters from the upper Brisbane River into Wivenhoe Dam and the arrival of the Lockyer Creek floodwaters into the Brisbane River.

Figure 8.3.7-Reinfall intensify, Lowood

8
 PRELIMINARY ASSESSMENT OF EVENT MAGNITUDE

Bellthorpe West

This station is located in the northern part of the Stanley River catchment, around 35 km north-east of
Somerset Dam on the catchment boundary with the Mary River. The table in Figure $\beta .3 .8$ below highlights \qquad Deleted: 7 that for durations of between 6 and 48 hours, the AEP of the recorded rainfall was between 1 in 50 and 1 in 100. Beyond 48 hours, AEPs were between the 1 in 100 and 1 in 200 range.

Duration	Recorded intensity $\mathrm{mm} / \mathrm{hr}$	End time	AEP
			1 in Y
15 M	73.2	13:49 09/01/2011	<5
30 M	59.8	13:49 09/01/2011	< 5
1 H	49.9	14:04 09/01/2011	$\leqslant 5$
3 H	30.4	16:04 09/01/2011	5-10
6 H	30.1	19:04 09/01/2011	50-100
12 H	20.4	22:19 09/01/2011	50-100
18 H	18.0	23:04 09/01/2011	$50-400$
24 H	14.6	04:34 10/01/2011	50-100
48 H	10.0	05:04 11/01/2p41	50-100
72 H	8.4	01:34 12/01/2011	100-200
96 H	6.7	13:19-4 d $^{191 / 2011}$	100-200
120 H	5.6	19:49 11/01/2011	100-200

Figure 8.3.8-Rainatl miensity, Belinorpe West

8 PRELIMINARY ASSESSMENT OF EVENT MAGNITUDE

8.4 Catchment rainfall Intensity Frequency Duration (IFD) analysis

While Point IFD analysis demonstrates the rainfall intensity in the immediate vicinity of the station, it does not indicate the significance of the rainfall over the entire catchment. The catchment average rainfall is determined by applying a weighting to each station in the network, then adding up the weighted station rainfall for each period of the analysis. Catchment IFD analysis derived using CRC-FORGE is based upon assumed idealised spatial and temporal patterns which can be quite different to the actual Event rainfall distributions.

By their nature, catchment average rainfall intensities tend to be lower than Point intensities due to the spatial variation of rainfall through the catchment with some areas recording higher rainfall than others. This is particularly true for relatively large catchments such as the total Wivenhoe Dam catchment (including Somerset Dam). However, the AEPs for the total Wivenhoe Dam catchment were between the 1 in 10Q and 1 in 200 range for rainfall durations between 72 hours and 120 hours, and this fact certainly highlights - 10 e significance of the Event.

8. PRELIMINARY ASSESSMENT OF EVENT MAGNITUDE

Somerset Dam catchment

Although the catchment average rainfall intensilies in this catchment were generally less intense than that in the Wivenhoe Dam catchment, AEPs for the Somerset Dam catchment in the 1 in 50 to 1 in 100 range for rainfall durations greater than 48 hours certainly highlight the significance of the Event.

Duratlon	Recorded intensity	End time	AEP
	mmihr		1 in Y
1 H	29.8	11/01/2011 13:00	<5
3 H	25.8	11/01/2011 13:00	<5
6 H	20.4	9/01/2011 19:00	10-20
12 H	14.5	9/01/2011 21:00	20-50
18 H	11.8	9/01/2011 22:00	20-50
24 H	9.9	10/01/2011 4:00	20-50
48 H	8.1	11/01/2011 13:00	50-100
72 H	7.0	11/01/2011 19:00	60.900
96 H	5.5	12/01/2011 13:00	50-100
120 H	4.7	$11 / 01 / 201121: 20$	50-100

Figure 8.4.i-Rantall intensity. Somersel Dam

8 PRELIMINARY ASSESSMENT OF EVENT MAGNITUDE

Wivenhoe Dam catchment (Including the Somerset Dam catchment)
The AEPs for the Wivenhoe Dam catchment were between the 1 in 100 and 1 in 200 range for rainfall durations between 72 hours and 120 hours.

Duration	Recorded Intensity $\mathrm{mm} / \mathrm{hr}$	End time	AEP 1 ing
1 H	17.5	9/01/2011 15:00	<5
3 H	15.0	9/01/2011 16:00	<5
6 H	13.8	9/01/201119:00	10.20
12 H	10.1	9/01/2011 22:00	20-50
18 H	7.9	9/01/2011 23:00	20-50
24 H	6.4	10/01/2011 4:00	20-50
48 H	5.7	11/01/2011 13:00	50-100
72 H	4.7	11/01/201119:00	$100 \cdot 29^{\circ}$
96 H	3.6	12/01/2011 13:00	100
120 H	3.2	$11 / 01 / 201121: 0 Q$	Y00-200

Rainfall Intensity Analysis
Brisbane River to Wivenhoe Dam (including Stanley River)

8 PRELIMINARY ASSESSMENT OF EVENT MAGNITUDE

8.5 Comparison of flood volumes

While flood peaks are an important feature for the comparison of events, flood volumes are especially critical in the operation of dams. For this reason, flood volumes were compared. Table 8.5.1 below compares flood volumes across a selection of recent and historical events in the Brisbane River at the location of Wivenhoe Dam. It should be noted that these events occur over different time periods.

Dams have a significant mitigating impact and the construction dates for each Dam in the Basin is:

- Somerset Dam 1955;
- Cressbrook Dam 1982;
- Wivenhoe Dam 1985.

Table 8.5.1 shows that the volume of the January 2011 Flood Event is almost double (190\%) they volume of the January 1974 flood and rivals the February 1893 flood. The volumes of pre 1968 floods ate estimated from models studies of these events.

[^4]
8 PRELIMINARY ASSESSMENT OF EVENT MAGNITUDE

8.6 Comparison of flood levels

Table 8.6.1 compares the peak water levels reached during the January 2011 Flood Event with historical floods. The flood of February 1893 is generally regarded as one of the largest on record. Estimates exist of possible larger floods occurring in 1841 and 1867 at the Brisbane Port Office gauge however, there are no records at upstream stations to enable any companison to be undertaken.

The flood of 1974 is certainly the best documented major flood event impacting Brisbane and provides a useful comparison. The February 1999 flood was larger than the January 1974 flood in the upper Brisbane River however its impact on the urban areas of Ipswich and Brisbane was mitigated by Wivenhoe and Sómerset Dams.

A number of points in the table stand out as being significant:

- The peak levels reached at stations in the upper Brisbane River above Wivenhoe Dam werettle highest on record;
- Peak water levels reached in the Lockyer Creek area were the highest on record at (satton, Glenore Grove and Lyons Bridge, easily exceeding the levels reached in the January 1974 and permaps even the 1893 flood;
- Below Wivenhoe Dam, the level reached at Savages Crossing was around 9.36 m higher than in 1974 however the peak level reached at MI Crosby was around 0.62 m lower,
- With a few exceptions, most water levels stations in the Brisbana Rifer basin recorded peak water levels well above major flood level.

S							
ALERT ID	StATION	$\begin{aligned} & \text { Fob } \\ & 1893 \\ & \mathrm{~m} \end{aligned}$	$\begin{gathered} \text { Jan } \\ 1974 \\ \mathrm{~m} \end{gathered}$	$\begin{gathered} \text { Feb } \\ 1999 \\ \mathrm{~m} \end{gathered}$	$\begin{gathered} \text { Jan } \\ 2011 \\ \mathrm{~m} \end{gathered}$	Jan 2011 Flood Classification	Comments
6776	Peachester				9.04	Major	
6703	Woodford	11.73	880^{2}	9.00	9.44	Major	
6591	Somerset Dam		106.57	102.96	105.11		
6543	Dam Site	रे	9.33	6.06	12.02	Major	Different sites
6718	Linville		8.90	8.93	11.04	Major	Highest on record of 47 years
6709				10.80	11.25	Major	Highest on record of 24 years
6521	Boat Mountain		9.61	9.22	11.10	Major	Highest on record of 46 years
6515	SGregors Creek		13.65	14.14	14.50	Major	Highest on record of 49 years
6554	Rosentretters			4.64	6.80	Major	Impacted by Cressbrook Dam
\%638	Wivenhoe Dam			70.45	74.97		Highest on record
6578	Gatton	16.33	14.63	8.50	>16	Major	May be highest on record
6584	Showground Weir			5.97	9.36	Major	
6557	Glenore Grove		14.94	10.68	15.34	Major	Highest on record of 56 years
6634	Lyons Bridge		16.54	12.55	17.31	Major	Highest on record of 56 years

8 PRELIMINARY ASSESSMENT OF EVENT MAGNITUDE

Table 8.6.4-January zothotw water tevels compared with oiner hisforical floods
Until the construction of Wivenhoe Dam was completed, BoMopelated a llood warning station at Caboonbah, just below the junction of the Stanley and Brisbane Rivers well upstream of Wivenhoe Darn. Records show levels at this station reached 22.63 m in 1893 and 16.32 m 1 f 1974 , with estimated peak flows of approximately $13,000 \mathrm{~m}^{3} / \mathrm{s}$ and $5,500 \mathrm{~m}^{3} / \mathrm{s}$ respectively. The estimateg peak flow at this location in the January 2011 Event was at least $8,500 \mathrm{~m}^{3} / \mathrm{s}$.

8 PRELIMINARY ASSESSMENT OF EVENT MAGNITUDE

8.7 Flood frequency analysis

The annual flood series showing the largest flood in a water year (1 October to 30 September) was extracted from the DERM website at 143007a Linville (1966-2005) and 143009a Gregors Creek (1962-2005). A Generalised Extreme Value (GEV) flood frequency analysis of these flows was undertaken, with the results shown below. This analysis is preliminary and is subject to reassessment of the rating at these sites and inclusion of post 2005 records, including records from the January 2011 Flood Event.

The two peaks at each of Linville and Gregors Creek stations associated with the January 2011 Flood Event were significantly higher than any other flood on record. Individually, the pre January 2011 peaks at both stations are considered to be significantly rarer than the AEP of the 1974 flood of 1 in 75 . The probability of two new higher flood peaks occurring within 36 hours of each other as occurred during the January 2014 , Flood event is considered to be appreciably uncommon and demonstrates the rarity of the January 20.44
Flood Event.

8 PRELIMINARY ASSESSMENT OF EVENT MAGNITUDE

Brisbane River at Linville

Analysis of the data at Linville suggests the 1974 flood had an AEP of around 1 in 75 . Given the January 2011 flood peak was more than 2 metres higher than the 1974 flood suggests the January 2011 flood peak was significantly rarer than 1 in 100 AEP.

Figure 8.7.1 -. Flood frequency analysis, Linville

8 PRELIMINARY ASSESSMENT OF EVENT MAGNITUDE

Brisbane River at Gregors Creek

Prior to January 2011, the largest recorded flood at Gregors Creek was the January 1974 flood which reached a gauge height of 14.14 m . The flood frequency analysis suggests this flood peak had an AEP of about 1 in 75. The January 2011 flood peak at Gregors Creek was some 0.35 metres higher than 1974 suggesting an AEP rarer than 1 in 75.

8 PRELIMINARY ASSESSMENT OF EVENT MAGNITUDE

8.8 Design flood comparisons

Some care should be exercised when comparing actual flows and volumes with deslgn flows and volumes. The later are based upon Idealised design storms distributed in time and space combined with average catchment conditions. These circumstances are not necessarily directly comparable with actual events such as the January 2011 Flood Event. However, these design cases do provide an indicative comparison.

Somerset Dam

Seqwater undertook a review of the design flood hydrology for Somerset Dam in October 2009 (Somerset Dam Design Flood Hydrology, Draft Report, October 2009).

A 48 -hour design slorm generated a peak inflow of $5,000 \mathrm{~m}^{3} / \mathrm{s}$ and an inflow volume of around 7760000 ML . reaching a peak level of 105.19 m in a 1 in 1,000 AEP event. This compares with the January quy' ${ }^{\prime}$ Event that produced a similar peak inflow of about $5,000 \mathrm{~m}^{3} / \mathrm{s}$, an inflow volume of $825,000 \mathrm{ML}$ and reachied a peak level of 105.11 m .

Wivenhoe Dam

The design flood hydrology for Wivenhoe Dam was reviewed and upgraded ${ }^{3} 2005$ (Wivenhoe Alliance, Design Discharges and Downstream Impacts of the Wivenhoe Dam Upgrade, Q1091, 2005) as part of the spillway augmentation. Using this report, significant comparisons with © © January 2011 Event can be made.

- The report indicates the 36 hour design storm generates the tighest peak inflow for all AEPs. The estimated peak inflow of the January 2011 Event was esfimeted to be around $12,000 \mathrm{~m}^{3} / \mathrm{s}$, equating to an AEP of around 1 in 1,000 .
- The report also indicates the first fuse would be initiated in an event with an AEP of 1 in 6,000 . This is consistent with the peak water level of 74.97 m which was reached during the January 2011 Event.
- The report estimated the volumes of the dasign inflow hydrographs for a range of durations and AEPs. For an AEP of 1 in 2,000 , the design inflow,yporumes range from $2,000,000 \mathrm{ML}$ to $2,225,000 \mathrm{ML}$ for durations of between 48 and 120 hours. Given thie vanuary 2011 Event inflow volume to Wivenhoe Dam was estimated to be $2,650,000 \mathrm{ML}$ ovefeight days, the AEP of the flood volume is around 1 in 2,000 .

The design inflow and outflows gequed from the Wivenhoe Alliance report are illustrated in Figure 8.8 .1 below.

8 PRELIMINARY ASSESSMENT OF EVENT MAGNITUDE

Figure 8.8.1 - Wivenhoe Affance report, destgn infow and ouffiows
| The 48 hour design flows for Somerset only and Upper Brisbane only flows are contained in Appendix G of
Deleted: the Manual. Comparison of the actual flows with the flows shown in this Appendix also indicates the Event inllows could be considered as a rare occurrence.

8 PRELIMINARY ASSESSMENT OF EVENT MAGNITUDE

8.9 Impact of intense rainfall occurring on Tuesday 11 January 2011

As discussed in Section 6, heavy, localised, intense rainfall around the Wivenhoe Lake area commenced in the early hours of Tuesday 11 January 2011 and continued into the afternoon.

This rainfall was recorded in the rain gauges to the east and south of Lake Wivenhoe, around Mt Glorious and Lowood however, it was not recorded in gauges to the north and west of Wivenhoe Dam. There is a large unmonitored area between these gauges which covers a large component of the Lake area. For modelling purposes, this area is treated as impervious and generates 100% runoff. Radar images at the time indicated rain was falling continuously in this area over the period. Rainfall totals in the 12 hours to 15:00 ranged from 410 millimetres at Mt Glorious in the eastern side of the Lake to only 32 millimetres at Rosentretters on the western side of Lake Wivenhoe.

The real time modelling undertaken with the available recorded rainfall data did not reproduce thefraid rise in Lake level recorded that afternoon. This inferred very heavy rainfall fell within and around the Whenchoe Dam Lake area immediately upstream of the Dam. This suggestion was tested using the Seqwater ${ }^{2}$ NBS model using the following methodology.

The recorded Mt Glorious rainfall was transposed to a dummy station at the centre 6 the Lake and, for the period of heavy rainfall, scaled up the URBS model re-run and the resultant flowsimported into the gate operations spreadsheet. The modelled water levels were then compared with the recorded water levels. Figure 8.9 .1 below shows the impact of the scaled rainfall on the modelled upper Brisbane River inflow to Wivenhoe Dam. The peak of the inflow is both much higher and earief wh the transposed dummy rainfall station than without.

Flgure 8.9.1-- Impaci of scaled rahfall on the upper Erisbane River infow io Whanhoe Dam

The recalculated inflows with the dummy rainfall station more accurately reproduced the recorded water levels than the originally modelled inflows, as shown in Figure 8.92 below

8 PRELIMINARY ASSESSMENT OF EVENT MAGNITUDE

flgure 8.9.2-Recalcufatedinho:s to Wwenhoe Dan

In order to reproduce the recorded Wivenhoe Dam levels, it was necessary to scale the rainfall of the transposed Mt Glorious data by a factor of two for the pertor between 03:00 to 15:00 Tuesday 11 January 2011, indicating the significance of the heavy rainfall in wie ungauged area immediately upstream of the Dam.

IFD analysis of the rainfall record at At Glorious shlows the 12 hours to 15:00 Tuesday 11 January 2011 had an average intensity of $33.9 \mathrm{~mm} / \mathrm{hr}$ and was in the range 1 in 500 to 1 in $1,000 \mathrm{AEP}$, between the large and rare categories.

To model the rapid rise of the recorded, Wivenhoe Dam levels between 03:00 to 15:00 on Tuesday 11 January 2011, the Mt Glorious rainfall datedras repositioned to the ungauged area immediately upstream of the Dam where BoM radar indicated thaceritite of the heavy rainfall during that period. It was then necessary to scale this rainfall up by a factor oftwo to match the rapid lake level rises. This factored Mit Glorious rainfall data had an average intensity of 88 r imh/hr which exceeds an annual recurrence interval of $1 \mathrm{in} 2,000$ years and may be well into the extreme Cellegory. Rainfall of this intensity and duration over the Wivenhoe Dam Lake area at such a critical stage of a Flood Event was unprecedented. The resulting run-off could not be contained without transition to Steategy W4, as discussed in Section 2and Section. 10.0.

8 PRELIMINARY ASSESSMENT OF EVENT MAGNITUDE

8.10 Wivenhoe Dam and Somerset Dam flood mitigation in Brisbane City

Seqwater's Unified River Basin Simulator (URBS) hydrologic model was used to assess the flood mitigation impact of Somerset and Wivenhoe Dams on flows and water levels at the Port Office gauge in Brisbane City. This hydrologic model consists of seven linked models representing various catchments within the Basin.

During the January 2011 Event, the model overestimated the heights and flows in the lower Brisbane River due to a lack of adequate flood plain storage along the mainstream. The model was adjusted to take into account this flood plain storage and recalibrated on several floods from January 1974 to January 2011, to satisfactorily reproduce recorded heights and estimated flows at gauging stations.

It should be noted that the behaviour of the Brisbane River downstream of Wivenhoe Dam is better simule using a hydraulic model. However, in the absence of a fully calibrated hydraulic model and being limafed by time constraints, the URBS hydrologic model has been used to enable relative comparison of variôus scenarios. The model was run under five cases as explained in the following Table 8.10.1.

Table B. 10.1-Compansen of modetled flood scenarios
For Case 4 and Case 5, the models containing the Dams were modified to remove the impervious fractions representing the resepvic areas. In addition, the reach length factors for the drowned reaches in the post Dam models were removed as appropriate for each case.

While the modendoes not replicate levels in the nomal tidal ranges, it does replicate the higher flood stages under tidal conditions reasonably well. For all cases, the downstream tidal conditions recorded during the Event ufers ădopted.

The results of the model runs containing these five cases are displayed in the following graphs, Figure 8.10 .2
gind Figure 8.10.3. Points not in relation to these results are:

- Inflows to the river system can not be directly added together due to the storage and routing impact of the flood plain and the river channels;
- The peak height at Brisbane City (Port Office gauge) generally coincides with the highest tide of the day, in the cases investigated;
- Even if the flood flows in the Stanley River and upper Brisbane River had been contained, and there were no releases from Wivenhoe Dam (Case 2), the flows from Lockyer Creek, Bremer River and other uncontrolled catchment flows would still have exceeded the threshold of urban damages;

8 PRELIMINARY ASSESSMENT OF EVENT MAGNITUDE

- If there had not been any flows from Lockyer Creek, Bremer River and the other uncontrolled catchments, the actual releases from Wivenhoe Dam (Case 3) would have caused only minor flooding in Brisbane City;
- Without Wivenhoe Dam (Case 4), the peak flow would have been of the order of $12,000 \mathrm{~m}^{3} / \mathrm{s}$ and the peak height would have been in the order of 2.0 m higher at Brisbane City;
- Without Somerset and Wivenhoe Dams (Case 5), the peak flow would have been of the order of $14,000 \mathrm{~m}^{3} / \mathrm{s}$ and the peak height would have been around 2.5 m higher at the Port Office gauge.

Figure 8.10.2

8 PRELIMINARY ASSESSMENT OF EVENT MAGNITUDE

Figure 8.10.3-mpact of Somerset and
Fhoe Dams at Brisbarte Fort Office, showing peak height
The duration above selected thresholds was also extracieg. from the model runs as duration of looding has an adverse impact on food damages, with longer durations causing greater costs for the same peak flow.

The threshold of damaging floods in the lower Bifisbane River is defined in the Flood Procedure Manual as $4,000 \mathrm{~m}^{3} / \mathrm{s}$, and this has been adopted for cormparative purposes. The low of $9,500 \mathrm{~m}^{3} / \mathrm{s}$ is the estimated peak flow of the January 2011 Flood Event athePort Office gauge.

In Cases 4 and 5 , the duration of fioding at the Port Office gauge would have been much longer than actually occurred. The duration above $4000 \mathrm{~m}^{3} / \mathrm{s}$ is appreciably Ionger than recorded. However, the duration of the now above the peak of the tandiaty 2011 Flood Event would have been much as two days longer.

Table 8.10 .4 shows the diuation of flooding above the selected threshold for the cases investigated.

Case	Duration above flow threshold (Hours)			
	$\begin{aligned} & 4,000 \\ & \mathrm{~m}^{3} / \mathrm{s} \end{aligned}$	$\begin{aligned} & 6,000 \\ & \mathrm{~m}^{3} / \mathrm{s} \end{aligned}$	$\begin{aligned} & 8,000 \\ & \mathrm{~m}^{3} / \mathrm{s} \end{aligned}$	$\begin{aligned} & 9,500 \\ & \mathrm{~m}^{3} / \mathrm{s} \end{aligned}$
Case 1 Existing	75	48	26	0
'Case 2 No releases from Wivenhoe	35	12	0	0
Case 3 Wivenhoe releases only	24	0	0	0
Case 4 No Wivenhoe Dam	88	72	55	39
Case 5 No Wivenhoe Dam or Somerset Dam	87	75	61	51

Table 8.10.4-Duration of flooding above the fow threshold

8 PRELIMINARY ASSESSMENT OF EVENT MAGNITUDE

8.11 Conclusion

Based on the information contained in this section, the following conclusions can be made in relation to the significance of the January 2011 Flood Event.

- The rainfall intensities varied significantly in the catchment areas above the Dams, although at some locations - especially around Wivenhoe Dam - the AEP of the short duration rainfalls may be classified as extreme;
- The AEPs for the Wivenhoe Dam average catchment rainfall were between the 1 in 100 and the 1 in 200 range for durations between 72 hours and 120 hours, clearly highlighting the significance of the Event;
- When compared with historical events, flood volumes indicate the volume of the January 2011 Event f, almost double that of the January 1974 flood, and rivals the February 1893 flood;
- Peak water levels at gauging stations in the Brisbane River above Wivenhoe Dam were the tightest on record. In the Lockyer Valley, peak water levels exceeded the 1974 levels and may well have been larger than those of 1893;
- Preliminary flood frequency analysis of records at Linville and Gregors Creek indicaled there were fwo peaks of similar magnitude in the January 2011 Event at both Linville and Gregors Creek. Preliminary flood frequency analysis indicates the highest peak at both stations were significantly rarer than the generally accepted AEP of the 1974 flood of 1 in 75 (approaching 1 in $100 \mathrm{y}_{\text {the }}$ The probability of two such flood peaks within 36 hours of each other is considered to be apprecjaby- uncommon and demonstrates the rarity of the January 2011 Flood Event;
- A comparison of the recorded peaks, volumes and peak levels Gt Somerset and Wivenhoe Dams indicate the January 2011 Flood Event easily exceeds 1 in 100 AER
- Below Wivenhoe Dam, the flood had an AEP similar to that of the post Wivenhoe 1974 flood and may be as high as 1 in 1,000 ;
- Overall, the January 2011 Flood Event is considered to represent a rare event as defined by Australian Rainfall and Run-off (AR\&R) in terms of rainfalloflood peaks, inflow volume and peak heights.

9 DAM INFLOW AND FLOOD RELEASE DETAILS

9.1 Wivenhoe Dam

Table 9.1.1 provides full details of inflows into and releases from Wivenhoe Dam for the duration of the January 2011 Flood Event. Details of the strategies used in determining these releases and how these strategies comply with the Manual are contained in Sections 2 and 10 of this Report. Table 9.1.1 also shows that the gate operation sequence was in accordance with the Manual over the duration of the Event.

Some points to note in relation to the table in Table 9.1.1 are:

- Inflow and flood release calculations are based on manual gauge board readings shown in the table that provide the lake level. During the Event, these manual gauge board readings were provided by the Dam operators to the Flood Operations Centre on an hourly basis. Any missed readings have been interpotated from the closest available actual readings.
- Inflow calculations are based on the rate of change of the storage and use the Dam storage cunte
- Release calculations are based on the discharge rating tables contained in the Manual.
- The table shows inflow rates and releases on the hour through the event. In some instignces, gate operations may have occurred between hours or at less than one-hourly intervals. 1 these instances, the table shows the actual gate openings as they were at the time indicated.
- The flood release from Wivenhoe Dam associated with the flood event prior to the January 2011 Flood Event was completed at 09:00 on 2 January 2011. The lake level in weenhoe Dam at this time was 67.10 m or 0.15 metres below the gate opening trigger level. At this fével, $16,250 \mathrm{ML}$ of inflow is needed before trigger level is reached. Following gate closure, the Dam osgunued to release over 4,000 ML per day to account for base flow into the dam from the previous flog devent, with the expectation being that the dam would slowty fall below FSL in the days following 2 Jagiary 2011. However due to

Dateltime	Lake level	Storage volume	Net inflow (outflow		Hydro	Gate settings					Gate discharges			4	5	Total outflow	Total inflow	Total inflow minus Somerset outflow
						1	2	3	4	5	1	2	3					
	m AHD.	ML	ML	$\mathrm{m}^{3 / \mathrm{s}}$	$\mathrm{m}^{3 / \mathrm{s}}$	m	m	m	m	m	$\mathrm{m}^{3 / \mathrm{s}}$	$\mathrm{m}^{3 / \mathrm{s}}$	$\mathrm{m}^{3} \mathrm{~s}$	$\mathrm{m}^{3} / \mathrm{s}$	$\mathrm{m}^{3 / \mathrm{s}}$	$\mathrm{m}^{3} / \mathrm{s}$	$\mathrm{m}^{3} / \mathrm{s}$	$\mathrm{m}^{3 / \mathrm{s}}$
06/01/2011 09:00	67.32	1200019	458	127	50	0.0	0.0	0.0	0.0	0.0	0		0	0	0	0	406	0
06/01/2011 10:00	67.33	1201119	1283	356	50	0.0	0.0	0.0	0.0	0.0	0	0	0	0	0	0	177	0
06/01/2011 11:00	67.34	1202219	458	127	50	0.0	0.0	0.0	0.0	0.0	0	0	0	0	0	0	177	0
06/01/2011 12:00	67.34	1202219	458	127	50	0.0	0.0	0.0	0.0	0.0	6	0	0	0	0	0	406	0
06/01/2011 13:00	67.35	1203319	1283	356	50	0.0	0.0	0.0	0.0	0.0	0	0	0	0	0	0	177	0
06/01/2011 14:00	67.36	1204418	458	127	50	0.0	0.0	0.0	0.0	$00{ }^{0}$	0	0	0	0	0	0	152	0
06/01/2011 15:00	67.36	1204418	367	102	50	0.0	0.0	0.0	0.0	0.0	0	0	0	0	0	0	559	0
06/01/2011 16:00	67.37	1205518	1833	509	50	0.0	0.0	0.0	0	0.0	0	0	0	0	0	0	534	0
06/01/2011 17:00	67.39	1207718	1741	484	50	0.0	0.0	0.0	0.0	0.0	0	0	0	0	0	0	330	0
06/01/2011 18:00	67.40	1208817	1008	280	50	0.0	0.0	-2	0.0	0.0	0	0	0	0	0	0	355	0
06/01/2011 19:00	67.41	1209917	1100	305	50	0.0	0.0	0.0	0.0	0.0	0	0	0	0	0	0	355	0
06/01/2011 20:00	67.42	1211017	1100	305	50	0.0	K00	0.0	0.0	0.0	0	0	0	0	0	0	355	0
06/01/2011 21:00	67.43	1212117	1100	305	50	0.0	0.0	0.0	0.0	0.0	0	0	0	0	0	0	355	0
06/01/2011 22:00	67.44	1213216	1100	305	50	-0.	0.0	0.0	0.0	0.0	0	0	0	0	0	0	305	0
06/01/2011 23:00	67.45	1214316	916	255	50	0.0	0.0	0.0	0.0	0.0	0	0	0	0	0	0	660	0
07/01/2011 00:00	67.46	1215416	2197	610	- 50	0.0	0.0	0.0	0.0	0.0	0	0	0	0	0	0	1047	0
07/01/2011 01:00	67.49	1218715	3590	997	50	0.0	0.0	0.0	0.0	0.0	0	0	0	0	0	0	798	0
07/01/2011 02:00	67.52	1222047	2692	$\times 148$	50	0.0	0.0	0.0	0.0	0.0	0	0	\bigcirc	0	0	0	800	0
07/01/2011 03:00	67.54	1224279	2698	750	50	0.0	0.0	0.0	0.0	0.0	0	0	0	0	0	0	980	0
07/01/2011 04:00	67.57	1227627	3340,	930	50	0.0	0.0	0.0	0.0	0.0	0	0	0	0	0	0	1135	0
07/01/2011 05:00	67.60	1230975	3906	1085	50	0.0	0.0	0.0	0.0	0.0	0	0	0	0	0	0	1342	100
07/01/2011 06:00	67.64	1235438,	- 4650	1292	50	0.0	0.0	0.0	0.0	0.0	0	0	0	0	0	0	1109	0
07/01/2011 07:00	67.68	1239902	3813	1059	50	0.0	0.0	0.0	0.0	0.0	0	0	0	0	0	0	1134	0
07/01/2011 08:00	67.71	1243250	3902	1084	50	0.0	0.0	0.0	0.0	0.0	0	0	0	0	0	0	1167	0

Date/time	Lake level	Storage volume	Net inflow (outflow deducted)		Hydro	Gate settings					Gate discharges					Tota outflow	Total inflow	Total inflow minus Somerset outflow
						1	2	3	4	5		2	3	4	5			
	m AHD	ML	ML	$\mathrm{m}^{3 / \mathrm{s}}$	$\mathrm{m}^{3 / 5}$	m	m	m	m	m	m	$\mathrm{m}^{3} / \mathrm{s}$	$\mathrm{m}^{3} / \mathrm{s}$	$\mathrm{m}^{3 / \mathrm{s}}$	$\mathrm{m}^{3} \mathrm{~s}$	$\mathrm{m}^{3} \mathrm{~s}$	$\mathrm{m}^{3} / \mathrm{s}$	$\mathrm{m}^{3} / \mathrm{s}$
07/01/2011 09:00	67.75	1247714	4023	1117	50	0.0	0.0	0.0	0.0	0.0	0	0	0	0	0	0	864	0
07/01/2011 10:00	67.78	1251110	2930	814	50	0.0	0.0	0.0	0.0	0.0	0	(2)	0	0	0	0	1648	389
07/01/2011 11:00	67.81	1254506	5754	1598	50	0.0	0.0	0.0	0.0	0.0	0	0	0	0	0	0	2225	970
07/01/2011 12:00	67.88	1262429	7829	2175	50	0.0	0.0	0.0	0.0	0.0	60\%	0	0	0	0	0	1778	528
07/01/2011 13:00	67.94	1269221	6222	1728	50	0.0	0.0	0.0	0.0	0.0	0	0	0	0	0	0	1472	11
07/01/2011 14:00	67.99	1274881	5118	1422	50	0.0	0.0	0.0	0.0	008	0	0	0	0	0	0	1139	0
07/01/2011 15:00	68.03	1279457	3920	1089	13	0.0	0.0	0.5	0.0	0.0	0	0	51	0	0	51	995	0
07/01/2011 16:00	68.06	1282901	3350	930	13	0.0	0.0	1.0	(0)	0.0	0	0	103	0	0	103	1020	0
07/01/2011 17:00	68.09	1286345	3253	904	13	$0: 0$	0.0	1.5	$0: 0$	0.0	0	0	154	0	0	154	1523	124
07/01/2011 18:00	68.12	1289789	4879	1355	13	0.0	0.0	20	0.0	0.0	0	0	205	0	0	205	1360	0
07/01/2011 19:00	68.17	1295530	4114	1143	13	0.0	0.0	2.5	0.0	0.0	0	0	255	0	0	255	958	0
07/01/2011 20:00	68.19	1297826	2486	691	13	0.0	COS	3.0	0.0	0.0	0	0	303	0	0	303	1514	173
07/01/2011 21:00	68.22	1301270	4312	1198	13	0.0	0.0	3.5	0.0	0.0	0	0	351	0	0	351	1300	0
07/01/2011 22:00	68.26	1305878	3371	936	13	K0.8	0.5	3.5	0.0	0.0	0	52	351	0	0	403	1387	85
07/01/2011 23:00	68.28	1308206	3496	971	13	0.0	0.5	3.5	0.5	0.0	0	52	352	52	0	456	1519	234
08/01/2011 00:00	68.32	1312862	3783	1051	- Sl^{1}	0.0	1.0	3.5	0.5	0.0	0	104	352	52	0	509	818	0
08/01/201101:00	68.34	1315190	1067	296	13	0.0	1.0	3.5	1.0	0.0	0	104	353	104	0	561	1841	593
08/01/2011 02:00	68.35	1316354	4559	1265^{9}	13	0.5	1.0	3.5	1.0	0.0	52	104	353	104	0	614	1624	393
08/01/2011 03:00	68.41	1323339	3589	997	13	0.5	10	3.5	10	0.5	52	105	354	105	52	667	1246	36
08/01/2011 04:00	68.41	1323339	2037)	566	13	0.5	1.5	3.5	1.0	0.5	52	156	354	105	52	719	1622	428
08/01/2011 05:00	68.45	1327995	3201	889	13	0.5	1.5	3.5	1.5	0.5	52	157	354	. 157	52	773	1135	0
08/01/2011 06:00	68.46	1329159	- 1258	350	13	1.0	1.5	3.5	1.5	0.5	105	157	355	157	52	825	1867	709
08/01/2011 07:00	68.48	1331487	3701	1028	13	1.0	1.5	3.5	1.5	1.0	105	157	355	157	105	879	2144.	1003
08/01/2011 08:00	68.52	13868176	4509	1253	13	1.0	1.5	4.0	1.5	1.0	105	157	402	157	105	927	1515	393

Date/time	Lake level	Storage volume	Net inflow (outtlow deducted		Hydro	Gate settings					Gate discharges			4.5		Total outflow	Total inflow	Total inflow minus Somerset outfow
							2	3	4	5	1.	2	3					
	M AHD	ML	ML	$\mathrm{m}^{3} / \mathrm{s}$	$\mathrm{m}^{3 / \mathrm{s}}$	m	m	m	m	m	$\mathrm{m}^{3} \mathrm{~s}$	$\mathrm{m}^{3} / \mathrm{s}$	$\mathrm{m}^{3 / \mathrm{s}}$	$\mathrm{m}^{3 / \mathrm{s}}$	$\mathrm{m}^{3 / \mathrm{s}}$	$\mathrm{m}^{3} / \mathrm{s}$	$\mathrm{m}^{3} \mathrm{~s}$	$\mathrm{m}^{3 / \mathrm{s}}$
08/01/2011 09:00	68.55	1339718	2069	575	13	1.0	2.0	4.0	1.5	1.0	105	209	403	157.	105	980	1649	543
08/01/2011 10:00	68.56	1340899	2361	656	13	1.0	2.0	4.0	2.0	1.0	105	209	403	209	105	1031	1755	665
08/01/2011 11:00	68.59	1344441	2558	711	13	1.5	2.0	$4.0{ }^{\circ}$	2.0	1.0	158	209	404	209	105	1085	1399	109
08/01/2011 12:00	68.60	1345622	1082	301	13	1.5	2.0	4.0	2.0	1.5	159\%	209	404	209	158	1138	1260	0
08/01/2011 13:00	68.61	1346802	394	109	13	1.5	2.5	4.0	2.0	1.5	158	260	404	209	158	1189	1530	279
08/01/2011 14:00	68.61	1346802	1181	328	13	1.5	2.5	4.0	2.5	$A \cdot 5$	158	260	404	260	158	1239	1799	574
08/01/2011 15:00	68.63	1349164	1968	547	13	1.5	2.5	4.0	2.5	1.5	158	260	404	260	158	1240	1581	157
08/01/2011 16:00	68.64	1350345	1181	328	13	1.5	2.5	4.0	(6)	1.5	158	260	405	260	158	1241	1418	12
08/01/2011 17:00	68.65	1351525	590	164	13	1.5	2.5	4.0	2.5	1.5	158	260	405	260	158	1242	1227	0
08/01/2011 18:00	68.65	1351525	-98	-27	13	1.5	2.5	- 8	2.5	1.5	158	260	405	260	158	1242	1255	0
08/01/2011 19:00	68.65	1351525	0	0	13	1.5	2.5	4.0	2.5	1.5	158	260	405	260	158	-1242	1255	0
08/01/2011 20:00	68.65	1351525	0	0	13	1.5	$c^{2} 5$	4.0	2.5	1.5	158	260	405	260	158	1242	1255	0
08/01/2011 21:00	68.65	1351525	0	0	13	1.5	2.5	4.0	2.5	1.5	158	260	405	260	158	1242	1282	0
08/01/2011 22:00	68.65	1351525	98	27	13	1.5	2.5	4.0	2.5	1.5	158	260	405	260	158	1242	1091	0
08/01/2011 23:00	68.65	1351525	-590	-164	13	1.5	2.5	4.0	2.5	1.5	158	260	405	260	158	1242	899	0
09/01/2011 00:00	68.64	1350345	-1279	-355	Sl^{13}	1.5	2.5	4.0	2.5	1.5	158	260	405	260	158	1241	926	0
09/01/2011 01:00	68.63	1349164	-1181	-328	13	1.5	2.5	4.0	2.5	1.5	158	260	404	260	158	1240	925	0
09/01/2011 02:00	68.62	1347983	-1181	-398	13	1.5	2.5	4.5	2.5	1.5	158	260	450	260	158	1286	943	0
09/01/2011 03:00	68.61	1346802	-1279	-355	13	1.5	2.5	4.5	2.5	1.5	158	260	450	260	158	1285	1189	0
09/01/2011 04:00	68.60	1345622	-394.	-109	13	1.5	2.5	4.5	2.5	1.5	158	260	450	260	158	1285	970	0
09/01/2011 05:00	68.60	1345622	-1181	-328	13	2.0	2.5	4.5	2.5	1.5	209	260	450	260	158	1336	802	0
09/01/2011 06:00	68.58	$1343260 \times$	-1968	-547	13	2.0	2.5	4.5	2.5	1.5	209	259	449	259	158	1335	1047	0
09/01/201107:00	68.57	1342080	-1082	-301	13	2.0	2.5	4.5	2.5	1.5	209	259	449	259	158	1334	1046	0
09/01/2011 08:00	68.56	1346899	-1082	-301	13	2.0	2.5	4.5	2.5	1.5	209	259	449	259	157	1334	773	0

Date/time	Lake level	Storage volume	Net inflow (outfiow deducted)		Hydro	Gate settings					Gate discharges					Total outflow	Total inflow	Total inflow minus Somerset outflow	
					1	2	3	4	5		2	3	4	5					
	MAHD	ML	ML.	$\mathrm{m}^{3 / \mathrm{s}}$		$\mathrm{m}^{3 / \mathrm{s}}$	m	m	m	m	m	$\mathrm{m}^{3 / \mathrm{s}}$	$\mathrm{m}^{3} / \mathrm{s}$	$\mathrm{m}^{3 / \mathrm{s}}$	$\mathrm{m}^{3 / \mathrm{s}}$	$\mathrm{m}^{3 / \mathrm{s}}$	$\mathrm{m}^{3} / \mathrm{s}$	$\mathrm{m}^{3} \mathrm{~s}$	$\mathrm{m}^{3} / \mathrm{s}$
10/01/2011 09:00	71.56	1722624	29297	8138	13	3.0	3.5	4.5	3.5	3.0	349	404	511	404	349	2015	9731	8820	
10/01/2011 10:00	71.78	1752854	27732	7703	13	3.0	3.5	4.5	3.5	3.0	351	403	515	407	351	2031	7267	6363	
10/01/2011 11:00	71.95	1776448	18801	5222	13	3.0	3.5	4.5	3.5	3.0	353	409	518	409	353	2044	8059	7165	
10/01/2011 12:00	72.07	1793215	21609	6002	13	3.0	3.5	4.5	3.5	3.0	355	411	521	411	355	2053	9026	8139	
10/01/2011 13:00	72.26	1819906	25055	6960	13	3.0	3.5	4.5	3.5	- 3.0	357	414	524	414	357	2067	7384	6504	
10/01/2011 14:00	72.41	1841210	19096	5304	13	3.0	3.5	4.5	3.5	$s 0^{\circ}$	359	416	527	416	359	2077	7856	6983	
10/01/2011 15:00	72.54	1859739	20755	5765	13	3.0	3.5	4.5	3.5	3.0	361	418	529	418	361	2087	8411	7544	
10/01/2011 16:00	72.70	1882728	22719	6311	13	3.0	4.0	4.5	人6,	3.0	363	477	532	420	363	2155	6568	5708	
10/01/2011 17:00	72.84	1902994	15842	4401	13	3.0	4.0	5.0	4.0	3.0	364	479	590	479	364	2277	5116	4262	
10/01/2011 18:00	72.92	1914623	10174	2826	13	3.5	4.0	需	4.0	3.5	423	480	592	480	423	2399	5286	4437	
10/01/2011 19:00	72.99	1924798	10347	2874	13	3.5	4.5	5.0	4.5	3.5	424	538.	593	538	424	2517	4946	4102	
10/01/2011 20:00	73.06	1935072	8697	2416	13	4.5	(4)5	5.0	4.5	4.0	539	539	595	539	483	2695	4920	4081	
10/01/2011 21:00	73.11	1942421	7963	2212	13	4.5	4.5	5.0	4.5	4.0	540	540	596	540	484	2699	5026	4189	
10/01/2011 22:00	73.17	1951241	8328	2313	13	14.5	4.5	5.0	4.5	4.0	541	541	597	541	484	2705	4488	3656	
10/01/2011 23:00	73.22	1958590	6372	1770	13	4.5	4.5	5.0	4.5	4.0	542	542	598	542	485	2709	4574	3745	
11/01/2011 00:00	73.26	1964486	6666	1852	$)^{13}$	4.5	4.5	5.0	4.5	4.0	543	543	599	543	486	2713	4654	3827	
11/01/2011 01:00	73.31	1971917	6940	1928	13	4.5	4.5	5.0	4.5	4.0	544	544	600	544	487	2717	4175	3349	
11/01/2011 02:00	73.35	1977862	5202	1495	13	4.5	4.5	5.0	4.5	4.0	544	544	601	544	487	2721	3594	2769	
11/01/2011 03:00	73.38	1982321	3096	860	13	4.5	4.5	50	4.5	4.0	545	545	601	545	488	2724	4388	3564	
11/01/201104:00	73.40	1985294	5944	1651	13	4.5	4.5	5.0	4.5	4.0	545	545	602	545	488	2728	4974	4151	
11/01/2011 05:00	73.46	1994211	8046	2235	13	4.5	4.5	5.0	4.5	4.0	546	546	603	546	489	2731	5866	5043	
11/01/2011 06:00	73.51	2001658	11238	3122	13	4.5	4.5	5.0	4.5	4.0	547	547	604	547	490	2736	6817	5995	
11/01/2011 07:00	73.61	2016881	14644	4068	13	4.5	4.5	5.0	4.5	4.0	549	549	606	549	492	2745	6802	5981	
11/01/2011 08:00	73.70	2038202	14560	4044	13	4.5	4.5	5.0	4.5	4.0	551	551	608	551	493	2753	8060	7240	

Wednesday 24 February 2011

9 DAM INFLOW AND FLOOD , ELEASE DETAILS

Wednesday 24 February 2011
DAM INFLOW AND FLOOD RELEASE DETAILS
O

Wednesday 24 February 2011

9 DAM INFLOW AND FLOOD RELEASE DETAILS

9.2 Somerset Dam

| Jable 9.2.1 provides full details of inflows into and releases from Somerset Dam over the duration of the Flood Event. Details of the strategies used in determining these reteases and how these strategies comply with the
| Manual are contained in Section 7 of this Report. Table 9.2 .1 also shows the gate operation sequence was in
Deleted: The following table in
Figure accordance with the Manual over the duration of the Event.

Some points to note in relation to the table in, Table 9.2 .1 are:

- Inflow and flood release calculations are based on manual gauge board readings shown in the table that provide the lake level. During the Event, these manual gauge board readings were normally provided by the Dam operators to the Flood Operations Centre on an hourly basis. However, with prior approval from the Flood Operations Centre, during non-critical periods, the operators occasionally would miss a re@ding to complete higher priority site activities. In these instances, the table value has been interpolateffom the closest available actual readings.
- Inflow calculations are based on the rate of change of the storage and use the Dam storagecurve.
- Release calculations use the discharge rating formulae contained in the Manual.
- The table shows inflow rates and releases on the hour through the event. In sofiel thintances, gate operations may have occurred between hours or at less than one-hourly intervalis. In these instances, the table shows the actual gate openings as there were at the time indicated. $j>$.

9 DAM INFLOW AND FLOOD RELEASE DETAILS

9 DAM INFLOW AND FLOOD RELEASE DETAILS

9 DAM INFLOW AND FLOOD RELEASE DETAILS

DRAFT 2
Section 9: Page 21 of 26

9 DAM INFLOW AND FLOOD RELEASE DETAILS

Figure 9.2 .2 - Somerset Daminhov and release summary lor he January 201 F Food Event

10 FLOOD MANAGEMENT STRATEGIES AND MANUAL COMPLIANCE

10.1 Wivenhoe Dam flood mitigation strategies

Wivenhoe Dam is capable of being operated in a number of ways to reduce flooding in the Brisbane River downstream of the Dam, depending on the origin, magnitude and spatial extent of the flood. Maximum overall flood mitigation effect is achieved by operating Wivenhoe Dam in conjunction with Somerset Dam.

There are four strategies $(W 1$ to $W 4$) used when operating Wivenhoe Dam during a flood event. These strategies are based on the Flood Objectives of the Manual. These objectives, listed in descending order of importance, are as follows:

- Ensure the structural safety of the Dams;
- Provide optimum protection of urbanised areas from inundation;
- Minimise disruption to rural life in the valleys of the Brisbane and Stanley Rivers;
- Retain the storage at Full Supply Level at the conclusion of the Flood Event;
- Minimise impacts to riparian flora and fauna during the drain down phase of the Flood Event.

When using any of the four strategies, consideration is always given to these objectives in this order, when making decisions on Dam releases.

The strategy chosen at any point in time depends on the actual levels in theys and the following predictions, which are to be made using the best forecast rainfall and stream flow information available at the time:

- Maximum storage levels in Wivenhoe and Somerset Dams
- Peak flow rate al the Lowood Gauge (excluding Wivenhoo Dam releases);
- Peak flow rate at the Moggill Gauge (excluding Wivenhoe Dam releases).

Strategies change during a flood event as foresests change and rain is received in the catchments. It is not possible to predict the range of strategies 1(a) will be used during the course of a flood event at the commencement of the event. Strategies are changed in response to changing rainfall forecasts and stream flow conditions to maximise the flood nititigation benefits of the Dams.

When determining Dam outflowswithin all strategies, peak outflow should generally not exceed peak inflow. A flowchart illustrating how toselect the appropriate strategy to use at any point in time is shown in Figure 10.1.1.

10 FLOOD MANAGEMENT STRATEGIES AND MANUAL COMPLIANCE

Figure 10.1.1 - Whenhoe Dam food strafegy fiow chant

10 FLOOD MANAGEMENT STRATEGIES AND MANUAL COMPLIANCE

The four Syrategies (W1 to W4) used when operating Wivenhoe Dam during a flood event are summanised below.

Strategy W1. The primary consideration is minimising disruption to downstream rurallife

Conditions | - Wivenhoe storage level predicted to be less than 68.50 m | |
| :--- | :--- |
| | - Maximum release predicted to be less than $1,900 \mathrm{~m}^{3} / \mathrm{s}$ |
| | - The primary consideration is minimising disruption to downstream rural life |

Strategy W1 intends to ensure the seven bridges between the Dam and Moggill are not submerged prematurely. The limiting condition for Strategy W 1 is the submergence of Mt Crosby Weir Bridge that pogitis at approximately $1,900 \mathrm{~m}^{3} / \mathrm{s}$.

This strategy requires a great deal of control over releases and knowledge of discharges from bockyer Creek In general, the releases from Wivenhoe Dam are controlled to ensure the combined flow fromeockyer Creek and Wivenhoe Dam is less than the limiting values to delay the submergence of a particutary bridge.

Strategy w2 - A transition strategy where the primary consideration changes from minimising mpact to downstream rurallife to protecting urban areas from inundation.

Conditions - Wivenhoe storage level predicted to be betweeh 88.50 m and 74.00 m

- Maximum release predicted to be less thar $5.500 \mathrm{~m} 3 / \mathrm{s}$
- This is a transition strategy in which thep pimary consideration changes from minimising disruption to downstreamsural life to protecting urban areas from inundation
- Lower level objectives are stilicensidered when making decisions on water releases. Objectives are almays considered in order of imporlance

Strategy W2 intends to limit the flow in the Brisbane River to less than the naturally occurring peaks at Lowood and Moggill, while remaining within the uppeftimit of non-damaging floods at Lowood $\left(3,500 \mathrm{~m}^{3} / \mathrm{s}\right)$.

Strategy $\sqrt{3}$ 3intends to limit the flow in the Brisbane River at Moggill to less than $4,000 \mathrm{~m}^{3} / \mathrm{s}$, noting that $4,000 \mathrm{~m}$ ds at Moggill is the upper limit of non-damaging floods downstream. The combined peak river flow targets for Strategy W3 are shown in the table below. In relation to these targets, it should be noted that, depending on natural flows from the Lockyer and Bremer catchments, it may not be possible to limit the flow at Moggill to below $4,000 \mathrm{~m}^{3} / \mathrm{s}$. In these instances, the flow at Moggill is to be kept as low as possible.

Timing	Target maximum flow in the Brisbane River
Prior to the naturally occurring peak at Moggill (excluding Wivenhoe Dam releases). The flow at Moggill is to be minimised. After the naturally occurring peak at Moggill (excluding Wivenhoe Dam releases). The flow at Moggill is to be lowered to $4,000 \mathrm{~m}^{3} / \mathrm{s}$ as soon as possible.$.$(

10 FLOOD MANAGEMENT STRATEGIES AND MANUAL COMPLIANCE

Strategy WA - The primary consideration is protecting the structural safety of the Dam
Conditions - Wivenhoe storage level predicted to exceed 74.00 m

- No limit on maximum release rate
- The primary consideration is protecting the structural safety of the Dam
- Lower level objectives are still considered when making decistions on water releases. Objectives are always considered in order of importance

Strategy W4 intends to ensure the safety of the Dam while limiting downstream impacts as much as possible. This strategy generally comes into effect when the water level in Wivenhoe Dam reaches 74.0 m . However, the Senior Flood Operations Engineer may seek to invoke the discretionary powers of Section 2.8 if thecegtler commencement of Strategy W4 is able to prevent a fuse plug being triggered.

Under Strategy W4, the release rate is increased as the safety of the Dam becomes the priorith The gates are generally opened until the storage level of Wivenhoe Dam begins to fall. There are no restrictions on gate opening increments or gate operating frequency once the storage level exceeds 74.0 m , athe safety of the Dam is of primary concem at these storage levels.

10.2 Somerset Dam flood mitigation strategies 0^{2}

Somerset Dam is capable of being operated in a number of ways to cogulate Stanley River floods. Somerset Dam and Wivenhoe Dam are to be operated in conjunction to opfipilse the flood miligation benefits downstream of Wivenhoe Dam. Once a flood event is dectaredran assessment is made of the magnitude of the flood event, including a prediction of the maximum storgge levels in Somerset and Wivenhoe Dams.

Three strategies, based on the objectives of the Mâţㅕ, are used when operating Somerset Dam during a flood event. The strategy selected at any point intine depends on predictions of the maximum storage levels in Somerset and Wivenhoe Dams, made using $\$$ he best forecast rainfall and stream flow information available at the time.

Strategies are likely to change during flood event as forecasts change and rain is received in the catchments. It is not possible to prefeict the range of strategies that will be used during the course of a flood event when the event begins. Stfategies are changed in response to changing rainfall forecasts and stream flow conditions to maximise.he flood mitigation benefits of the Dams.

A flowchart illustrating how to select the appropriate strategy to use at any point in time is shown in Figure 10.2.1.

10 FLOOD MANAGEMENT STRATEGIES AND MANUAL COMPLIANCE

The three Sirategies (S1 to \%3) used when operating Somerset Dam during a food event are summarised \qquad Deleted: s below.

Strategy S1-Minimising impact on rurallife upstream
Conditions) - Somerset Dam level expected to exceed 99.0 m and Wivenhoe Dam not expected to reach $67.0 \mathrm{~m}(\mathrm{FSL})$ during the course of the flood event

Strategy S1 intends to return the Dam to full supply level while minimising the impact on rural life upstream of the Dam. Consideration is also given to minimising the downstream environmental impacts from the release.

The crest gates at Somerset Dam are raised to enable uncontrolled discharge. The regulator valves and sluice gates are to be used to maintain the level in Somerset Dam below 102.0 m (deck level of Mary Smokes Bridge). The Somerset Dam release rate is not to exceed the peak inflow into the Dam.

10 FLOOD MANAGEMENT STRATEGIES AND MANUAL COMPLIANCE

Strategy S2 - Minimise impacts below Wivenhoe Dam

Conditions	- Somerset Dam level expected to exceed 99.0 m and Wivenhoe Dam level expected to exceed 67.0 m (FSL) but not exceed 75.5 m (fuse plug initiation) during the course of the flood event

Strategy S2 intends to maximise the benefits of the flood storage capabilities of the Dam, while protecting the structural safety of both Dams. Table 10.2.2 contains the operating conditions and actions for Strategy S2.

Condition	Action
Wivenhoe Dam rising and Somerset level below 100.45 m	- The crest gates are raised to enable uncontrolled discharge - The low-level regulators and sluices are generally kept closed
Wivenhoe Dam rising and Somerset level above 100.45 m	- The crest gates are raised to enable uncontrolled discharge - Operations aim to achieve a correlation of waterevels in Somerset Dam and Wivenhoe Dam, as set oult in Figure 10.2.3. The operations target line shown on thisgaph is to generaliy be followed as the flood event progresses - The release rate from Somerset Daris generally not to exceed the peak inflow into the Dam
Wivenhoe Dám falling and Somerset level above 100.45 m	- The opening of the regulators and sluices generally should not cause Wivenhoe Dam to rise significantly - The release rate from Somerset Dam is generally not to exceed the peak inflow into the Dam
The flood event has emanated mainly from the Stanley River catchment without significant runoff in the Upper Brisbane River catchment	- The crest gates at Somerset Dam are raised to enable uncontrollad discharge - Thecegulator valves and sluice gates are to be used to maintain the tevel in Somerset Dam below EL 102.0 (deck level of Mary Smókes Bridge) The release rate from Somerset Dam is generally not to exceed the peak inflow into the Dam.

10 FLOOD MANAGEMENT STRATEGIES AND MANUAL COMPLIANCE

- The Operating Target Line was selected followingan optimisation study and considering the following factors:
- Equal minimisation of flood level peaks in both Dams in relation to their associated Dam failure levels;
- Minimisation of flows in the Brisbane River downstream of Wivenhoe Dam;
- Consideration of the time negded at the onset of a flood event to properly assess the magnitude of the event and the likely ingipacts. This is to ensure the optimal strategy to maximise the flood mitigation benefits of the storages can be selected
- The target point on therperating Target Line at any point in time is based on the maximum storage levels in Somerset and Wionhoe Dams, using the best forecast rainfall and stream flow information available at the time.
- Gate operations enable the progressive movement of the duty point towards the target line. It is not necessafiy possible to adjust the duty point directly towards the target line in a single gate operation.

Strategy 53 . Protect the structural safety of the Dam
Conditions - Somerset Dam level expected to exceed 99.0 m and Wivenhoe Dam level expected to exceed 75.5 m (fuse plug initiation) during the course of the flood event.

Strategy 83 intends to maximise the benefits of the nood storage capabilities of the Dam white protecting the structural safety of both Dams. In addition to the operating protocols used in Strategy S 2 to prevent fuse plug initiation, consideration can be given to temporary departure from the operating protocols contained in this strategy under the following conditions:

- The safety of Somerset Dam is the primary consideration and cannot be compromised;
- The peak level in Somerset Dam cannot exceed 109.7m.

10 FLOOD MANAGEMENT STRATEGIES AND MANUAL COMPLIANCE

10.3 Wivenhoe Dam -- Manual compliance

Table 10.3.1 summarises the strategies used in the operation of Wivenhoe Dam during the January 2011
Flood Event and provides explanations of how the use of these strategies complies with the Manual.

	Strategies used during the period	Explanation of strategies used during the period	
Commenced Thursday 06 Jan 2011 07:42 (Lake level 67.31m) Completed Friday 07 Jan 2011 02:00 (Lake level 67.52m)	Strategy W1A	- At the start of the Event, Strategy W1A was used because the Lake level was between 67.25 m and 67.50m. - The strategy during this period was to ensure Colleges Crossing remained traficable by limiting the combined flows from Wivenhoe Dam and Lockyer Creek to a maximum of $175 \mathrm{~m}^{3} / \mathrm{s}$. Because of the inflows into the Brisbane River from Lockyer Creek, there were no releases from the Dam during this period. - Based on flows recorded at Mt Crosby Weir, Colleges Crossing remained trafficable during this period. - The strategy transitioned from Strategy W1A to Strategy W1B once the Lake level exceeded 67.50 m .	Use Strategy WiA when the Lake level is between 67.25 m and 67.50 m . [Maximum release $110 \mathrm{~m}^{3} / \mathrm{s}$] Under Strategy W1A, the Manual requirement is to endeavour to ensure Colleges Crossing remains trafficable by limiting the combined flows from Wivenhoe Dam and Lockyer Creek to a maximum of $175 \mathrm{~m}^{3} / \mathrm{s}$. Use Strategy W1B when the Lake level is between 67.50 m and 67.75 m . [Maximum release $380 \mathrm{~m}^{3} / \mathrm{s}$]
Commenced Friday 07 Jan 2011 02:00 (Lake level 67.52m) Completed Friday 07 Jan 2011 09:00 (Lake level 67.75 m)	Strategy W1B	- The strategy transitioned from Strategy W1A Strategy W1B once the Lake level exceeded 67.50m. - Based on flows recorded at Mt Crosby Heir, Colleges Crossing was inundated during this period. - The strategy during this period wasto ensure Burtons Bridge remained trafficable by limiting the combined flows from Wivenhoed 5 am and Lockyer Creek to a maximum of $430 \mathrm{~m}^{3} / \mathrm{s}$. Because of the inflows into the Brisbane Refyer from Lockyer Creek, there were no releases from the Dam during this period. - Based on flows recorded at Savages Crossing, Burtons Bridge remained trafficable during this period. - The strategy transiसoned from Strategy W1B to Strategy W1C once the Lake level exceeded 67.75m.	Use Strategy W1B when the Lake level is between 67.50 m and 67.75 m . [Maximum release $380 \mathrm{~m}^{3} / \mathrm{s}$] Under Strategy W1B, the Manual requires that once Colleges Crossing is closed to traffic, endeavour to ensure Burtons Bridge remains trafficable by limiting the combined flows from Wivenhoe Dam and Lockyer Creek to a maximum of $430 \mathrm{~m}^{3} / \mathrm{s}$. Use Strategy W1C when the Lake level is between 67.75 m and 68.00 m . [Maximum release $500 \mathrm{~m}^{3} / \mathrm{s}$]

Period	Strategies used during the period	Explanation of strategies used during the period	Manual requirements
Commenced Friday 07 Jan 2011 09:00 (Lake level 67.75 m)	Strategy W1C	- The strategy transitioned from Strategy W1B to Strategy W1C once the Lake level exceeded 67.75 m . - The strategy during this period was to ensure Burtons Bridge remained trafficable by limiting the combined flows from Wivenhoe Dam and Lockyer Creek to a maximum of $430 \mathrm{~m} 3 / \mathrm{s}$. Once Burtons Bridge was closed to traffic, endeavour to keep Kholo Bridge trafficable by limiting the combined flows from Wivenhoe Dam and Lockyer Creek to a maximum of $550 \mathrm{~m}^{3} / \mathrm{s}$. Because of the inflows into the Brisbane River from Lockyer Creek, there were no releases from the Dam during this period. - Based on flows recorded at Savages Crossing, Burtons Bridge was inundated near the end of this period. - Based on flows recorded at Mt Crosby Weir, Kholo Bridge remained trafficable during this period. - As well as being in accordance with the Manual, delaying releases until 15:00 allowed bridges to be closed by the relevant authorities and arrangements to be made to cater for rural community isolation. The impacted rural communities had been isolated over the Christmas period and time was needed to make suitable arrangements to allow these communities to prepare for another potentially extended isolation period. - The strategy transitioned from Strategy W1C to Strategy W1D once the Lake level exceeded 68.00 m .	Use Strategy W1C when the Lake level is between 67.75 m and 68.00 m . [Maximum release $500 \mathrm{~m}^{3} / \mathrm{s}$] Under Strategy W1C, the Manual
Completed Friday 07 Jan 2011 15:00 (Lake level			requirement is to endeavour to keep Burtons Bridge trafficable by limiting the combined flows from Wivenhoe Dam and Lockyer Creek to a maximum of $430 \mathrm{~m}^{3} / \mathrm{s}$.
68.03m)			Under Strategy W1C, the Manual also requires that once Burtons Bridge is closed to traffic (occurred around 13:00 during this period) endeavour to keep Kholo Bridge trafficable by limiting the combined flows from Wivenhoe Dam and Lockyer Creek to a maximum of $550 \mathrm{~m}^{3} / \mathrm{s}$.
			Use Strategy W1D when the Lake level is between $68: 00 \mathrm{~m}$ and 68.25 m . [Maximum release $1,900 \mathrm{~m}^{3} / \mathrm{s}$]

Period	Strategies used during the period	Explanation of strategies used during the period	Manual requirements
Commenced Friday 07 Jan 2011 15:00 (Lake level 68.03 m) Completed Friday 07 Jan 2011 22:00 (Lake level 68.26 m)	Strategy W1D	- The strategy transitioned from Strategy W1C to Strategy W1D once the Lake level exceeded 68.00 m . - At the start of this period, it became apparent Kholo Bridge would be inundated by nakural Brisbane River flows (excluding Wivenhoe Dam releases). Based on flows recordedat Mt Crosby Weir, Kholo Bridge was inundated near the end of this period (middle of the nighov. Therefore, the strategy adopted was to close Kholo Bridge in daylight hours for public safets.a a add then assume for the purposes of Strategy W1D - that Kholo Bridge was closed to traffic - Accordingly, the strategy during this period was to keep Mt Crosby Weik Bridge trafficable by limiting the combined flows from Wivenhoe Dam and Lockyer Creesto a maximum of $1,900 \mathrm{~m}^{3} / \mathrm{s}$. - During this period, releases were increased to $421 \mathrm{~m}^{3} / \mathrm{s}$. Radiak gates were opened continuously at Wivenhoe Dam, in accordance with the standard gate openhig sequence at a rate or 0.5 metres of opening per hour. - Mt Crosby Weir Bridge remained trafficable during the actiod. - The strategy transitioned from Strategy W1D to Stalegy W1E once the Lake level exceeded 68.25 m .	Use Strategy W1D when the Lake level is between 68.00 m and 68.25 m . [Maximum release $1,900 \mathrm{~m}^{3} / \mathrm{s}$] Under Strategy W1D, the Manual requires that once Kholo Bridge is closed to traffic, endeavour to keep Mt Crosby Weir Bridge trafficable by limiting the combined flows from Wivenhoe Dam and Lockyer Creek to a maximum of $1,900 \mathrm{~m}^{3} / \mathrm{s}$. Use Strategy W1E when the Lake level is between 68.25 m and 68.50 m . [Maximum release $1,900 \mathrm{~m}^{3} / \mathrm{s}$]
Commenced Friday 07 Jan 2011 22:00 (Lake level 68.26 m) Completed Saturday 08 Jan 2011 08:00 (Lake level 68.26 m)	Strategy W1E	- The strategy transitioned from Strategy W1D to Strategy W1E once the Lake level exceeded 68.25 m . - The strategy during this period was to keep Mt Crosby Weir Bridge trafficable by limiting the combined flows from Wivenhoe Dam and Lockyer Creek to a maximum of $1,900 \mathrm{~m}^{3} / \mathrm{s}$. - During this period, releases were increased to $953 \mathrm{~m}^{3} / \mathrm{s}$. Radial gates were opened continuously at Wivenhoe Dam, in accordance with the standard gate opening sequence at a rate or 0.5 metres of opening per hour. - Mt Crosby Weir Bridge remained trafficable during the period. - The strategy transitioned from Strategy W1E to Strategy W2 once the Lake level reached 68.50 m .	Use Strategy WIE when the Lake level is between 68.25 m and 68.50 m . [Maximum release $1,900 \mathrm{~m}^{3} / \mathrm{s}$] Under Strategy W1E, the Manual requirement is to endeavour to keep Mt Crosby Weir Bridge trafficable by limiting the combined flows from Wivenhoe Dam and Lockyer Creek to a maximum of $1,900 \mathrm{~m}^{3} / \mathrm{s}$. Use Strategy W2 or Strategy W3 as appropriate when the Lake level reaches 68.50 m .

Period	Strategies used during the period	Explanation of strategies used during the period	
Saturday 08 Jan 2011 08:00 (Lake level 68.52m)	Attempt to transition to Strategy W2	- The Lake level at this time was 68.52 m and the release rate from the Dam at this time was $940 \mathrm{~m}^{3} / \mathrm{s}$. - At this time, it was not possible to satisfy Strategy W2 by limiting the flow in the Brisbaine River to less than the naturally occurring peaks at Lowood and Moggill. The calculated naturally occurring peaks at Lowood and Moggill were $530 \mathrm{~m}^{3} / \mathrm{s}$ and $800 \mathrm{~m}^{3} / \mathrm{s}$ respectively, whereas the release rate from the Dam at this time was $940 \mathrm{~m}^{3} / \mathrm{s}$. - Accordingly, it was not appropriate to switch to Strategy W2, and Strategy use at 08:00 on Saturday 8 January 2011.	The Manual states, "If the level reaches EL 68.5 m in Wivenhoe Dam, switch to Strategy W2 or W3 as appropriate". Use Strategy W2 wheri the Lake level is predicted to be between 68.50 m and 74.00 m . [Maximum release $3,500 \mathrm{~m}^{3} / \mathrm{s}$] Strategy W2 is a transition strategy in which the primary consideration changes from minimising disruption to downstream rural life to protecting urban areas from inundation. Lower level objectives are still considered under Strategy W2 when making decisions on water releases. Objectives are always considered in order of importance. The irtent of Strategy W2 is to limit the flow in the Brisbane River to less than the naturally occurring peaks at Lowood and Moggill, while remaining within the upper limit of non-damaging floods at Lowood $\left(3,500 \mathrm{~m}^{3} / \mathrm{s}\right)$.

Period	Strategies used during the period

Commenced Strategy W3
Saturday
08 Jan 2011
08:00
(Lake level
68.52 m)

Completed
Sunday
09 Jan 2011
08:00
(Lake level
68.58 m)

Explanation of strategies used during the period

- The Lake level at the start of this period was 68.52 m and the release rate from the Dam was $940 \mathrm{~m}^{3} / \mathrm{s}$. The Lake level at the end of this period was 68.58 m and the release rate from the Dam was $1,386 \mathrm{~m}^{3} / \mathrm{s}$. The Lake level rose 60 mm during this 24 -hour period.
- The catchment average rainfall experienced in the Wivenhoe Dam catchment (excluding the Somerset Dam catchment) during this 24 -hour period was 21 mm .
- The latest QPF forecast available at the end of this period was for 40 mm in the Dam catchments in the next 24 hours (issued at 16:00 on 8 January 2011).
- At the end of this period, model results estimated the Wivenhoe Dam peak at 68.7 m (excluding forecast) and 69.3 m (including forecast). The estimated peak of 69.3 m (including forecast) had previously been exceeded in March 1989, April 1989, February 1999, October 2010 and December 2010. On each of these occasions, no known urban damage had occurred downstream of Moggill as a result of Dam releases.
- At the end of this period, model results estimate total Dam infiow at 420,000ML (excluding forecast) and $662,000 \mathrm{ML}$ (including forecast). The estirnated total Dam infiow of $662,000 \mathrm{ML}$ (including forecast) on a full Dam had previously been exceeded in March 1989, April 1989 and February 1999. On each of these occasions, no known urban damage had occurred downstream of Moggill as a result of Dam releases.
- Estimated peak flow at Moggill (including Wivenhoe Dam releases) was $1,720 \mathrm{~m}^{3} / \mathrm{s}$ (excluding forecast) and $2,220 \mathrm{~m}^{3} / \mathrm{s}$ (including forecast).
- On the basis of the information above, the available data did not indicate there would be a need to increase releases from Wivenhoe Dam above the current modelled levels to protect urban areas from inundation, either during the current period or in the 24 hours following the current period.
- The naturally occurring peak at Moggill was estimated to have occurred at 05:00 on 08 January 2011 (i.e. in the past).
- Strategy W3 requires the flow at Moggill to be lowered to $4,000 \mathrm{~m}^{3} / \mathrm{s}$ as soon as possible after the naturally occurring peak at Moggill (excluding. Wivenhoe Dam releases). This was already naturally och.
- Strategy W3 also requires consideration of tower level Manual objectives, and on the basis of this requirement, consideration during this period was given to minimising disruption to downstream rural life and endeavouring to keep Mt Crosby Weir Bridge and Fernvale Bridge trafficable.

Manual requirements

Use Strategy W3 when the intent of Strategy W2 cannot be met and the Lake level is predicted to be between 68.50 m and 74.00 m . [Maximum release $4,000 \mathrm{~m}^{3} / \mathrm{s}$]
The primary consideration is protecting urban areas from inundation, however the Manual also requires lower level objectives to be considered when making decisions on water releases. Objectives are always considered in order of importance.

The intent of Strategy W3 is to limit the flow in the Brisbane River at Moggill to less than $4,000 \mathrm{~m}^{3} / \mathrm{s}$.
After the naturally occurring peak at Moggill (excluding Wivenhoe Dam releases), the flow at Moggill is to be lowered to $4,000 \mathrm{~m}^{3} / \mathrm{s}$ as soon as possible.
Period_ Strategies
used during
the period:

Commenced Strategy W3
Sunday
09 Jan 2011
08:00
(Lake level
68.58 m)

Completed
Sunday
09 Jan 2011
19:00
(Lake level
68.97 m)

- The Lake level at the start of this period was 68.58 m and the release rate from the Dam was $1,386 \mathrm{~m}^{3} / \mathrm{s}$. The Lake level at the end of this period was 68.97 m and the release rate frofthe Dam was $1,411 \mathrm{~m}^{3} / \mathrm{s}$. The Lake level rose 390 mm during this 11 -hour period
- The catchment average rainfall experienced in the Wivenhoe Dam catchment (excliding the Somerset Dam catchment) during this 24 -hour period was 96 mm , the buik of wethich (62 mm) occurred in the last five hours of the period.
- The latest QPF forecast available at the end of this period was for 65 mm wifthe Dam catchments in the next 24 hours (issued at 16:00 on 9 January 2011).
- At the mid-point of this period (14:00), model results estimated WRicrinoe Dam to peak at 70.0 m (excluding forecast) and 71.3 m (including forecast). The estinadted peak of 71.3 m (including forecast) had previously been exceeded in April 1989, and on his occasion, no known urban damage had occurred downstream of Moggill as a result of yam releases.
- At the mid-point of this period ($14: 00$), model results esthated total Dam inflow at $804,000 \mathrm{ML}$ (excluding forecast) and $1,108,000 \mathrm{ML}$ (including forecast). The estimated total Dam inflow of $1,108,000 \mathrm{ML}$ (including forecast) - on a full Dam 13 trad never previously been exceeded, with the previous largest volumes being 870,000ML in April 1989 and 925,000 in February 1999. Although the inflow estimate of $1,108,000 \mathrm{Mryy}$ as based on a forecast, it resulted in an expectation that there may be a need withithe next six hours to transition to a situation where minimising disruption to downstream rumallife was no longer considered. This would result is the closure of all bridges between the Dand and Moggill, and the closure of Brisbane Valley Highway.
- At the mid-point of this period (14.00$)$, estimated peak flow at Moggill (including Wivenhoe Dam releases) was $1,850 \mathrm{~m}^{3} / \mathrm{s}$ (exededing forecast) and $2,590 \mathrm{~m}^{3} / \mathrm{s}$ (including forecast).
- On the basis of the information above, the available data at the mid-point of this period did not indicate there would beadefinite need to increase releases from Wivenhoe Dam above the current modelled leyels; to protect urban areas from inundation in the six hours from 14:00
- At the end of thisperiod, model results estimated Wivenhoe Dam to peak at 72.1 m (excluding forecast) and $\bar{i} 3$, 9 m (including forecast). These values had never been previously exceeded
- At the end of this period, model results estimated total Dam inflow at $1,272,000 \mathrm{ML}$ (excluding forecask) and $1,712,000 \mathrm{ML}$ (including forecast). These values had never been previously exceezed
- ©nthe basis of the estimated Wivenhoe Dam peak levels and inflow volumes from the model presults undertaken towards the end of this period, the decision was made at 19:00 on 09 January 2011 to transition to a situation where minimising disruption to downstream rural life was no longer a consideration.

	Strategies used during the period		
Commenced Sunday 09 Jan 2011 19:00 (Lake level 68.97 m) Completed Tuesday 11 Jan 2011 08:00 (Lake level 73.70 m)	Strategy W3	- On the basis of the information contained in the previous table, at the start of this period, it was decided to transition to a situation where minimising disruption to downstream rural life was no longer considered. - The Lake level at the start of this period was 68.97 m and the release rate from the Dam was $1,411 \mathrm{~m}^{3} / \mathrm{s}$. The Lake level at the end of this period was 73.70 m and the release rate from the Dam was $2,753 \mathrm{~m}^{3} / \mathrm{s}$. The Lake level rose $4,730 \mathrm{~mm}$ during this 37 -hour period. - The catchment average rainfall experienced in the Wivenhoe Dam catchment (excluding Somerset Dam catchment) during this 24 -hour period was 115 mm , the bulk of which (77 mm) occurred in the last twelve hours of this 37 -hour period. - The latest QPF forecast available at the end of this period was for 65 mm in the Dam catchments in the next 24 hours (issued at 16:00 on 10 January 2011). - By two thirds of the way through this period (20:00 on 10 January 2011), model results estimated Wivenhoe Dam to peak at 73.6 m (excluding forecast) and 74.3 m (including forecast). A discussion with the Dam Safety Regulator was held at 21:00 to obtain permission to exceed a level of 74.0 m in Wivenhoe Dam for a short period without invoking Strategy W4 (provided the safety of the Dam could be guaranteed). This issue was considered carefully at all times during the period in view of the continued rainfall. - At 04:00 on 11 January 2011, a period of intense rainfall commenced within the Wivenhoe Dam catchment area. By 08:00, model results estimated Wivenhoe Dam would peak at 74.5 m (excluding forecast) and 75.1 m (including forecast). A decision was made to transition to Strategy W4 and the Dam Safety Regulator, Seqwater CEO and the Councils were advised of this decision. The Wivenhoe Lake level was 73.70 m .	Use Strategy W3 when the intent of Strategy 2 cannot be met and the Lake level is predicted to be between 68.50 m and 74.00 m . [Maximum release $4,000 \mathrm{~m}^{3} / \mathrm{s}$] The primary consideration is protecting urban areas from inundation, however the Manual also requires lower level objectives to still be considered when making decisions on water releases. Objectives are always considered in order of importance. The intent of Strategy W3 is to limit the flow in the Brisbane River at Moggill to less than $4,000 \mathrm{~m}^{3} / \mathrm{s}$. After the naturally occurting peak at Moggill (excluding Wivenhoe Dam releases), the flow at Moggill is to be lowered to $4,000 \mathrm{~m}^{3} / \mathrm{s}$ as soon as possible. Use Strategy W4 when Wiverhoe Dam's storage level is likely to exceed 74.00 m . [No limit on maximum release rate] The primary consideration of Strategy W4 is to protect the structural safety of the Dam; however lower level objectives are still considered in order of importance when making decisions on water releases. Under Strategy W4, gates are opened until the storage level of Wivenhoe Dam begins to fall.

Period:/:IN Strategies | used during |
| :--- |
| the period |

Commenced
Tuesday
11 Jan 2011
08:00
(Lake level
73.70 m)

Completed
Thursday
13 Jan 2011
12:00
(Lake level
74.61 m)

Strategy W4

- On the basis of the information contained in the previous table, at the start of this period itwias
decided to transition to Strategy W4. decided to transition to Strategy W4.
- The Lake level at the start of this period was 73.70 m and the release rate from the Dam was $2,753 \mathrm{~m}^{3} / \mathrm{s}$. The Lake level at the end of this period was 74.61 m and the releaserater from the Dam was $2,534 \mathrm{~m}^{3} / \mathrm{s}$. During this period, at 19:00 on 11 January 2011, the Lake yevel peaked at Dam was $2,534 \mathrm{~m}^{3} / \mathrm{s}$. During this period, at $19: 00$
- The Lake level stabilised at 20:00 on 11 January 2011 and then droppedistghtly at 21:00. A decision was made at 21:00 to commence closing the gates as quickly as possible to reduce urban flood impacts. This decision was made in an attempt to miniofise urban damage below Moggill, which is an objective that must be considered under Strateegy W4. Gates wouid have been re-opened if further Lake level rises were experienced.
- Following a decision to close the gates, it was calculated thatreducing to a discharge of $2,547 \mathrm{~m} / \mathrm{s}$ from Wivenhoe Dam would:
- Not increase the downstream fiood peak;
- Not cause the water level in Wivenhoe Damto rise; and
- Allow the dam to be drained back to FStion seven days in accordance with the Manual.
- On this basis, this target release rate was 引dopted.
- At the end of this period, it was apparent the flood peak had passed and therefore the operational strategy transitioned to the drain down phase

Manual requirements

Use Strategy W4 when Wivenhoe Dam's storage level is likely to xceed 74.00 m . [No limit on maximum release rate]

The primary consideration of Strategy W4 is to protect the tructural safety of the Dam, however lower level objectives are till considered in order of mportance when making decisions on water releases.

Under Strategy W4, gates are opened until the storage level of Wivenhoe Dam begins to fall.
Drain down operations require stored floodwaters to be emptied from the Dams within seven days of he flood event peak passing through the Dams.

	Strategies used during the period	Explanation of strategies used during the period	Manual requirements
Commenced Thurscay 13 Jan 2011 08:00 (Lake leve! 74.61m) Completed Wednesday 19 Jan 2011 12:00 (Lake level 66.89m)	Drain down	- On the basis of the information contained in the previous table, a decision was made at the start of this period to transition to the drain down phase. - The Lake level at the start of this period was 74.61 m and the release rate from the Dam was $2,534 \mathrm{~m}^{3} / \mathrm{s}$. The Lake level at the end of this period was 66.89 m and only operational water supply releases were being made from the Dam. - Considerations that impacted the duration and timing of the drain down phase in this instance included: - Causing no adcitional increases in river levels below the Dam (except where they were unavoidable due to tidal influences); - Maintaining an adequate release rate to ensure the temporary pumps providing water supplies to the Lowood area could continue to operate; - Minimising bank slumping impacts along the river, particularly in key areas such as Coronation Drive (as requested by Brisbane City Council); - Re-opening Brisbane Valley Highway, the D'Agular Highway and key rural bridges as quickly as possible; - Achieving Full Supply Levels in the Dams at the conclusion of the Event. - The Flood Event concluded on Wednesday 19 January 2011 at 12:00.	Drain down operations require stored floodwaters to be emptied from the Dams within seven days of the flood event peak passing through the Dams.

10 FLOOD MANAGEMENT STRATEGIES AND MANUAL COMPLIANCE

10.4 Somerset Dam - Manual compliance

The table that commences on the following page (Table 10.4.2) summarises the strategies used to operate Wivenhoe Dam during the January 2011 Flood Event, and outines how the use of these strategies complies with the Manual.

A graph showing the track of the Wivenhoe / Somerset Operating Target Line over the course of the Event is shown at the end of the Table 10.4.3. The Dam levels tracked very close to and on the line, in the hours
leading up to and following the Event peak at 19:00 on 11 January 2011. This is demonstrated in Table 10.4.1.

[^5]

Period	Strategies used during the period		
Commenced Friday 08 Jan 2011 07:00 (Lake level 100.06 m)	Strategy S2	- During this six hour period, the Wivenhoe Dam level was rising (68.48 m at the start of the period, rising to 68.61 m by the end of the period) and the Somerset Dam level moved above 100.45 m (this occurred between 07:00 and 08:00 on 8 January 2011) and then stayed above 100.45 m for the remainder of the period. - A second sluice was opened during this period to allow Dam levels to track towards the Wivenhoe/Somerset Operating Target Line.	Use Strategy S 2 when the Somerset Dam level is expected to exceed 99.0 m and the Wivenhoe Dam level is expected to exceed 67.0 m but not exceed 75.5 m (fuse plug initiation) during the course of the Event. If Wivenhoe Dam is rising and the Somerset Dam level is above 100.45 m , Strategy S2 requires the crest gates to be raised, and the low-level regulators and sluices are used to generally allow the Wivenhoe/Somerset Operating Target Line to be followed.
Completed Friday 08 Jan 2011 13:00 (Lake level 100.45 m)			
Commenced Friday 08 Jan 2011 13:00 (Lake level 100.45 m)	Strategy S2	- During this four-hour period, the Wivenhoe Dam levelwas rising (68.61 m at the start of the period, rising to 68.65 m by the end of the period) The Somerset Dam level moved to just below 100.45 m (this occurred between 13:00, and 14:00 on 8 January 2011) and then stayed below 100.45 m for the remainder of the period - At the beginning of this period, it was apmerent the Somerset Lake level would exceed 100.45 m within four hours. Accordingtwo sluices remained open during this period to allow	Use Strategy S2 when the Somerset Dam level is expected to exceed 99.0 m , and the Wivenhoe Dam level is expected to exceed 67.0 m but not exceed 75.5 m (fuse plug initiation) during the course of the Event.
Completed Friday 08 Jan 2011 17:00 (Lake level 100.40 m)		Dam levels to track towards the Wiserfoe/Somerset Operating Target Line.	If Wivenhoe Dam is rising, and the Somerset Dam level is below 100.45 m , Strategy S2 requires the crest gates to be raised, and the low-level regulators and sluices are generally kept closed.

10 FLOOD MANAGEMENT STı $-T E G I E S$ AND MANUAL CONı, LIANCE

Period	Strategies used during the period	Explanation of strategies used during the period	Manual requirements
Commenced Friday 08 Jan 2011 17:00 (Lake level 100.40 m)	Strategy S2	- During this 17 -hour period, the Wivenhoe Dam level was falling (68.65 m at the start of the period, falling to 68.53 m by the end of the period). The Somerset Dam level remained below 100.45 m . - Strategy $S 2$ does not provide specific guidance for this situation, however Strategy $S 2$ intends to maximise the benefits of the flood storage capabilities of the Dams. Accordingly, two sluices remained open during this period and a third sluice was opened near the end of the period as modelling results indicated rapidly increasing inflows into Somerset Dam occurring soon after the end of the period and continuing. Increasing the sluice gate release would ultimately allow Dam levels to track towards the Wivenhoe/Somerset Operating Target Line.	Use Strategy S2 when the Somerset Dam level is expected to exceed 99.0 m , and the Wivenhoe Dam level is expected to exceed 67.0 m but not exceed 75.5 m (fuse plug initiation) during the course of the Event.
Completed Saturday 09 Jan 2011 10:00 (Lake level 100.31m)			Strategy S2 intends to maximise the benefits of the flood storage capabilities of the Dams.
Commenced Saturday 09 Jan 2011 10:00 (Lake level 100.31 m)	Strategy S2	- During this three-hour period, the Wivenhoe Dam levehthas rising (68.53 m at the start of the period, rising to 68.56 m by the end of the period). The-Somerset Dam level remained below 100.45 m , but rose rapidly. - Three sluices remained open during this peridaland a fourth sluice was opened near the end of the period to allow Dam levels to track towedrds the Wivenhoe/Somerset Operating Target Line.	Use Strategy S2 when the Somerset Dam level is expected to exceed 99.0 m , and the Wivenhoe Dam level is expected to exceed 67.0 m but not exceed 75.5 m (fuse plug initiation) during the course of the Event.
Completed Saturday 09 Jan 2011 13:00 (Lake level 100.43m)			If Wivenhoe Dam is rising, and the Somerset Dam level is below 100.45 m , Strategy S2 requires the crest gates to be raised, and the low-level regulators and sluices are generally kept closed.

Period	Strategies used during the period	Explanation of strategies used during the period	Manual requirements
Commenced Saturday 09 Jan 2011 13:00 (Lake leve! $100.43 \mathrm{~m})$	Strategy S2	- During this 63 -hour period, the Wivenhoe Dam level was rising 68.56 m at the start of the period, rising to 73.40 m by the end of the period). The Somerset Dam level moved above 100.45 m (this occurred between 13:00 and 14:00 on 9 January 2011) and then stayed above 100.45 m for the remainder of the period. - Four sluices remained open during this period, and a fifth sluice was opened near the beginning of the period to allow Dam levels to track towards the Wivenhoe/Somerset Operating Target Line.	Use Strategy S2 when the Somerset Dam level is expected to exceed 99.0 m , and the Wivenhoe Dam level is expected to exceed 67.0 m but not exceed 75.5 m (fuse plug initiation) during the course of the Event. If Wivenhoe Dam is rising, and the Somerset Dam level is above 100.45 m , Strategy S2 requires the crest gates to be raised, and the low-level regulators and sluices are used to generally allow the Wivenhoe/Somerset Operating Target Line to be followed.
Completed Tuesday 11 Jan 2011 04:00 (Lake level 103.23m)			
Commenced Tuescay 11 Jan 2011 04:00 (Lake level 103.23 m)	Strategy S2	- During this five-hour period, the Wivenhoe Dam lefe) was rising $\langle 73.40 \mathrm{~m}$ at the start of the period, rising to 73.81 m by the end of the perind). The Somerset Dam level remained above 100.45 m . - During this period, all sluice gates were glosed to allow Dam levels to track towards the Wivenhoe/Somerset Operating Target eine and limit rises in Wivenhoe Dam.	Use Strategy 52 when the Somerset Dam level is expected to exceed 99.0 m , and the Wivenhoe Dam level is expected to exceed 67.0 m but not exceed 75.5 m (fuse plug initiation) during the course of the Event.
Completed Tuesday 11 Jan 2011 09:00 (Lake level $103.50 \mathrm{~m})$			If Wivenhoe Dam is rising, and the Somerset Dam level is above 100.45 m , Strategy S 2 requires the crest gates to be raised, and the low-level regulators and sluices are used to generally allow the Wivenhoe/Somerset Operating Target Line to be followed.

10 FLOOD MANAGEMENT STrwTEGIES AND MANUAL CONi. LIANCE

Period	Strategies used during the period	Explanation of strategies used during the period	Manual requirements
Commenced Tuesday 11 Jan 2011 09:00 (Lake level 103.50 m)	Strategy S2	- During this 10 -hour period, the Wivenhoe Dam level was rising (73.81 m at the start of the period, rising to 74.97 m by the end of the period). The Somerset Dam level remained above 100.45 m . - During this period, all sluice gates remained closed to allow Dam levels to track towards the Wivenhoe/Somerset Operating Target Line and limit rises in Wivenhoe Dam.	Use Strategy 52 when the Somerset Dam level is expected to exceed 99.0 m , and the Wivenhoe Dam level is expected to exceed 67.0 m but not exceed 75.5m (fuse plug initiation) during the course of the Event. If Wivenhoe Dam is rising, and the Somerset Dam level is above 100.45 m , Strategy S2 requires the crest gates to be raised, and the low-level regulators and sluices are used to generally allow the Wivenhoe/Somerset Operating Target Line to be followed:
Completed Tuesday 11 Jan 2011 19:00 (Lake level 104.60m)			
Commenced Tuesday 11 Jan 2011 19:00 (Lake level 104.60m)	Strategy S2	- During this 15 -hour period, the Wivenhoe Dam leyelwas falling (74.97 m at the start of the period, falling to 74.78 m by the end of the perigd) The Somerset Dam level remained above 100.45 m . - During this period, all sluice gates remaineer closed to allow Dam levels to track towards the Wivenhoe/Somerset Operating Target fine and limit rises in Wivenhoe Dam.	Use Strategy S2 when the Somerset Dam level is expected to exceed 99.0 m , and the Wivenhoe Dam level is expected to exceed 67.0 m , but not exceed 75.5 m (fuse plug initiation) during the course of the Event.
Completed Wednesday 12 Jan 2011 10:00 (Lake level 105.09m)			If Wivenhoe Dam is falling, and the Somerset Dam level is above 100.45 m , Strategy S2 requires the crest gates to be raised, and the low-level regulators and sluices are used to generally not cause Wivenhoe Dam to rise significantly.

Period	Strategies used during the period	Explanation of strategies used during the period	
Commenced Wednesday 12 Jan 2011 10:00 (Lake leve! 105.09 m)	Strategy S 2	- During this 26 -hour period, the Wivenhoe Dam level was falling (74.78 m at the start of the period, falling to 74.61 m by the end of the period). The Somerset Dam level remained above 100.45 m . - During this period, two sluice gates were opened to allow Dam levels to track towards the Wivenhoe/Somerset Operating Target Line. The timing of these openings was calculated to ensure the Wivenhoe Lake level did not rise. - At the end of this period, it was apparent the flood peak had passed and therefore the operational strategy transitioned to the drain down phase.	Use Strategy S2 when the Somerset Dam level is expected to exceed 99.0 m and the Wivenhoe Dam level is expected to exceed 67.0 m but not exceed 75.5 m (fuse plug initiation) during the course of the Event. If Wivenhoe Dam is falling, and the Somerset Dam level is above 100.45 m , Strategy S2 requires the crest gates to be raised, and the low-level regulators and sluices are used to generally not cause Wivenhoe Dam to rise significantly. Drain down operations require stored floodwaters to be emptied from the Dams within seven days of the flood event peak passing through the Dams.
Completed Thursday 13 Jan 2011 12:00 (Lake level 103.96 m)			
Commenced Thursciay 13 Jan 2011 08:00 (Lake.level 103.96 m)	Drain down	- On the basis of the information containedirt the row above, it was decided to transition to the drain down phase at the beginning of this period. - Considerations that impacted onthe duration and timing of the drain down phase in this instance included: - Causing no renewedsicreases in the Wivenhoe Dam Lake level;	Drain down operations require stored floodwaters to be emptied from the Dams within seven days of the flood event peak passing through the Dams.
Completed Wednesday 19 Jan 2011 12:00 (Lake level 99.02 m)		- Re-opening D'Aggilar Highway and other impacted rural bridges as quickly as possible; - Achieving Full Supply Levels in the Dams at the conclusion of the Event. - The Flood Eventingas concluced on Wednesday 19 January 2011 at 12:00.	

10 FLOOD MANAGEMENT STruTEGIES AND MANUAL COMir LIANCE

Figure 10.4.3-Wivenhoe / Somerset Operating Target Line throughout the January 2011 Fiood Event
Section 10: Page 25 of 25
DRAFT 2

11 EVENT COMMUNICATION

Queensland's disaster management response is provided at a local, district and State level by various, specialist agencies. This collaborative approach ensures the effective and timely coordination of information and support services state-wide.

Disaster management and hazard-specific response plans provide details of arrangements and processes to be followed at times of crisis and identify the need for all public communication to be coordinated during these critical times.

Following the flood event impacting Somerset and Wivenhoe Dams in October 2010, a Communication Protocol was developed to ensure the effective communication between local, State and Commonwealth agencies impacted by the release of floodwater from the Dams. In summary, this Protocol outlines the communication processes to be followed during flood events by the following agencies:

- Brisbane City Council;
- Ipswich City Council;
- Somerset Regional Council;
- Seqwater;
- Water Grid Manager;
- Queensland Police Service;
- Department of Community Safety;
- Depariment of Environment and Resource Management;
- Department of Premier and Cabinet;
- Bureau of Meteorology.

The Communication Protocol is designed to ensure eognistent, harmonised information is effectively communicated to the public based on an agreed single technical report. The information in this report is used to inform communities and assist them to make decisions in the interests of public safety.

The Protocol divides the communicationprocess into three key stages:

1. Monitoring and assessment;
2. Briefing and activation;
3. Public communications,

The application of this, Communication Protocol to the January 2011 Flood Event is summarised below.

1. Monitoring axpd assessment

During fale January 2011 Event, all flood information communicated to the public - including information about floodwater releases from Wivenhoe Dam - was based upon a continuous process of monitoring and technical as§ssment of the developing situation. This process is dynamic and evolves according to the event however, it generally follows a standard set of steps, as outlined below. During the January 2011 Event, the following monitoring and assessment steps were undertaken:

- Weather events and Dam levels were routinely monitored by relevant agencies via established systems and procedures.
- The Bureau of Meteorology (BoM) was the primary agency responsible for providing weather forecasts and warnings to the public.
- Councils monitored creek levels, local runoff and flash flooding within their areas of responsibility.
- Seqwater modelled implications of the inflows on the necessary floodwater release from Somerset Dam and/or Wivenhoe Dam. (The floodwater release strategy is a balance between releasing the water quickly

11 EVENT COMMUNICATION

enough so the flood storage capacity is available if another major rain event occurs, and minimising downstream flooding impacts to people and property from the releases.)

- Seqwater calculated floodwater releases according to the Manual and provided this information to BoM and the Councils. BoM modelled the Brisbane River catchment and its river systems using this information.
- BoM participated in technical discussions with Seqwater, Brisbane City Council, Ipswich City Council and Somerset Regional Council as necessary, to share modelling results. These discussions lead to the development of a technical agreement around the flood situation, upon which public communications were based.
- Councils with the necessary resources and expertise undertook modelling, formed predictions, identified flood inundation areas and assessed impacts for their communities and shared this information with relevant parties. Councils without the necessary resources and expertise had to rely on information frốn other agencies to complete the impact assessment for their communities.

The Communication Protocol allows each agency to initiate public communication and engage disaster management processes as they deem appropriate. The trigger points for initiating the public, ©onmunication of flood event information are defined according to an agency's responsibilities.

During the January 2011 Flood Event, local, State and Commonwealth agencies incrêsed their frequency of communication with the community as it became apparent public impacts were liket

Technical staff from relevant agencies held regular teleconferences to clarify and agree modeling inputs and results. In particular, regular teleconferences were held between Seqwaterand BoM.

A Technical Situation Report (TSR) around the floodwater releaseffem Wivenhoe Dam was also completed by Seqwater and provided to the Water Grid Manager and relevantlocal government agencies, in line with the requirements of Seqwater's Emergency Response Plan. Thé frequency of these reports was increased as critical periods were experienced during the Event. Appendix F contains a copy of all Technical Situation Reports issued during the Event.
2. Briefing and activation

During a flood event, if public safety is considered to be at risk, disaster management arrangements may be activated. During the January 2011 Floôd Event, the following briefings were undertaken:

- The Brisbane City, Ipswich City and Somerset Regional Councils activated their Local Disaster Management Groups(LDMGs);
- LDMGs informed the relevant District Disaster Coordinators of the situation;
- The Queengland Police Service (QPS) initiated disaster management actions as provided for under the Disaster Management Act 2003;
- The Water Grid Manager alerted the Director-General (DG) of the Department of Community Safety (DCS), the DG of the Department of Environment and Resource Management (DERM), and the Brisbane City, Ipswich City and Somerset Regional Councils;

The DG of the DCS informed the DG of the Department of Premier and Cabinet (DPC), the Chair of the State Disaster Management Group (SDMG) and activated the State Disaster Coordination Centre (SDCC). The DG DCS also informed the Minister for Police, Corrective Services and Emergency Services;

- The DG DERM informed the Minister for Natural Resources, Mines and Energy;
- The DG DPC informed the Premier;
- The Crisis Communications Network, chaired by DPC, was activated at the direction of the SDMG Chair to coordinate public messaging from BoM, Seqwater, the Water Grid Manager, QPS, relevant Councils and the DCS.

11 EVENT COMMUNICATION

3. Public communications issues

The Communication Protocol developed following the October 2010 Flood Event states that each agency is responsible for publicly communicating information commensurate with their role. This can be done without prior approvals. However, during the January 2011 Flood Event, agencies shared information and operated in a fully consultative process to ensure consistent public information was provided.

The BoM, local governments and relevant State government agencies remained in frequent contact to ensure conflicting information was not released at any time during the Event. Agencies also ensured this consultation process did not cause delays in providing necessary public warnings. To ensure communication accuracy, all information provided to the public was based on information contained in technical reports.

The following agencies were responsible for the communication of specific information during the Event

- Bureau of Meteorology - Concentrated on flood warnings, which were communicated broadly yla the BoM website (www.bom.gov.au), other agencies and the media. Representatives from BoMalso participated in media (radio, television, newspaper) interviews to provide factual information eregarding observed and forecast weather conditions, rainfalls and water levels.
- Local Governments / Local Disaster Management Groups - Communicated thefects of weatherrelated events and the impact on safety for their local communities, residents, alid'Councils' assets. Local governments had the primary responsibility for communication within their fonmunity.
- Water Grid Manager - As the State's lead communication agency on flodwater release, the Water Grid Manager concentrated on publicly communicating aspects of release firmings and the expected duration of the impacts. To allow these communications to occur, Seqwater eperational staff ensured the supporting technical information was provided to the Water Grid Manager The Water Grid Manager took responsibility for liaising with local government and coordinaling any public communications in relation to the flood releases.
- Seqwater - Situation updates were provided to the Water Grid Manager, Brisbane City Council, Ipswich City Council and Somerset Regional Council onaregular basis. In addition to these operational communications, Seqwater also provided regular updates to mid-Brisbane irrigators during the event. These updates were also provided to the water Grid Manager.

These primary communications were augmented by:

- Queensland Police Service - Revided specific community safety messaging during operations.
- Department of Communiti Safety -Communicated general safety matters regarding flooding.
- Department of Premien and Cabinet (extreme events only) - Ensured consistent messages were provided to the medes and other relevant agencies.
Information was released to the public as frequently as required throughout the Event. The timing of media releases was quided by the frequency of technical reports, which ranged from once a day to once an hour during criticatstages of the Event.

The Water Grid Manager's Communications Unit centrally tracked and shared all communications and liaised wilfye following agencies in regard to public safety messages:

- BoM;
- Seqwater;
- Councils' Media Directors;
- QPS Media Director;
- DCS Media Director.

Overall, it appears public and agency communications throughout the Event was effective and inline with the Communication Protocol developed following the October 2010 Flood Event.

12.1 Review of data collection system performance during the Event

The rainfall and stream height field stations had never been tested by a llood the size of the January 2011
Event. As would be expected in all systems of this type world-wide, some field failures did occur during the Event. Some stations were completely destroyed by the flood flows. By surveying the aftermath of the flood and its impacts along the river channels, it is easy to see how this occurred.

After the Event, 14 out of 75 rain stations, and 31 out of 71 river height stations, were not operating correctly. This is considered a good result, with the station redundancy system Seqwater has in place within the network mitigating the impacts of these failures. There were no data omissions or errors resulting from these failures which resulted in incorrect operational decisions being made. This issue is examined in Section 5.0.

One significant gap in rainfail data occurred on Tuesday 11 January 2011 during the period of intenseximfal that resulted in extreme and rapid rises in the level of Wivenhoe Dam. This very intense rainfall agpeared to fall directly on the Wivenhoe Dam lake, outside the catchment rain gauges. This was a similar sconario to when the rainfall that lead to the llash flooding in Lockyer Valley occurred the previous day, , hais'flash flooding impacted the Grantham township however, the catchment rain gauges did not record the extreme rainfall.

A solution to this issue could be to install additional rain gauges in the Brisbane Basin, (a detailed examination of this issue will be undertaken in conjunction with BoM and other relevant agences' as soon as practical). However, within an area the size of the Brisbane Basin, it is not practically possible to guarantee any rain gauge network will detect all instances of very intense or extreme rainfall +pat could occur in the Basin area.

12.2 Future of the data collection system

The current ALERT data collection network has been operationel'since 1995. Overall the performance of the system in recent times has been satisfactory, with the following improvements made in recent times:

- Seqwater employed a dedicated hydrographic team to enhance and maintain the data collection network. This team continues to be supported by the RoadTek technicians who have been maintaining the network since its initial installation.
- In 2008/09, around 30 stations were uggraded with new generation ALERT Event Reporting Radio Telemetry System (ERRTS) equipment. In 2009/10, a further 55 sites were upgraded so now almost all the ERRTS equipment in the Sedwater ALERT network has now been upgraded.
- In 2008/09 and 2009/10, new rainfall stations were constructed and installed at the following locations:
- Lindfield;
- Westvale;
- Hazeldean
- Monsildal*;
- MA Stanley;
- MzBinga;
- Brackbutt;
) Redbank Creek.
- In 2008/09 and 2009/10, new rain/river height stations were constructed and installed at the following locations:
- Atkinson Dam;
- Bill Gunn Dam;
- Lake Clarendon Dam;
- Moogerah Dam;
- North Pine River at Dayboro Waste Water Trealment Plant.
- In 2008/09 and 2009/10, new river height stations were installed at the following locations:
- Kilcoy Creek downstream of Kilcoy Weir;
- Kobble Creek at Mt Samson.

12 REVIEW OF DATA COLLECTION SYSTEMS

The network will undergo further upgrades and enhancements over the coming years as Seqwater looks to maximise the system's overall reliability.

13 REVIEW OF FLOOD OPERATIONS CENTRE MOBILISATION AND STAFFING

13.1 Duty Engineers

The four Duty Engineers approved by the Chief Executive Officer to direct the operations of Somerset and Wivenhoe Dams during flood events are:

1. Engineer 1;
2. Engineer 2;
3. Engineer 3 ;
4. Engineer 4.

Engineer 1, Engineer 2 and Engineer 3 are three of the most experienced and expert Engineers in the i@dusistry in relation to their knowledge of Brisbane River flood hydrology. Engineer 4 is probably the most experienced engineer in Queensland in relation to the operation and maintenance of gated dams. Resumes for hese engineers are contained in Appendix N .

During the Event, the Duty Engineers worked long hours and functioned on a limited amgunt of sleep, particularly during the critical period of the Event between Sunday 9 January 2011 andy Wednesday 12 January 2011. While these demands are expected with this work, decision makingwas not adversely impacted in any way during the Event. However, it is recommended the following support mechanisms are examined to determine any valuable improvements to the current system.

Number of Duty Engineers

The appropriate number of Duty Engineers required to work during án event has been widely considered and discussed over the past 15 years. From the perspective of gvent management continuity and coordination, a small team of very expert and experienced staff working ofosely together is preferred. However, this must be considered in line with the potential impact of fatigue dưting larger events or extended periods of operation.

From 1996 to date, engaging four Duty Engineershas proven to be effective when managing flood events impacting the Dams. There are currently alsothree professionally qualified engineers working within the flood officer team who gain valuable event experience that will eventually enable them to transition to the Duty Engineer role should this be deemed apropriate.

Factors that could assist in managigo fatigue, and that will be examined further in conjunction with the Dam Safety Regulator at an approplale time following the submission of this Report, are:

- The requirement to heye a Duty Engineer present in the Flood Operations Centre on a $24 / 7$ basis, during dam drain down perlods when there is no rain falling or forecast and gate movements are not undertaken;
- The provisionfof'appropriate accommodation facilities close to the Flood Operations Centre to allow effective restand sleep when staff are required at the Centre on a $24 / 7$ basis.

Work hiurs

White the work hours during the Event were long, they were not considered excessive or to be at a level that adversely impacted operational decision making. Natural disaster emergency management requires efforts above and beyond normal day-to-day operations, and the Duty Engineers fully accept and understand this is a responsibility of the position.

13 REVIEW OF FLOOD OPERATIONS CENTRE MOBILISATION AND STAFFING

13.2 Flood Officers

The nine Flood Officers that assisted in the Flood Operations Centre during the Event were:

1. Flood Officer 1 ;
2. Flood Officer 2;
3. Flood Officer 3;
4. Flood Officer 4;
5. Flood Officer 5;
6. Flood Officer 6;
7. Flood Officer 7;
8. Flood Officer 8;
9. Flood Officer 9.

All Officers have been trained in Flood Operations Centre duties and completed thejr ellocated tasks efficiently, correctly and with a high degree of professionalism over the full durati@nof the Event.

14 REVIEW OF DAM SITE MOBILISATION AND STAFFING

The 13 Dam Operators that operated Somerset and Wivenhoe Dams during the Event were:

1. Dam Operator 1 ;
2. Dam Operator 2;
3. Dam Operator 3;
4. Dam Operator 4;
5. Dam Operator 5;
6. Dam Operator 6;
7. Dam Operator 7;
8. Dam Operator 8;
9. Dam Operator 9;
10. Dam Operator $10 ;$
11. Dam Operator 11;
12. Dam Operator 12;
13. Dam Operator 13.

All Operators have been trained in Flood Operations Centre duties and all completed their allocated tasks efficiently, correctly and with a high degree of professionalism over ihe duration of the Event.

The following is a list of suggestions that will help to ensure dfisam Operators are fully supported and can continue to perform their roles with a high level of effectiveness in future events:

- Staff housing arrangements should be retained daving trained operators living on site is critically important during extreme events of this naturete ensure the timely response to developing situations;
- Local staff members working on site duging lood events need to be able to maintain contact with their family and friends to provide reassurance they are safe and secure while on duty. This is an issue that may have caused some anxiety at Certain stages of the January 2011 Event and will be addressed;
- Ensuring additional electricaladomechanical trade support can be provided to the Dams during events of this nature. While there were-no equipment breakdowns during this Flood Event, and while multi-level operational back-up systents are provided to release flood water if breakdowns do occur, trade support may be critically imporfant if breakdowns do occur. Unless trade support can be sourced prior to the closure of Brisbarre Valley Highway, the Dams may not be accessible in extreme events as travel to the Dams becomes, difficult and at times, impossible. The ability to ensure eariy in the event that trade support is accessiblét should be examined.

15 REVIEW OF FLOOD MODELLING SYSTEMS

15.1 Review of system performance during the Event

The Real Time Flood Model (RTFM) and associated systems performed well during the Event as described in detail in Section 8. No system failures occurred during the Event and, generally, the systems closely modelled actual stream flow.

One difficulty was encountered during the period of intense rainfall that occurred on Tuesday 11 January 2011, when there were extreme and rapid rises in the level of Wivenhoe Dam. The very intense rainfall generally fell directly on the Wivenhoe Dam lake and outside the catchment rain gauges, which resulted in the systems not accurately modelling the rapid rises in the Dam level. This scenario was similar to the flash flooding experienced in Lockyer Valley the previous day. The flash flooding impacted the Grantham township, however the catchment rain gauges did not record the extreme rainfall, which made it impossible for the catchment models to accurately predict the Event during this period. A review of the existing data-gathoritg network (which discusses this issue) is contained in Section 12.

In summary, there were no operational flaws or errors detected in the existing RTFM system thattradversely impacted Event decision making.

15.2 Future of the RTFM

The RTFM and software was originally developed more than 15 years ago and resides on the Linux Fedora Core Operating System. Both main software components (Flood-Col and Flood-Ops) run on the Linux PC known as NOAH and the back-up PC located in the Back-up FOC. Altho(figh there were no failures during the current Flood Event, a number of minor failures have occurred in recond times and the age of the software is a concern. The software continues to function adequately from an operational perspective, however replacement software has been under development since 2008 , and is expected to be implemented and operational in 2011. Approval for the replacement system wifle sought from the Dam Safety Regulator prior to implementation.

A secondary component of the original RTFM software (WIVOPS) that assisted in formulating the gate operating strategy at Wivenhoe Dam is no longer used. This software was retired in 2005 following the construction of the Dam's auxiliary spillway, comprising three fuse plugs. A number of factors were considered in this retirement process, including the age of the WIVOPS program (more than 15 years), the absence of program documentation and bie complexity of the required programming changes to account for the new auxiliary spillway.

Detailed operational spreadsheets are currently used in place of WIVOPS and these worked very well during this Event (see Section 8.0-add Appendix A). WIVOPS was used as a verification tool during the Event (see Section 8.0), within the limits of its operational effectiveness. A dedicated program with similar functionality to WIVOPS has also beegrider development since 2010 and, when complete, will be evaluated to determine its operational role and function during an event.
Independent of the RTFM, Seqwater has developed a series of flood models for its storages, including SomersetDam and Wivenhoe Dam. These models are linked to the BoM Enviromon data collection system and ake ansed on URBS Models. This system provides a backup to the RTFM software in the Flood Opesans Centre and was used as a verification tool during the Event. Generally, this system provided very similar modelling results to the RTFM and experienced similar difficulties to the RTFM in accurately modelling the rapid rises in the Wivenhoe Dam lake level that occurred on Tuesday 11 January 2011 as described in Section 15.1.

16 REVIEW OF FLOOD MANUAL PROCEDURES AND STRATEGIES

16.1 Intent of the Manual

The Manual of Operational Procedures for Flood Mitigation at Wruenhoe Dam and Somerset Dam (Revision 7) (the Manual) defines the objectives and procedures for operating the Dams during flood events.

Flood events that impact Somerset Dam and Wivenhoe Dam are caused by rainfall events that vary in intensity, duration and distribution over a catchment area exceeding $7,000 \mathrm{~km}^{2}$ above the Dams. When making decisions about releasing water from the Dams during flood events, consideration is also given to rain falling in Brisbane River catchment areas not controlled by the Dams. These catchment areas, which include the Lockyer Creek and Bremer River catchments, also cover an area in the order of $7,000 \mathrm{~km}^{2}$ and rain falling in these catchments will also vary in intensity, duration and distribution. Accordingly, the Manual must acceunt for an infinite number of flood event scenarios.

The current level of forecasting technology does not make it possible for the Bureau of Meteorolody (80 M) to provide completely accurate rainfall forecasts for the Dam catchment areas. A degree of uncef(ainty exists in all weather forecasts and the further forward in time forecasts are provided, the greater the degree of uncertainty.

As it is not possible to provide a specific procedure for Dam operation during evencess sible flood event, the Manual takes the approach of providing objectives and strategies to guide opecflloral decision-making during a flood event. The objective followed and strategy chosen at any point in timeldepends on the actual water levels in the Dams as well as flood modelling predictions based on the beghobserved and forecast rainfall and stream flow information available at the time.

It is not possible to predict the range of objectives and strategies (hat will be used during the course of a flood event, before or at any time during the event, prior to the evenipoeak. Objectives and strategies change as flood events progress, as rainfall is received in the catchmeht and as forecast rainfall amounts change. For small floods, objectives and strategies relate to minimising flood impacts in rural areas, while as the scale of the flood increases, the emphasis changes to protectrig urban areas and maintaining the structural safety of the Dam.

The primary objectives of the procedffes contained in the Manual, in order of importance, are:

1. Ensure the structural safety ofthe Dams;
2. Provide urbanised areaşith optimum protection from inundation;
3. Minimise the disrution to rural life in the valleys of the Brisbane River and Stanley River;
4. Retain the storage at Full Supply Level at the conclusion of the flood event;
5. Ainimisesidacts to riparian flora and fauna during the drain down phase of the flood event.

To meet,tifese objectives, the Dams must be operated in a manner that considers the potential effects of closely spaced flood events. Accordingly, normal procedures require stored floodwaters to be emptied from the Dams within seven days of the flood event peak passing through the Dams.

Throughout the duration of this Event, the Manual objectives were always considered in order of importance, and the requirement to empty the stored floodwaters within seven days of the flood event peak passing through the Dams was also achieved.

Additionally, while ensuring the Dams are operated during flood events within the Manual objectives, Seqwater's duty of care to the public is also a primary consideration when making flood releases from the Dams. Every attempt is made to ensure public roads are closed prior to inundation by Dam outlows and that authorities are provided with enough time to prepare for community isolations and to undertake evacuations.
Every attempt is also made to ensure urban damage is minimised, and that Dam outflows with the potential to

16 REVIEW OF FLOOD MANUAL PROCEDURES AND STRATEGIES

contribute to urban damage are delayed until it is apparent no other options are avallable without risking the safety of the Dams.

Following the Event, some discussions occurred in the public arena in relation to lowering the emphasis on minimising disruption to rural life in the valleys of the Brisbane and Stanley Rivers for anything but very minor events. Due to the assoclated impacts to the public, changing this emphasis remains a political decision, however it is noted the Dams could be operated in this way if desired. However, changing the emphasis of the objectives would also require a change to the current version of the Manual.

16.3 Use of the Manual strategies

As discussed in detail in Section 10 a range of strategies were used during the Event in accordance withite
Deleted: 0
Manual. Having to apply the strategies during such an extremely large and rare event provided the
opportunity to consider how the strategies are worded from a practical sense.
The strategies provided a good guide in responding to the full range of scenarios presented \Leftrightarrow - this Event, however some situations would benefit from additional points of clarification, and these arediscussed below. It should be noted however, that due to the high degree of scenario variability, improvifig the Manual in this regard may not be possible. Any changes to the Manual in the areas discussed befewwould require extensive and detailed engineering and hydrological investigations prior to any proposedehanges being formally adopted.

- Under Strategy W3, it would be useful for additional guidance to berprovided as to the extent to which the flow at Moggill should be minimised prior to the natural peak occuring at that location. During the Event, this requirement competed with the need to protect urban arês by not allowing Wivenhoe Dam to reach a level that invoked Strategy W4. After considering these issues during the Event, it was decided the best course of action would be to increase releases to the linitof non-damaging flows at Moggill, prior to the natural peak occurring at Moggill. This ensured the stactural safety of the Dams and provided urbanised areas with optimum protection from inundation.
- Under Strategy W3, it would be useful to clarify the flow at Moggill that defines the upper limit of nondamaging floods downstream. During theevent, Brisbane City Council provided information and damage curves to the Flood Operations Centre indicating the upper limit flow at Moggill was $3,000 \mathrm{~m}^{3} / \mathrm{s}$, whereas the Manual specifies the flow as $4,000 \mathrm{~m}^{3} / \mathrm{s}$. This number must be agreed as it defines the intent of Strategy W3.
- Under Strategy W4, additioralaguidance on gate closing sequences would be useful. During the Event, a decision was made to begity closing the gates as quickly as possible, to reduce urban flood impacts once the Wivenhoe Dam level peaked. This was decided in an attempt to minimise urban damage below Aloggill (an objective which must be considered under Strategy W4). Gates would have been re-opened if further lake level tises were experienced, however this scenario is not specifically addressed in the Manual.
- Under strategy S2, additional guidance on actions to take when the Wivenhoe Dam Level is falling and the Somersel Dam Level is below 100.45 m would be useful.

17. REVIEW OF WIVENHOE DAM FULL SUPPLY LEVEL

Following the January 2011 Flood Event, there has been significant public discussion around the appropriate Full Supply Level (FSL) of the Dams and whether the FSL should be lowered.

The FSL of Somerset Dam and Wivenhoe Dam are contained in the Moreton Resource Operations Plan (see pages 91 and 93), which was developed by the Department of Environment and Resource Management (DERM) in accordance with the Water Act 2000. DERM is responsible for developing and approving all resource operations plans in Queensland, and the current Moreton Resource Operations Plan was approved by Governor-in-Counsel in December 2009. It is publicly available on the DERM website (www.derm.qld.gov.au). Seqwater's Resource Operations Licence requires compliance with the relevant parts of the Moreton Resource Operations Plan, including the prescribed FSL.

The Manual states:

1. that an explicit objective is to "retain the storage at full supply level at the conclusion of the flood Event". In Section 3.5 of the Manual, it states "as the dams are the primary urban watersipply for South East Queensland, it is important that all opportunities to fill the dams are takent. There should be no reason why the dams should not be full following a Flood Event";
2. in Section 8.3, "the spillway gates are not to be opened for flood control puposes prior to the reservoir level exceeding EL 67.25 which is 0.25 metres above FSL)"

In view of the above, Flood Operations Engineers did not set the FSL of the Dams and they are not authorised to make decisions in relation to setting or changing the FSL of the Damssat any time, either during or following Flood Events.

If a decision is to be made by DERM to permanently lower the ESL, detailed consideration will need to be given to the procedures in the Manual as the procedures assume the existing FSL.

18 REVIEW OF AGENCY COMMUNICATION

As discussed in Section 11 Queensland's disaster management response is provided by various disaster management groups at local, district and State levels. This collaborative approach to disaster response ensures an effective and timely coordination of information and services state-wide, whenever disaster strikes.

During the January 2011 Flood Event, a Communication Protocol (that was developed following the October 2010 Flood Event) was used to manage communications between Seqwater and the relevant local, State and Commonwealth agencies impacted by the release of floodwater from the Dams. From Seqwater's perspective, the Protocol worked well and communications were managed effectively. However, to properly assess communications, detailed feedback on the effectiveness of Seqwater communications during the Flood Event must be obtained from the following agencies:

- Brisbane City Council;
- Ipswich City Council;
- Somerset Regional Council;
- Water Grid Manager;
- Queensland Police Service;
- Department of Community Safety;
- Department of Environment and Resource Management;
- Department of Premier and Cabinet;
- Bureau of Meteorology.

To date, this process has not commenced however, this work widproceed as soon as appropriate personnel are available to undertake the necessary review.

In the interim, Seqwater has provided comment below ahd suggested preliminary recommendations to improve communications during flood events, basefon the experiences of the January 2011 Event.

The comments and preliminary recommendasens are made in accordance with the three stages in the communication process contained in the frocol, which are:

1. Monitoring and assessment;
2. Briefing and activation;
3. Public communications.

The comments and alminary recommendations are summarised below.

1. Monitoringeand assessment

- Sequaler discussions with BoM relating to modelling result comparisons, and actual and projected Dam out flows worked well and were beneficial to both parties.
- Seqwater also provided modelling results to Brisbane City Council. It remains unclear how Council used this information or if it proved beneficial. Generally, it appears the most relevant information required by the Council was projected flood height data, and this is estimated and issued by BoM. It is recommended the provision of technical data from Seqwater to Brisbane City Council be examined further with Council, with a view to ensuring only useful data is provided to avoid any potential confusion associated with the provision of superfluous data.
- It is also recommended that investigations be undertaken to explore the benefits of a more formal arrangement with BoM in relation to the provision of rainfall forecast information during flood events. While sufficient rainfall forecasting information was available to the Flood Operations Centres during the Flood Event, and regular informal discussions were held with BoM in relation to the forecasts, there may be an opportunity to improve this process by including some appropriate procedures in the Communication Protocol.

18 REVIEW OF AGENCY COMMUNICATION

2. Brlefing and activation

Situation Reports and Technical Situation Reports were provided to relevant government agencies at regular intervals over the duration of the Event. There has not been any specific feedback received to date indicating whether this process worked well. However, as previously discussed, Seqwater will seek detailed feedback on the effectiveness of its communications with the agencies involved, with a view to implementing any suggested improvements arising from these discussions.
3. Public communications issues

There were no specific public communications made by Seqwater during the January 2011 Flood Event, as the Water Grid Manager was assigned the responsibility of being the State's lead communication agency on floodwater release information. Seqwater operational staff ensured technical information was communicated to the Water Grid Manager, as requested, to support all public communication.

It is understood the Water Grid Manager is currently reviewing the effectiveness of these processes

19 REPORT CONCLUSIONS

Following are the significant conclusions drawn from the information contained in this Report.
The significant conclusions drawn from the information contained in this Report include:

- During the January 2011 Flood Event, Somerset Dam and Wivenhoe Dam were operated in accordance with The Manual of Operational Procedures for Flood Mitigation at Wivenhoe Dam and Somerset Dam (Revision 7).
- The data collection and flood modelling systems used to support decisions made during the Event performed well and assisted informed decision-making, in accordance with the Manual.
- BoM rainfall forecasts did not support the additional release of flood water early in the Event.
- During the Event, Seqwater followed the Department of Environment and Resource Management's dreat Communications Protocol which was compiled after the October 2010 flood event. This Protocol wass developed to ensure effective communication between local, State and Commonwealth agenciestimpacted by the release of floodwater from the Dams.
- The January 2011 Flood Event was an extremely large and rare flood event. The combingd effects of Somerset Dam and Wivenhoe Dam did reduce flood damages downstream howeven they could not fully mitigate the impacts of the Event without putting the safety of the Dams at risk.
- Studies associated with the design and operation of Wivenhoe Dam dating bask to 1971, indicate a flood of the magnitude of the January 2011 Flood Event would be expected to pêsult in urban damage below Moggill.
- The combined effects of Somerset Dam and Wivenhoe Dam proxided clear and greatly significant flood mitigation benefits during the January 2011 Flood Event.

20 REPORTRECOMMENDATIONS

Following is a summary of the key recommendations contained in this report.

- In conjunction with the Bureau of Meteorology (BoM) and other relevant agencies, examine whether additional rain gauges should be installed in the Brisbane River Basin to improve the level of data recorded during flood events. It is recognised that undertaking this exercise still may not guarantee the rain gauge network will detect all instances of very intense or extreme rainfall that could occur in the Basin area.
- Given that a rare and very large flood event occurred, it is recommended a formal review of The Manual of Operational Procedures for Flood Mitigation at Wivenhoe Dam and Somerset Dam (Revision 7) (the Manual) be undertaken. This is a requirement of the Manual when an event of this nature is experienced. The issues raised in Section 16.0 should be considered in this process.
- In conjunction with BoM and other relevant agencies, it is recommended Seqwater participate in a revieive of the Agency Communications Protocol used during the Flood Event. This Event was the first majoctest of the Protocol since its development in October 2010 and therefore a full review at this time woudd, be appropriate.
1

APPENDIX A - MODEL RESULTS

The following table and associated graphs represent a summary of the model results used to support operational decision making during the Event. Only model runs at the critical times corresponding to the Flood Event Summary contained in Section 2 of this Report, are included in the summary however, model runs between these times are also available. Model run numbers have been edited to provide a sequential list. An indication of the number of additional runs that are available between individually presented runs can be determined by examining these model run numbers.

During the Event some model runs were over-written as new model runs are generally created by using the most recent model run as a base. If the run being used as a base is not explicitly saved, it will be lost. This ' does not present a problem from an operational sense because historical model runs, which do not consider the effects of rainfall between the time of a decision and the time the historical run was created, have little bearing on operational decision making.

For the purpose of this Report, any over-written model runs have been re-created. This is possible at ony time from when the model run was initially created to the future because all model runs are based on ateal rainfall recorded in the relevant rain gauges at the time the model run was created. This information dscontained in a data archive and, if required, can also be obtained separately and independently from BoMfor verification purposes. In the case of model runs containing forecast rainfall, the forecast rainfall usdwas based on the BoM catchment average Quantitative Precipitation Forecasts (QPFs) contained in Aprendix C.

When examining the model results, it should be noted the forecast rainfall modely esults apply the full 24 -hour catchment average rainfall forecast from the BoM QPF's to the model run. This is regardless of the model run time in relation to the issue time of the forecast and regardless of the raingel since the forecast was issued. In effect, this provides a "worst case" 24 -hour scenario.

Finally, the values and graphs contained in this Appendix are o6tained from the flood modeling spreadsheets. Similar to the modelling runs, the creation of saved spreadshéets in this Appendix corresponds to the critical times contained in the Flood Event Summary. During the (E) ent, the spreadsheets were updated continuously with both updated model results and hourly manual water level readings from the Dams, with a single "live" spreadsheet always being available to be used as the Dasis of flood operations decision making. During the Event, spreadsheets were not necessarily explictif Saved at times corresponding to the Flood Event Summary, and in a similar manner to the re-creation of model runs where this has not occurred, spreadsheets have been re-created from archived data \triangle
Summary of operational runs

APPENDIX A - MODEL RESULTS

Run 5
Date: Friday 7 January 2011
Time: 02:00
APPENDIX A - MODEL RESULTS

Wednesday 24 February 2011
APPENDIX A - MODEL RESULTS
APPENDIX A - MODEL RESULTS

APPENDIX A - MODEL RESULTS

Modelled Bremer River Inflows to the Brisbane Rives					
10,000	1 1 1 1 1				\qquad \qquad Without forecast rain With forecast rain - - - Time of run
8000	1 1 1 1				
$\stackrel{\pi}{5}$	1 1 1 1				
$\begin{aligned} & 3 \\ & \frac{3}{4} \end{aligned}$	11				
4,000 2,000	$\begin{gathered} 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{gathered}$				
06/01/20		10/01/2011 00:00	12/01/2011 00:00 and Time	14/01/2011 00:00	0 16/01/2011 00:00
Wednesday 24 Feb					Appendix A:

APPENDIX A - MODEL RESULTS

MODEL RESULTS
APPENDIXA

APPENDIX A - MODEL RESULTS

APPENDIX A - MODEL RESULTS

APPENDIX A - MODEL RESULTS

Run 7

Date: Friday 7 January 2011
Time: 09:00

APPENDIX A - MODEL RESULTS

APPENDIX A - MODEL RESULTS

APPENDIX A - MODEL RESULTS

APPENDIX A - MODEL RESULTS
Wednesday 24 February 2011
APPENDIX A - MODEL RESULTS

APPENDIX A - MODEL RESULTS

Wednesday 24 February 2011
APPENDIX A - MODEL RESULTS

APPENDIX A - MODEL RESULTS

APPENDIX A - MODEL RESULTS

Run 8

Date: Friday 7 January 2011
Time: 15:00

APPENDIX A - MODEL RESULTS

APPENDIX A - MODEL RESULTS

Run 10
Date: Saturday 8 January 2011
Time: 14:00
APPENDIX A - MODEL RESULTS

APPENDIXA - MODEL RESULTS

APPENDIX A - MODEL RESULTS

APPENDIX A - MODEL RESULTS

Run 12

Date: Sunday 9 January 2011
Time: 01:00

APPENDIX A - MODEL RESULTS

APPENDIX A - MODEL RESULTS

APPENDIX A - MODEL RESULTS

APPENDIX A - MODEL RESULTS

APPENDIX A - MODEL RESULTS

APPENDIX A - MODEL RESULTS

	owood (witho the actual flow exp	Wivenhoe D nced at(cowood)	Dam Outflow) d)
			\square Without forecast rain With forecast rain - - - Time of run
00:00	12/01/2011 00:00	14/01/2011 00:00	16/01/2011 00:00
	e and Time		

APPENDIX A - MODEL RESULTS

APPENDIX A - MODEL RESULTS

Run 14

Date: Sunday 9 January 2011
Time: 08:00

APPENDIX A - MODEL RESULTS

APPENDIX A - MODEL RESULTS

APPENDIXA-MODEL RESULTS

APPENDIX A - MODEL RESULTS

DRAFT 2

APPENDIX A - MODEL RESULTS

Run 17
Date: Sunday 9 January 2011
Time: 14:00
APPENDIX A - MODEL RESULTS

APPENDIX A - MODEL RESULTS

16/01/2011 00:00
APPENDIX A - MODEL RESULTS

16/01/2011 00:00
Appendix A: Page 61 of 156
APPENDIX A - MODEL RESULTS

APPENDIX A - MODEL RESULTS

16/01/201100:00
Appendix A: Page 63 of 156
APPENDIX A - MODEL RESULTS

APPENDIX A - MODEL RESULTS

APPENDIX A - MODEL RESULTS

Run 21

Date: Sunday 9 January 2011
Time: 19:00
APPENDIX A - MODEL RESULTS

DRAFT 2
APPENDIX A - MODEL RESULTS

DRAFT 2
APPENDIX A - MODEL RESULTS

APPENDIX A - MODEL RESULTS

Run 23

Date: Monday 10 January 2011
Time: 01:00

APPENDIX A - MODEL RESULTS

Wednesday 24 February 2011
APPENDIX A - MODEL RESULTS

APPENDIX A - MODEL RESULTS

Wednesday 24 February 2011
APPENDIX A - MODEL RESULTS

16/01/2011 00:00
14/01/2011 00:00
12/01/2011 00:00
Date and Time
DRAFT 2
Appendix A: Page 84 of 156

APPENDIX A - MODEL RESULTS

Run 26

Date: Monday 10 January 2011
Time: 09:00

APPENDIX A - MODEL RESULTS

APPENDIX A - MODEL RESULTS

APPENDIX A - MODEL RESULTS
Nor

16/01/2011 00:00
Appendix A: Page 88 of 156
DRAFT 2
APPENDIX A - MODEL RESULTS
\square

- Without forecast rain
-- Time of run
APPENDIX A - MODEL RESULTS

APPENDIX A - MODEL RESULTS

APPENDIX A - MODEL RESULTS

Run 28

Date: Monday 10 January 2011
Time: 15:00
APPENDIX A - MODEL RESULTS

Wednesday 24 February 2011
APPENDIX A - MODEL RESULTS

APPENDIX A - MODEL RESJLTS

APPENDIX A - MODEL RESULTS

Wednesday 24 February 2011
APPENDIX A - MODEL RESULTS

Wednesday 24 February 2011
APPENDIX A - MODEL RESULTS

Wednesday 24 February 2011
APPENDIX A - MODEL RESULTS

APPENDIX A - MODEL RESULTS

APPENDIX A - MODEL RESULTS

APPENDIXA - MODEL RESULTS

APPENDIX A - MODEL RESULTS

APPENDIX A - MODEL RESULTS

Run 43
Date: Wednesday 12 January 2011
Time: 08:00
APPENDIX A - MODEL RESULTS

APPENDIX A - MODEL RESULTS

APPENDIX A - MODEL RESULTS

APPENDIX A - MODEL RESULTS
APPENDIX A - MODEL RESULTS

APPENDIX A - MODEL RESULTS

Wednesday 24 February 2011
APPENDIX A - MODEL RESJULTS

APPENDIX A - MODEL RESULTS

Wednesday 24 February 2011

APPENDIX A - MODEL RESULTS

Run 41

Date: Tuesday 11 January 2011
Time: 19:00
APPENDIX A - MODEL RESULTS

Date and Time

DRAFT 2
APPENDIX A - MODEL RESULTS

Wednesday 24 February 2011
APPENDIX A - MODEL RESULTS

APPENDIX A - MODEL RESULTS

APPENDIX A - MODEL RESULTS

APPENDIX A - MODEL RESULTS

Run 39

Date: Tuesday 11 January 2011
Time: 13:00

APPENDIX A - MODEL RESULTS

APPENDIXA - MODEL RESULTS

APPENDIX A - MODEL RESULTS

APPENDIXA - MODEL RESULTS

APPENDIX A - MODEL•RESULTS

Run 37
Date: Tuesday 11 January 2011
Time: 08:00
APPENDIX A - MODEL RESULTS Modelled Brisbane River Flows at Moggill (without Wivenhoe Dam Outflow) Dam Outflow) e actual flow experienced at Moggiil)
APPENDIX A - MODEL RESULTS

APPENDIX A - MODEL RESULTS

Run 35

Date: Tuesday 11 January 2011
Time: 04:00
APPENDIX A - MODEL RESULTS

APPENDIX A - MODEL RESULTS

APPENDIX A - MODEL RESULTS

APPENDIXA - MODEL RESULTS

APPENDIX A - MODEL RESULTS

APPENDIX A - MODEL RESULTS

APPENDIX A - MODEL RESULTS

16/01/2011 00:00
APPENDIX A - MODEL RESULTS

Wednesday 24 February 2011

APPENDIX A - MODEL RESULTS

Run 31
Date: Monday 10 January 2011
Time: 20:00
APPENDIX A - MODEL RESULTS

APPENDIX A - MODEL RESULTS

APPENDIX B - FLOOD VOLUME SUMMARY

Event	Somerset Dam			Wivenhoe Dam			
	Peak elevation	Stanley River	Outflow	Peak elevation	Upper Brisbane River only	Total	Outflow
	m AHD	ML	ML.	m AHD	ML	ML	ML
Feb 1893 ${ }^{1}$		1,361,000			1,383,000	2,744,000	
Feb1931		150,000			570,000	720,000	
Mar 1955	103.47	390,000	340,000		560,000	900,000	
Jan 1968	na	540,000	380,000		440,000	820,000	
Jan 1974	106.57	620,000	450,000		960,000	1,410,000	
Jun 1983	101.58	260,000	280,000		800,000	1,080,000	470,000
Mar 1989	102.59	370,000	380,000	69.78	310,000	690,000	660,000
Apr 1989	102.69	340,000	350,000	71.45	520,000	870,000	820,000
Feb 1999	102.96	450,000	280,000	70.45	940,000	1,220,000	900,000
May 2009	99.62	110,000	110,000	62.19	125,000	235,000	0
Mar 2010	99.41	210,000	200,000	66.43	190,000	390,000	0
Oct 2010	101.37	250,000	270,000	69.61	360,000	630,000	630,000
Mid Dec 2010	100.42	150,000	140,000	67.50	220,000	360,000	330,000
Late Dec 2010	99.98	120,000	130,000	69.35	370,000	500,000	460,000
Jan 2011	105.11	825,000	820,000	74.97	1,830,000	2,650,000	2,650,000

${ }^{1}$ Only includes first flood and largest flood peak.
APPENDIX B - FLOOD VOLUME SUMMARY

Appendix B

APPENDIX C - QUANTITATIVE PRECIPITATION FORECASTS

APPENDIX C - QUANTITATIVE PRECIPITATION FORECASTS

Forecast 1

Date: Sunday 2 January 2011
Time: 10:03

From: Aifs Operational Manager
Sent: Sunday, January 02, 2011 10:03:07 AM
To: weather
Subject: BOM: SEQWB Quantitative Precipitation [SEC=UNCLASSIFIED] Auto forwarded by a Rule

IDQ10003
BUREAU OF METEOROLOGY
Queensland Region
Brisbane Office

QUANTITATIVE PRECIPITATION FORECAST FOR SEQNB/SUNWATER)
Issued at 10:03am EST on Sunday the 2nd of January 3011
SOMERSET DAM AND WIVENHOE DAM CATCAMENTS:
Forecast of catchment average rainfall for the 24 hour period to 9am Monday.. Less than $5-10 \mathrm{~mm}$

NORTH PINE DAM CATCHMENT
Forecast of catchment average raindall for the 24 hour period to 9 am Monday.. $5-10 \mathrm{~mm}$

APPENDIX C - QUANTITATIVE PRECIPITATION FORECASTS

Forecast 2

Date: Sunday 2 January 2011
Time: 16:04

From: Aifs Operational Manager
Sent: Sunday, January 02, 2011 4:04:11 PM
To: weather
Subject: BOM: SEQWB Quantitative Precipitation [SEC=UNCLASSIFIED] Auto forwarded by a Rule

IDQ10003
BUREAU OF METEOROLOGY
Queensland Region
Brisbane Office

QUANTITATIVE PRECIPITATION FORECAST FOR SEQWBISUNWATER) Issued at 4:04pm EST on Sunday the 2nd of January 2014,

SOMERSET DAM AND WIVENHOE DAM CATCHNMENTS:
Forecast of catchment average rainfall for the 24 hour period to 3 pm Monday.. $5-10 \mathrm{~mm}$

NORTH PINE DAM CATCHMENT

Forecast of catchment average rainfarl for the 24 hour period to 3pm Monday.. $5-10 \mathrm{~mm}$

APPENDIX C - QUANTITATIVE PRECIPITATION FORECASTS

Forecast 3

Date: Monday 3 January 2011
Time: 11:36

From: Aifs Operational Manager
Sent: Monday, January 03, 2011 11:36:29 AM
To: weather
Subject: BOM: SEQWB Quantitative Precipitation [SEC=UNCLASSIFIED] Auto forwarded by a Rule

IDQ10003
BUREAU OF METEOROLOGY
Queensland Region
Brisbane Office

QUANTITATIVE PRECIPITATION FORECAST FOR SEQXVB/SUNWATER)
Issued at 11:36am EST on Monday the 3rd of January 20 . 11
SOMERSET DAM AND WIVENHOE DAM CATCHNENTS:
Forecast of catchment average rainfall for the 24 nour period to 9 am Tuesday .. $5-10 \mathrm{~mm}$

NORTH PINE DAM CATCHMENT
Forecast of catchment average rainfall for the 24 hour period to 9am Tuesday 5 -10mm

APPENDIX C - QUANTITATIVE PRECIPITATION FORECASTS

Forecast 4

Date: Monday 3 January 2011
Time: 16:00

From: Aifs Operational Manager
Sent: Monday, January 03, 2011 4:00:34 PM
To: weather
Subject: BOM: SEQWB Quantitative Precipitation [SEC=UNCLASSIFIED] Auto forwarded by a Rule

IDQ10003
BUREAU OF METEOROLOGY
Queensland Region
Brisbane Office

QUANTITATIVE PRECIPITATION FORECAST FOR S5 \bigotimes (B/SUNWATER) Issued at 4:00pm EST on Monday the 3rd of January 0 gl1

SOMERSET DAM AND WIVENHOE DAM CATCHMENTS:
Forecast of catchment average rainfall for the 24 hour period to 3 pm Tuesday .. $10-20 \mathrm{~mm}$

NORTH PINE DAM CATCHMENT
Forecast of catchment average raṇ̂fall for the 24 hour period to 3 pm Tuesday $10-20 \mathrm{~mm}$

APPENDIX C - QUANTITATIVE PRECIPITATION FORECASTS

Forecast 5

Date: Tuesday 4 January 2011
Time: 11:30

From: Aifs Operational Manager
Sent: Tuesday, January 04, 2011 11:30:30 AM
To: weather
Subject: BOM: SEQWB Quantitative Precipitation [SEC=UNCLASSIFIED] Auto forwarded by a Rule

IDQ10003
BUREAU OF METEOROLOGY
Queensland Region
Brisbane Office

QUANTITATIVE PRECIPITATION FORECAST FOR SEQWBISUNWATER) Issued at 11:30am EST on Tuesday the 4th of January 20,0,

SOMERSET DAM AND WIVENHOE DAM CATCHMENTS:
Forecast of catchment average rainfall for the 24 tơur period to 9am Wednesday $10-20 \mathrm{~mm}$

NORTH PINE DAM CATCHMENT
Forecast of catchment average rainfall for the 24 hour period to 9 am Wednesday $10-20 \mathrm{~mm}$

APPENDIX C - QUANTITATIVE PRECIPITATION FORECASTS

Forecast 6

Date: Tuesday 4 January 2011
Time: 16:00

From: Aifs Operational Manager
Sent: Tuesday, January 04, 2011 4:00:03 PM
To: weather
Subject: BOM: SEQWB Quantitative Precipitation [SEC=UNCLASSIFIED] Auto forwarded by a Rule

IDQ10003
BUREAU OF METEOROLOGY
Queensland Region
Brisbane Office

QUANTITATIVE PRECIPITATION FORECAST FOR SEQWBISUNWATER) Issued at 4:00pm EST on Tuesday the 4th of January 2010

SOMERSET DAM AND WIVENHOE DAM CATCHMENTS:
Forecast of catchment average rainfall for the 24 hour period to 3 pm Wednesday $5-15 \mathrm{~mm}$

NORTH PINE DAM CATCHMENT
Forecast of catchment average rainfalifor the 24 hour period to 3 pm Wednesday 5 -15mm

APPENDIX C - QUANTITATIVE PRECIPITATION FORECASTS

Forecast 7

Date: Wednesday 5 January 2011
Time: 10:03

From: Aifs Operational Manager
Sent: Wednesday, January 05, 2011 10:03:06 AM
To: weather
Subject: BOM: SEQWB Quantitative Precipitation [SEC=UNCLASSIFIED] Auto forwarded by a Rule

IDQ10003
BUREAU OF METEOROLOGY
Queensland Region
Brisbane Office

QUANTITATIVE PRECIPITATION FORECAST FOR SEQ \otimes B/SUNWATER) Issued at 10:03am EST on Wednesday the 5th of Jangiary 2011

SOMERSET DAM AND WIVENHOE DAM CATCAMENTS:
Forecast of catchment average rainfall for the 24 hour period to 9am Thursday $20-30 \mathrm{~mm}$

NORTH PINE DAM CATCHMENT

Forecast of catchment average rafiffall for the 24 hour period to 9 9am Thursday $20-30 \mathrm{~mm}$

APPENDIX C - QUANTITATIVE PRECIPITATION FORECASTS

Forecast 8

Date: Wednesday 5 January 2011
Time: 16:00

From: Aifs Operational Manager
Sent: Wednesday, January 05, 2011 4:00:05 PM
To: weather
Subject: BOM: SEQWB Quantitative Precipitation [SEC=UNCLASSIFIED] Auto forwarded by a Rule

IDQ10003
BUREAU OF METEOROLOGY
Queensland Region
Brisbane Office

QUANTITATIVE PRECIPITATION FORECAST FOR SEQNB/SUNWATER)
Issued at 4:00pm EST on Wednesday the 5th of Janu(ary 2011
SOMERSET DAM AND WIVENHOE DAM CATCHMENTS:
Forecast of catchment average rainfall for the 24 hour period to 3 pm Thursday $30-50 \mathrm{~mm}$

NORTH PINE DAM CATCHMENT

Forecast of catchment average rainfall for the 24 hour period to 3 pm Thursday $30-50 \mathrm{~mm}$

APPENDIX C - QUANTITATIVE PRECIPITATION FORECASTS

Forecast 9

Date: Thursday 6 January 2011
Time: 10:21

From: Aifs Operational Manager
Sent: Thursday, January 06, 2011 10:21:18 AM
To: weather
Subject: BOM: SEQWB Quantitative Precipitation [SEC=UNCLASSIFIED] Auto forwarded by a Rule

IDQ10003
BUREAU OF METEOROLOGY
Queensland Region
Brisbane Office

QUANTITATIVE PRECIPITATION FORECAST FOR SE@NB/SUNWATER) Issued at 10:21am EST on Thursday the 6th of Januaty 2011

SOMERSET DAM AND WIVENHOE DAM CATCHMENTS:
Forecast of catchment average rainfall for the 24 hour period to 9 am Friday $30-50 \mathrm{~mm}$

NORTH PINE DAM CATCHMENT

Forecast of catchment average rậfall for the 24 hour period to 9am Friday $30-50 \mathrm{~mm}$

APPENDIX C - QUANTITATIVE PRECIPITATION FORECASTS

Forecast 10

Date: Thursday 6 January 2011
Time: 16:00

From: Aifs Operational Manager
Sent: Thursday, January 06, 2011 4:00:06 PM
To: weather
Subject: BOM: SEQWB Quantitative Precipitation [SEC=UNCLASSIFIED] Auto forwarded by a Rule

IDQ10003
BUREAU OF METEOROLOGY
Queensland Region
Brisbane Office

QUANTITATIVE PRECIPITATION FORECAST FOR SE $Q N B / S U N W A T E R)$
Issued at 4:00pm EST on Thursday the 6th of Januabs 2011
SOMERSET DAM AND WIVENHOE DAM CATGHMENTS:
Forecast of catchment average rainfall for the 24 hour period to 3 pm Friday $20-30 \mathrm{~mm}$

NORTH PINE DAM CATCHMENT

Forecast of catchment average ranffall for the 24 hour period to 3 pm Friday $20-30 \mathrm{~mm}$

APPENDIX C - QUANTITATIVE PRECIPITATION FORECASTS

Forecast 11

Date: Friday 7 January 2011
Time: 10:03

From: Aifs Operational Manager
Sent: Friday, January 07, 2011 10:03:06 AM
To: weather
Subject: BOM: SEQWB Quantitative Precipitation [SEC=UNCLASSIFIED] Auto forwarded by a Rule

IDQ10003
BUREAU OF METEOROLOGY
Queensland Region
Brisbane Office

QUANTITATIVE PRECIPITATION FORECAST FOR SEQWB/SUNWATER) Issued at 10:03am EST on Friday the 7th of January 2011

SOMERSET DAM AND WIVENHOE DAM CATCHNENTS:
Forecast of catchment average rainfall for the 24 hour period to 10am Saturday: $20-30 \mathrm{~mm}$

NORTH PINE DAM CATCHMENT
Forecast of catchment average rainfall for the 24 hour period to
10am Saturday: $40-50 \mathrm{~mm}$

APPENDIX C - QUANTITATIVE PRECIPITATION FORECASTS

Forecast 12

Date: Friday 7 January 2011
Time: 16:04

From: Aifs Operational Manager
Sent: Friday, January 07, 2011 4:04:23 PM
To: weather
Subject: BOM: SEQWB Quantitative Precipitation [SEC=UNCLASSIFIED] Auto forwarded by a Rule

IDQ10003
BUREAU OF METEOROLOGY
Queensland Region
Brisbane Office

QUANTITATIVE PRECIPITATION FORECAST FOR SEQ(VB/SUNWATER) Issued at $4: 04 \mathrm{pm}$ EST on Friday the 7 th of January 2011

SOMERSET DAM AND WIVENHOE DAM CATCHMENTS:
Forecast of catchment average rainfall for the 24 hour period to 4pm Saturday: $20-30 \mathrm{~mm}$

NORTH PINE DAM CATCHMENT
Forecast of catchment average rainf fill for the 24 hour period to 4pm Saturday: $40-50 \mathrm{~mm}$

APPENDIX C - QUANTITATIVE PRECIPITATION FORECASTS

Forecast 13
Date: Saturday 8 January 2011
Time: 10:03

From: Aifs Operational Manager
Sent: Saturday, January 08, 2011 10:03:04 AM
To: weather
Subject: BOM: SEQWB Quantitative Precipitation [SEC=UNCLASSIFIED] Auto forwarded by a Rule

IDQ10003
BUREAU OF METEOROLOGY
Queensland Region
Brisbane Office

QUANTITATIVE PRECIPITATION FORECAST FOR SEQXVB/SUNWATER)
Issued at 10:03am EST on Saturday the 8th of January 2011
SOMERSET DAM AND WIVENHOE DAM CATCHM ENTS:
Forecast of catchment average rainfall for the 24 hour period to 9 am Sunday: $30-50 \mathrm{~mm}$

NORTH PINE DAM CATCHMENT
Forecast of catchment average rainfalif tor the 24 hour period to 9am Sunday: $40-60 \mathrm{~mm}$

APPENDIX C - QUANTITATIVE PRECIPITATION FORECASTS

Forecast 14

Date: Saturday 8 January 2011
Time: 16:00

From: Aifs Operational Manager
Sent: Saturday, January 08, 2011 4:00:05 PM
To: weather
Subject: BOM: SEQWB Quantitative Precipitation [SEC=UNCLASSIFIED] Auto forwarded by a Rule

IDQ10003
BUREAU OF METEOROLOGY
Queensland Region
Brisbane Office

QUANTITATIVE PRECIPITATION FORECAST FOR SEQWG)SUNWATER) Issued at 4:00pm EST on Saturday the 8th of January

SOMERSET DAM AND WIVENHOE DAM CATCHMKNTS:
Forecast of catchment average rainfall for the 24 hour period to 3 pm Sunday: $30-50 \mathrm{~mm}$

NORTH PINE DAM CATCHMENT
Forecast of catchment average rainfalhfor the 24 hour period to 3 pm Sunday: $40-60 \mathrm{~mm}$

APPENDIX C - QUANTITATIVE PRECIPITATION FORECASTS

Forecast 15
Date: Sunday 9 January 2011
Time: 10:03

From: Aifs Operational Manager
Sent: Sunday, January 09, 2011 10:03:02 AM
To: weather
Subject: BOM: SEQWB Quantitative Precipitation [SEC=UNCLASSIFIED] Auto forwarded by a Rule

IDQ10003
BUREAU OF METEOROLOGY
Queensland Region
Brisbane Office

QUANTITATIVE PRECIPITATION FORECAST FOR SEQUVB/SUNWATER)
Issued at 10:03am EST on Sunday the 9th of January 20.14
SOMERSET DAM AND WIVENHOE DAM CATCHMENTS:
Forecast of catchment average rainfall for the 24 hour period to 9 am Monday: $40-60 \mathrm{~mm}$

NORTH PINE DAM CATCHMENT
Forecast of catchment average rainfall for the 24 hour period to 9am Monday: $40-60 \mathrm{~mm}$

APPENDIX C - QUANTITATIVE PRECIPITATION FORECASTS

Forecast 16

Date: Sunday 9 January 2011
Time: 16:00

From: Aifs Operational Manager
Sent: Sunday, January 09, 2011 4:00:06 PM
To: weather
Subject: BOM: SEQWB Quantitative Precipitation [SEC=UNCLASSIFIED] Auto forwarded by a Rule

IDQ10003
BUREAU OF METEOROLOGY
Queensland Region
Brisbane Office

QUANTITATIVE PRECIPITATION FORECAST FOR SEQYXBSUNWATER) Issued at 4:00pm EST on Sunday the 9th of January 20

SOMERSET DAM AND WIVENHOE DAM CATCHMENTS:
Forecast of catchment average rainfall for the 24 hour period to 3 pm Monday: $50-80 \mathrm{~mm}$

NORTH PINE DAM CATCHMENT
Forecast of catchment average rainfalsor the 24 hour period to 3 pm Monday: $60-100 \mathrm{~mm}$

APPENDIX C - QUANTITATIVE PRECIPITATION FORECASTS

Forecast 17
Date: Monday 10 January 2011
Time: 10:03

From: Aifs Operational Manager
Sent: Monday, January 10, 2011 10:03:02 AM
To: weather
Subject: BOM: SEQWB Quantitative Precipitation [SEC=UNCLASSIFIED] Auto forwarded by a Rule

IDQ10003
BUREAU OF METEOROLOGY
Queensland Region
Brisbane Office

QUANTITATIVE PRECIPITATION FORECAST FOR SEQW(BISUNWATER) Issued at 10:03am EST on Monday the 10th of January 2041

SOMERSET DAM AND WIVENHOE DAM CATCHMENTS:
Forecast of catchment average rainfall for the 24 6our period to 10am Tuesday: 50-100mm

NORTH PINE DAM CATCHMENT
Forecast of catchment average rainfa\{sfor the 24 hour period to
10am Tuesday: 75-150mm

APPENDIX C - QUANTITATIVE PRECIPITATION FORECASTS

Forecast 18

Date: Monday 10 January 2011
Time: 16:00

From: Aifs Operational Manager
Sent: Monday, January 10, 2011 4:00:04 PM
To: weather
Subject: BOM: SEQWB Quantitative Precipitation [SEC=UNCLASSIFIED] Auto forwarded by a Rule

IDQ10003
BUREAU OF METEOROLOGY
Queensland Region
Brisbane Office

QUANTITATIVE PRECIPITATION FORECAST FOR SEQWB/SUNWATER) Issued at 4:00pm EST on Monday the 10th of January 20.1

SOMERSET DAM AND WIVENHOE DAM CATCHMENTS:
Forecast of catchment average rainfall for the 24 hour period to 4 pm Tuesday: $25-50 \mathrm{~mm}$, isolated falls to 100 mpm

NORTH PINE DAM CATCHMENT
Forecast of catchment average rainfail for the 24 hour period to 4 pm Tuesday: $25-50 \mathrm{~mm}$, isolated falls to 100 mm

APPENDIX C - QUANTITATIVE PRECIPITATION FORECASTS

Forecast 19
Date: Tuesday 11 January 2011
Time: 10:14

From: Aifs Operational Manager
Sent: Tuesday, January 11, 2011 10:14:02 AM
To: weather
Subject: BOM: SEQWB Quantitative Precipitation [SEC=UNCLASSIFIED] Auto forwarded by a Rule

IDQ10003
BUREAU OF METEOROLOGY
Queensland Region
Brisbane Office

QUANTITATIVE PRECIPITATION FORECAST FOR SEQUVBISUNWATER) Issued at 10:13am EST on Tuesday the 11th of January 2011

SOMERSET DAM AND WIVENHOE DAM CATCHMENTS:
Forecast of catchment average rainfall for the 24 hour period to 10am Wednesday: Falls in excess of 100 mm

NORTH PINE DAM CATCHMENT

Forecast of catchment average rainfail for the 24 hour period to 10am Wednesday: Falls in excess of 100 mm

APPENDIX C - QUANTITATIVE PRECIPITATION FORECASTS

Forecast 20

Date: Tuesday 11 January 2011
Time: 16:13

From: Aifs Operational Manager
Sent: Tuesday, January 11, 2011 4:13:12 PM
To: weather
Subject: BOM: SEQWB Quantitative Precipitation [SEC=UNCLASSIFIED] Auto forwarded by a Rule

IDQ10003
BUREAU OF METEOROLOGY
Queensland Region
Brisbane Office

QUANTITATIVE PRECIPITATION FORECAST FOR SEQNXB/SUNWATER)
Issued at $4: 13 \mathrm{pm}$ EST on Tuesday the 11th of January 20 d1
SOMERSET DAM AND WIVENHOE DAM CATCHMENTS:
Forecast of catchment average rainfall for the 24 hour period to 4 pm Wednesday: 50 to 100 mm this evening and overnight, easing to less than 30 mm during Wednesday

NORTH PINE DAM CATCHMENT

Forecast of catchment average ramfall for the 24 hour period to 4 pm Wednesday: 50 to 100 m . this evening and overnight, easing to less than 30 mm during Wednesday

APPENDIX C - QUANTITATIVE PRECIPITATION FORECASTS

Forecast 21
Date: Wednesday 12 January 2011
Time: 10:03

From: Aifs Operational Manager
Sent: Wednesday, January 12, 2011 10:03:07 AM
To: weather
Subject: BOM: SEQWB Quantitative Precipitation [SEC=UNCLASSIFIED] Auto forwarded by a Rule

IDQ10003
BUREAU OF METEOROLOGY
Queensland Region
Brisbane Office

QUANTITATIVE PRECIPITATION FORECAST FOR S5 \otimes B/SUNWATER) Issued at 10:03am EST on Wednesday the 12th of Janiuary 2011

SOMERSET DAM AND WIVENHOE DAM CATCAMENTS:
Forecast of catchment average rainfall for the 24 hour period to 10am Thursday: 10 mm

NORTH PINE DAM CATCHMENT
Forecast of catchment average ralnfall for the 24 hour period to 10am Thursday: 10 mm

APPENDIX C - QUANTITATIVE PRECIPITATION FORECASTS

Forecast 22

Date: Wednesday 12 January 2011
Time: 16:00

From: Aifs Operational Manager
Sent: Wednesday, January 12, 2011 4:00:02 PM
To: weather
Subject: BOM: SEQWB Quantitative Precipitation [SEC=UNCLASSIFIED] Auto forwarded by a Rule

IDQ10003
BUREAU OF METEOROLOGY
Queensland Region
Brisbane Office

QUANTITATIVE PRECIPITATION FORECAST FOR SEQVVB/SUNWATER)
Issued at 4:00pm EST on Wednesday the 12th of Januarin 2011
SOMERSET DAM AND WIVENHOE DAM CATCHMEENTS:
Forecast of catchment average rainfall for the 24 hour period to 4 pm Thursday: 5 mm

NORTH PINE DAM CATCHMENT
Forecast of catchment average rainfall for the 24 hour period to 4 pm Thursday: 5 mm

APPENDIX C - QUANTITATIVE PRECIPITATION FORECASTS

Forecast 23

Date: Thursday 13 January 2011
Time: 14:25

From: Aifs Operational Manager
Sent: Thursday, January 13, 2011 2:25:34 PM
To: weather
Subject: BOM: SEQWB Quantitative Precipitation [SEC=UNCLASSIFIED] Auto forwarded by a Rule

IDQ10003
BUREAU OF METEOROLOGY
Queensland Region
Brisbane Office

QUANTITATIVE PRECIPITATION FORECAST FOR SEQUVB/SUNWATER) Issued at 2:25pm EST on Thursday the 13th of January 2 2011

SOMERSET DAM AND WIVENHOE DAM CATCHM ENTS:
Forecast of catchment average rainfall for the 24 hour period to 4 pm Friday 5mm

NORTH PINE DAM CATCHMENT
Forecast of catchment average rainfin for the 24 hour period to 4pm Friday 5 mm

APPENDIX C - QUANTITATIVE PRECIPITATION FORECASTS

Forecast 24
Date: Thursday 13 January 2011
Time: 16:00

From: Aifs Operational Manager
Sent: Thursday, January 13, 2011 4:00:05 PM
To: weather
Subject: BOM: SEQWB Quantitative Precipitátion [SEC=UNCLASSIFIED] Auto forwarded by a Rule

IDQ10003
BUREAU OF METEOROLOGY
Queensland Region
Brisbane Office

QUANTITATIVE PRECIPITATION FORECAST FOR SEQNUB/SUNWATER)
Issued at 4:00pm EST on Thursday the 13th of January 2 2'1 1
SOMERSET DAM AND WIVENHOE DAM CATCHMENTS:
Forecast of catchment average rainfall for the 24 hour period to 3 pm Friday 5 mm

NORTH PINE DAM CATCHMENT
Forecast of catchment average rainfall for the 24 hour period to 3 pm Friday 5 mm

APPENDIX C - QUANTITATIVE PRECIPITATION FORECASTS

Forecast 25

Date: Friday 14 January 2011
Time: 10:03

From: Aifs Operational Manager
Sent: Friday, January 14, 2011 10:03:06 AM
To: weather
Subject: BOM: SEQWB Quantitative Precipitation [SEC=UNCLASSIFIED] Auto forwarded by a Rule

IDQ10003
BUREAU OF METEOROLOGY
Queensland Region
Brisbane Office

QUANTITATIVE PRECIPITATION FORECAST FOR SEQUVB/SUNWATER) Issued at 10:03am EST on Friday the 14th of January 2011

SOMERSET DAM AND WIVENHOE DAM CATCHMENTS:
Forecast of catchment average rainfall for the 24 hour period to 9 am Saturday $<3 \mathrm{~mm}$

NORTH PINE DAM CATCHMENT
Forecast of catchment average rainfät for the 24 hour period to 9am Saturday <3mm

APPENDIX C - QUANTITATIVE PRECIPITATION FORECASTS

Forecast 26

Date: Friday 14 January 2011
Time: 16:00

From: Aifs Operational Manager
Sent: Friday, January 14, 2011 4:00:05 PM
To: weather
Subject: BOM: SEQWB Quantitative Precipitation [SEC=UNCLASSIFIED] Auto forwarded by a Rule

IDQ10003
BUREAU OF METEOROLOGY
Queensland Region
Brisbane Office

QUANTITATIVE PRECIPITATION FORECAST FOR SEQUVB/SUNWATER)
Issued at $4: 00$ pm EST on Friday the 14th of January 201
SOMERSET DAM AND WIVENHOE DAM CATCHMENTS:
Forecast of catchment average rainfall for the 24 hour period to 3 pm Saturday $<3 \mathrm{~mm}$

NORTH PINE DAM CATCHMENT
Forecast of catchment average rainfall for the 24 hour period to 3 pm Saturday <3mm

APPENDIX C - QUANTITATIVE PRECIPITATION FORECASTS

Forecast 27

Date: Saturday 15 January 2011
Time: 10:03

From: Aifs Operational Manager
Sent: Saturday, January 15, 2011 10:03:03 AM
To: weather
Subject: BOM: SEQWB Quantitative Precipitation [SEC=UNCLASSIFIED] Auto forwarded by a Rule

IDQ10003
BUREAU OF METEOROLOGY
Queensland Region
Brisbane Office

QUANTITATIVE PRECIPITATION FORECAST FOR SEQNB/SUNWATER)
Issued at 10:03am EST on Saturday the 15th of January 2011
SOMERSET DAM AND WIVENHOE DAM CATCHMENTS:
Forecast of catchment average rainfall for the 24 hour period to 10am Sunday: <3mm

NORTH PINE DAM CATCHMENT
Forecast of catchment average rainfall for the 24 hour period to 10am Sunday: < 3mm

APPENDIX C - QUANTITATIVE PRECIPITATION FORECASTS

Forecast 28

Date: Saturday 15 January 2011
Time: 16:00

From: Aifs Operational Manager
Sent: Saturday, January 15, 2011 4:00:02 PM
To: weather
Subject: BOM: SEQWB Quantitative Precipitation [SEC=UNCLASSIFIED]
Auto forwarded by a Rule
IDQ10003
BUREAU OF METEOROLOGY
Queensland Region
Brisbane Office

QUANTITATIVE PRECIPITATION FORECAST FOR SEQWVB/SUNWATER) Issued at 4:00pm EST on Saturday the 15th of January RO11

SOMERSET DAM AND WIVENHOE DAM CATCHMENTS:
Forecast of catchment average rainfall for the 24 hour period to 4 pm Sunday: <3mm

NORTH PINE DAM CATCHMENT
Forecast of catchment average rainfall for the 24 hour period to 4 pm Sunday: < 3mm

APPENDIX C-QUANTITATIVE PRECIPITATION FORECASTS

Forecast 29

Date: Sunday 16 January 2011
Time: 10:03

From: Aifs Operational Manager
Sent: Sunday, January 16, 2011 10:03:02 AM
To: weather
Subject: BOM: SEQWB Quantitative Precipitation [SEC=UNCLASSIFIED] Auto forwarded by a Rule

IDQ10003
BUREAU OF METEOROLOGY
Queensland Region
Brisbane Office

QUANTITATIVE PRECIPITATION FORECAST FOR SEQUXB/SUNWATER)
Issued at 10:03am EST on Sunday the 16th of January 2011
SOMERSET DAM AND WIVENHOE DAM CATCHMENTS:
Forecast of catchment average rainfall for the 24 hour period to 10am Monday: < 2 mm

NORTH PINE DAM CATCHMENT
Forecast of catchment average rainfail for the 24 hour period to 10am Monday: < 2 mm

APPENDIX C - QUANTITATIVE PRECIPITATION FORECASTS

Forecast 30

Date: Sunday 16 January 2011
Time: 16:00

From: Aifs Operational Manager

Sent: Sunday, January 16, 2011 4:00:07 PM
To: weather
Subject: BOM: SEQWB Quantitative Precipitation [SEC=UNCLASSIFIED]

Auto forwarded by a Rule

IDQ10003
BUREAU OF METEOROLOGY
Queensland Region
Brisbane Office

QUANTITATIVE PRECIPITATION FORECAST FOR SEQWB/SUNWATER) Issued at 4:00pm EST on Sunday the 16th of January 20.M

SOMERSET DAM AND WIVENHOE DAM CATCHMENTS:
Forecast of catchment average rainfall for the 24 hour period to 4 pm Monday: 2 to 5 mm

NORTH PINE DAM CATCHMENT
Forecast of catchment average rainfanl for the 24 hour period to 4pm Monday: < 2mm

APPENDIX C - QUANTITATIVE PRECIPITATION FORECASTS

Forecast 31

Date: Monday 17 January 2011
Time: 10:03

From: Aifs Operational Manager
Sent: Monday, January 17, 2011 10:03:03 AM
To: weather
Subject: BOM: SEQWB Quantitative Precipitation [SEC=UNCLASSIFIED] Auto forwarded by a Rule

IDQ10003
BUREAU OF METEOROLOGY
Queensland Region
Brisbane Office

QUANTITATIVE PRECIPITATION FORECAST FOR SEQWWBSUNWATER) Issued at 10:03am EST on Monday the 17th of January 20,1

SOMERSET DAM AND WIVENHOE DAM CATCHMENTS:
Forecast of catchment average rainfall for the 24 6our period to 9am Tuesday: to 5 mm

NORTH PINE DAM CATCHMENT
Forecast of catchment average rainfalfor the 24 hour period to 9am Tuesday: to 5 mm

APPENDIX C - QUANTITATIVE PRECIPITATION FORECASTS

Forecast 32

Date: Monday 17 January 2011
Time: 16:00

From: Aifs Operational Manager
Sent: Monday, January 17, 2011 4:00:03 PM
To: weather
Subject: BOM: SEQWB Quantitative Precipitation [SEC=UNCLASSIFIED] Auto forwarded by a Rule

IDQ10003

BUREAU OF METEOROLOGY
Queensland Region
Brisbane Office

QUANTITATIVE PRECIPITATION FORECAST FOR SEQWQBSUNWATER)
Issued at 4:00pm EST on Monday the 17th of January 2014
SOMERSET DAM AND WIVENHOE DAM CATCHMNNTS:
Forecast of catchment average rainfall for the 24 hour period to 3 pm Tuesday: to 5 mm

NORTH PINE DAM CATCHMENT
Forecast of catchment average rainfallfor the 24 hour period to 3 pm Tuesday: to 5 mm

APPENDIX C - QUANTITATIVE PRECIPITATION FORECASTS

Forecast 33

Date: Tuesday 18 January 2011
Time: 10:50

From: Aifs Operational Manager
Sent: Tuesday, January 18, 2011 10:50:09 AM
To: weather
Subject: BOM: SEQWB Quantitative Precipitation [SEC=UNCLASSIFIED] Auto forwarded by a Rule

IDQ10003
BUREAU OF METEOROLOGY
Queensland Region
Brisbane Office

QUANTITATIVE PRECIPITATION FORECAST FOR SEQWMBUNWATER) Issued at 10:50am EST on Tuesday the 18th of January 2011

SOMERSET DAM AND WIVENHOE DAM CATCHMENTS:
Forecast of catchment average rainfall for the 24 hour period to 9 am Wednesday: $10-15 \mathrm{~mm}$ generally, isolated weavier falls [-40 mm]

NORTH PINE DAM CATCHMENT
Forecast of catchment average rainfalfor the 24 hour period to 9am Wednesday: $10-15 \mathrm{~mm}$, isolafed heavier falls [-40 mm]

APPENDIX C - QUANTITATIVE PRECIPITATION FORECASTS

Forecast 34

Date: Tuesday 18 January 2011
Time: 16:00

From: Aifs Operational Manager
Sent: Tuesday, January 18, 2011 4:00:05 PM
To: weather
Subject: BOM: SEQWB Quantitative Precipitation [SEC=UNCLASSIFIED]
Auto forwarded by a Rule
IDQ10003
BUREAU OF METEOROLOGY
Queensland Region
Brisbane Office

QUANTITATIVE PRECIPITATION FORECAST FOR SEQYBSUNWATER) Issued at 4:00pm EST on Tuesday the 18th of January 2 g

SOMERSET DAM AND WIVENHOE DAM CATCHM熙NTS:
Forecast of catchment average rainfall for the 24 hour period to 3 pm Wednesday: $20-25 \mathrm{~mm}$ generally, isolated heavier falls [$40-50 \mathrm{~mm}$]

NORTH PINE DAM CATCHMENT
Forecast of catchment average rainfalsor the 24 hour period to 3 pm Wednesday: $20-25 \mathrm{~mm}$, isodafed heavier falls [$40-50 \mathrm{~mm}$]

APPENDIX C - QUANTITATIVE PRECIPITATION FORECASTS

Forecast 35

Date: Wednesday 19 January 2011
Time: 10:43

From: Aifs Operational Manager
Sent: Wednesday, January 19, 2011 10:43:15 AM
To: weather
Subject: BOM: SEQWB Quantitative Precipitation [SEC=UNCLASSIFIED] Auto forwarded by a Rule

IDQ10003
BUREAU OF METEOROLOGY
Queensland Region
Brisbane Office

QUANTITATIVE PRECIPITATION FORECAST FOR SEQQVB/SUNWATER) Issued at 10:43am EST on Wednesday the 19th of Janyary 2011

SOMERSET DAM AND WIVENHOE DAM CATCHMENTS:
Forecast of catchment average rainfall for the 24 hour period to 10am Thursday: $15-25 \mathrm{~mm}$ generally, heavier falls to about 50 mm with storms

NORTH PINE DAM CATCHMENT
Forecast of catchment average rainfall tor the 24 hour period to
10am Thursday: $15-25 \mathrm{~mm}$ generally, heavier falls to about 50 mm with storms

APPENDIX C - QUANTITATIVE PRECIPITATION FORECASTS

Forecast 36

Date: Wednesday 19 January 2011
Time: 16:00

From: Aifs Operational Manager
Sent: Wednesday, January 19, 2011 4:00:04 PM
To: weather
Subject: BOM: SEQWB Quantitative Precipitation [SEC=UNCLASSIFIED] Auto forwarded by a Rule

IDQ10003
BUREAU OF METEOROLOGY
Queensland Region
Brisbane Office

QUANTITATIVE PRECIPITATION FORECAST FOR SEQYXBISUNWATER) Issued at $4: 00 \mathrm{pm}$ EST on Wednesday the 19th of Januark 2011

SOMERSET DAM AND WIVENHOE DAM CATCHM然NTS:
Forecast of catchment average rainfall for the 24 hour period to 4 pm Thursday: $15-25 \mathrm{~mm}$ generally, heavier fals to about 50 mm with storms

NORTH PINE DAM CATCHMENT
Forecast of catchment average rainfall for the 24 hour period to 4 pm Thursday: $15-25 \mathrm{~mm}$ generally S^{e} avier falls to about 50 mm with storms

APPENDIX D - CATCHMENT RAINFALL

Average rainfall for each subcatchment in the Brisbane Basin is determined by applying a weighting to the rainfall depth at each available station within the subcatchment.

Within the operational system, the Brisbane Basin is divided into the subcatchments shown in the Figure below.

The Somerset catchment represents the average catchment rainfall in the Stanley River to Somerset Dam.
The upper Brisbane River to Wivenhoe Dam, excluding the Somerset Dam catchment, is a weighted average of the upper and middle Brisbane catchments.

Two tables of catchment rainfall are provided; the first is of daily catchment rainfall in the 24 hours on the date show, while the second corresponds to critical periods listed in the operational strategy.

Period ending 09:00	Stanley		Upper Brisbane		Lockyer		Bremer		Lower	
	Period	Σ								
	mm									
6/01	21	21	27	27	30	30		${ }^{1}$	20	20
7/01	38	60	38	64	27	57	31	60	35	54
8/01	32	92	27	91	15	72	$\mathrm{O}^{1} 12$	72	10	65
9/01	56	147	21	112	5	76	3	75	9	74
10/01	225	373	131	244	66	<643	45	120	90	164
11/01	113	486	117	361	102	245	75	195	73	237
$12 / 01$	128	614	38	399	64	328	84	279	82	319
13/01	5	619	2	401	2	330	2	280	0	319

APPENDIX D - CATCHMENT RAINFALL

Figure 3 upper Brisbane River average houtly rainfall

APPENDIX D - CATCHMENT RAINFALL

Sure 4 Mid Brisbane River average hourly rainiall

Figure 5 Lockyer Creek average houly raintall

APPENDIX D - CATCHMENT RAINFALL

Figure 7 Lower Erisbane River average houtly rainfall

APPENDIXE-SITUATION REPORTS

Situation Report 1

Date: Thursday 6 January 2011
Time: 08:14

From: Duty Engineer
Sent: Thursday, 6 January 2011 8:14 AM
To: Distribution List
Subject: Situation Report 0800 06/01/2011

Rainfall

Since 9 am Wednesday, there have been widespread falls of 30 mm with isolated heavy falls up to 50 mm in the Somerset and Wivenhoe catchments. Totals in the North Pine catchment have generally been below 10 mm . Falls up to 60 mm were recorded in the Leslie Harrison catchment.

The forecast for the next 24 to 48 hours is for totals up to 150 mm in SE QId.
The catchments remain wet and are likely to generate additional runoff in the event of rain.

North Pine Dam

At 0700 Thursday, North Pine Dam was $39.60 \mathrm{~m}, 0.05 \mathrm{~m}$ below gate trigger level and having risen 0.18 m since $2 / 1 / 2011$ due to a combination of baseflow and runoff from rain in the last 24 hours.

Given the forecast rain, gate operations will commence tonight. MBRC will be advised this morning

Somerset Dam

At 0700 Thursday, Somerset Dam was $99.34 \mathrm{~m}, 0.34 \mathrm{~m}$ above FSL, and rising slowly. The rain in the Stanley River catchment has produced a small amount of runoff in the upper Stanley but there have been significant rises in Kilcoy Ck. Further regulator operations will be required later Thursday.

Wivenhoe Dam

At 0700 Thursday, Wivenhoe Dam was 67.31 m and rising slowly. This is 0.31 m above FSL and above the gate trigger level of 67.25 m . There have been rises recorded at rivers and stream upstream of Wivenhoe Dam. Gates will be opened in the next 24 hours to manage the inflows from the upper Brisbane River and the outflow from Somerset.

Impacts of Wivenhoe Dam Releases

Somerset Regional, Ipswich City and Brisbane City Councils will be advised of the potential for gate operations after a full assessment of the situation this morning. At this stage it is anticipated that peak releases from Wivenhoe will be below $500 \mathrm{~m} 3 / \mathrm{s}$ but this will depend on the forecast rain and flows downstream of the dam.
The expected Wivenhoe release and local flows will at least impact upon Twin Bridges, Savages Crossing, Kholo Bridge and Colleges Crossing for several days. At this stage,

APPENDIX E - SITUATION REPORTS

there are not expected to be any adverse impacts upon Fernvale Bridge, Burtons Bridge or Mt Crosby Weir Bridge

Leslie Harrison Dam

Following the heavy rainfall Wednesday night, gate operations commenced at Leslie Harrison Dam late Wednesday night and are continuing. Given the forecast rainfall, gate operations are expected to continue for the next 24 to 48 hours.

The next situation report will be issued at 1800 Thursday $6 / 1 / 2011$.
Engineer 2
Duty Engineer
Flood Operations Centre

Important information: This email and any attached information is intended only for the addressee and may contain confidential and/or privileged information. If you are not the addressee, you are notified that any transmission, distribution, or other use of this information is strictly prohibited. The confidentiality attached to this email is not waived, lost or destroyed by reasons of mistaken delivery to you. If you have received this email in error please contact the sender immediately and delete the material from your email system. QLD Bulk Water Supply Authority ABN75450239876 (Trading as Seqwater).

APPENDIX E - SITUATION REPORTS

Situation Report 2

Date: Thursday 6 January 2011
Time: 14:54

From: Duty Engineer
Sent: Thursday, 6 January 2011 14:54
To: Distribution List
Cc: Distribution List
Subject: Situation Report 1500 06/02/2011

Rainfall

In the 6 hours since 9 am Wednesday, there have been general totals around 30 mm with isolated heavy falls up to 60 mm in the Somerset and Wivenhoe catchments. Totals in the North Pine catchment have generally been between 20 and 30 mm . Falls between 20 and 30 mm were recorded in the Leslie Harrison catchment.

The forecast for the next 24 to 48 hours is for totals up to 100 mm in SE Qld.
The catchments remain wet and are likely to generate additional runoff in the event of rain.

North Pine Dam

At 1400 Thursday, North Pine Dam was $39.66 \mathrm{~m}, 0.01 \mathrm{~m}$ above gate trigger level. Gate operations will commence at 1900 Thursday and will impact upon Youngs Crossing. MBRC have been advised and will confirm closure of Youngs Crossing prior to gate operations. Given the forecast rainfall during Friday, gate operations may continue into Saturday.

Somerset Dam

At 0700 Thursday, Somerset Dam was $99.34 \mathrm{~m}, 0.34 \mathrm{~m}$ above FSL, and rising slowly. The rain in the Stanley River catchment has produced a small amount of runoff in the upper Stanley but there have been significant rises in Kilcoy Ck, adding to the Somerset inflows. Further regulator/sluice operations will be required in the next 24 to 48 hours. The estimated event inflow volume into Somerset Dam is $50,000 \mathrm{ML}$.

Wivenhoe Dam

At 0700 Thursday, Wivenhoe Dam was 67.31 m and rising slowly. This is 0.31 m above FSL and above the gate trigger level of 67.25 m . There have been rises recorded at rivers and stream upstream of Wivenhoe Dam. The estimated event inflow volume into Wivenhoe Dam is $180,000 \mathrm{ML}$ including Somerset Dam outflow.

There has been significant rainfalls in the Lockyer Ck catchment since 0900 Thursday and a peak of about $600 \mathrm{~m} 3 / \mathrm{s}$ is expected from the Lockyer late Friday. Wivenhoe gates will be opened after flood levels in the lower Lockyer subside. At this stage Wivenhoe releases during Saturday may be as high as $1,500 \mathrm{~m} 3 / \mathrm{s}$ and continue for a couple of days.

APPENDIX E - SITUATION REPORTS

Impacts of Wivenhoe Dam Releases

Somerset Regional, Ipswich City and Brisbane City Councils have been advised of the potential for gate operations during the next 24 hours.

The will at least impact upon Twin Bridges, Savages Crossing, Kholo Bridge and Colleges Crossing for several days. The relatively high Lockyer flows will at least impact upon Twin Bridges, Savages Crossing, Kholo Bridge and Colleges Crossing for several days and may impact upon Burtons Bridge early Saturday. At this stage, there are not expected to be any adverse impacts upon Fernvale Bridge or Mt Crosby Weir Bridge.

Leslie Harrison Dam

Following the heavy rainfall Wednesday night, gate operations commenced at Leslie Harrison Dam late Wednesday night and are continuing. Given the forecast rainfall, gate operations are expected to continue for the next 24 to 48 hours.

The next situation report will be issued at 1800 Thursday $6 / 1 / 2011$.

Engineer 2

Duty Engineer
Flood Operations Centre

Important information: This email and any attached information is intended only for the addressee and may contain confidential and/or privileged information. If you are not the addressee, you are notified that any transmission, distribution, or other use of this information is strictly prohibited. The confidentiality attached to this email is not waived, lost or destroyed by reasons of mistaken delivery to you. If you have received this email in error please contact the sender immediately and delete the material from your email system. QLD Bulk Water Supply Authority ABN75450239876 (Trading as Seqwater).

APPENDIX E - SITUATION REPORTS

Situation Report 3

Date: Thursday 6 January 2011
Time: 17:33

From: Duty Engineer
Sent: Thursday, 6 January 2011 5:33 PM
To: Distribution List
Subject: Situation Report 1800 06/01/2011

Rainfall

In the 8 hours since 9 am Wednesday, there have been general totals around 30 mm with isolated heavy falls up to 60 mm in the Somerset and Wivenhoe catchments. There have been significant rainfalls in the Lockyer Ck catchment in the last 24 hours with widespread falls of 50 mm and isolated falls up to 75 mm . Totals in the North Pine catchment have generally been about 30 mm . Falls between 20 and 30 mm were recorded in the Leslie Harrison catchment.

The forecast for the next 24 to 48 hours is for totals up to 100 mm in SE Qld.

North Pine Dam

At 1700 Thursday, North Pine Dam was $39.68 \mathrm{~m}, 0.03 \mathrm{~m}$ above gate trigger level. Gate operations will commence at 1900 Thursday and will impact upon Youngs Crossing. Moreton Bay Regional Council has been advised and will confirm closure of Youngs Crossing prior to gate operations. Given the forecast rainfall during Friday, gate operations may continue into Saturday.

Somerset Dam

At 1700 Thursday, Somerset Dam was $99.45 \mathrm{~m}, 0.45 \mathrm{~m}$ above FSL, and rising slowly. The rain in the Stanley River catchment has produced a small amount of runoff in the upper Stanley but there have been significant rises in Kilcoy Ck, adding to the Somerset inflows. Further regulator/sluice operations will be required in the next 24 to 48 hours. The estimated event inflow volume into Somerset Dam is $50,000 \mathrm{ML}$.

Wivenhoe Dam

At 1700 Thursday, Wivenhoe Dam was 67.39 m and rising slowly. This is 0.39 m above FSL and above the gate trigger level of 67.25 m . Upstream of the dam river levels are still rising at the Linville and Gregors Ck gauges. The estimated event inflow volume into Wivenhoe Dam is 180,000 ML including Somerset Dam outflow.

A peak of about $600 \mathrm{~m} 3 / \mathrm{s}$ is expected from the Lockyer late Friday. At this stage there is some uncertainty associated with this estimate and it may or may not impact Burtons Bridge. Wivenhoe gates will be opened after the impact of Lockyer flows on Burtons Bridge has been ascertained and flood levels in the lower Lockyer subside. At this stage Wivenhoe releases will commence late Friday/early Saturday and may be as high as $1,500 \mathrm{~m} 3 / \mathrm{s}$, similar to recent events, and continue for a couple of days.

APPENDIX E - SITUATION REPORTS

Impacts of Downstream of Wivenhoe

Somerset Regional, Ipswich City and Brisbane City Councils have been advised of the potential for gate operations during the next 24 hours.

The relatively high Lockyer flows will adversely impact upon Twin Bridges, Savages Crossing, Kholo Bridge and Colleges Crossing for several days and may impact upon Burtons Bridge early Saturday. At this stage, there are not expected to be any adverse impacts upon Fernvale Bridge or Mt Crosby Weir Bridge.

Leslie Harrison Dam

Following the heavy rainfall Wednesday night, gate operations commenced at Leslie Harrison Dam late Wednesday night and are continuing. Given the forecast rainfall, gate operations are expected to continue for the next 24 to 48 hours.

The next situation report will be issued at 0600 Friday $7 / 1 / 2011$.
Engineer 2
Duty Engineer
Flood Operations Centre

Important information: This email and any attached information is intended only for the addressee and may contain confidential and/or privileged information. If you are not the addressee, you are notified that any transmission, distribution, or other use of this information is strictly prohibited. The confidentiality attached to this email is not waived, lost or destroyed by reasons of mistaken delivery to you. If you have received this email in error please contact the sender immediately and delete the material from your email system. QLD Bulk Water Supply Authority ABN75450239876 (Trading as Seqwater).

APPENDIX E - SITUATION REPORTS

Situation Report 4

Date: Friday 7 January 2011
Time: 12:15

From: Duty Engineer
Sent: Friday, 7 January 2011 12:15 PM
To: Distribution List
Subject: SitRep
There has been falls between 15 and 30 mm in the North Pine catchment in the last 3 hours. This will cause renew rises and increased inflows.

There are no gate movements projected for the next 3 hours.

Engineer 2

Duty Engineer

Flood Operations Centre

Important information: This email and any attached information is intended only for the addressee and may contain confidential and/or privileged information. If you are not the addressee, you are notified that any transmission, distribution, or other use of this information is strictly prohibited. The confidentiality attached to this email is not waived, lost or destroyed by reasons of mistaken delivery to you. If you have received this email in error please contact the sender immediately and delete the material from your email system. QLD Bulk Water Supply Authority ABN75450239876 (Trading as Seqwater).

APPENDIX E - SITUATION REPORTS

Situation Report 5

Date: Friday 7 January 2011
Time: 17:57

From: Duty Engineer
Sent: Friday, 7 January 2011 5:57 PM
To: Distribution List
Subject: Situation Report 1800 Friday 07/01/2011

Rainfall

Since 0900 Friday, there has been widespread 20 to 40 mm throughout North Pine, Somerset and Wivenhoe catchments with isolated higher totals of 70 mm in the upper reaches of the Brisbane R.

Advice from BoM indicates that SE Qld can expect further high rainfall totals over the next 4 days.

Saturday: Rain light at times $15-50 \mathrm{~mm}$ with higher falls along the coast
Sunday: Widespread rain with totals between $50-100 \mathrm{~mm}$
Monday: Widespread rain again with totals between $50-100 \mathrm{~mm}$
Tuesday: Rain easing with totals between $25-50 \mathrm{~mm}$
Given the saturated conditions of the catchments, significant inflows to Seqwater dams will be generated, especially following the forecast rainfall on Sunday/Monday

North Pine (Full Supply Level 39.60 m AHD)

At 1700 Friday, North Pine currently has 5 gates open releasing runoff from rain on Wed/Thursday. Given the very high likelihood of significant runoff during the next 4 days, gates will be keep open to match inflows over the next few days, rather than opening and closing at various times with short notice. Youngs Crossing will remain adversely impacted for the duration of the gates being open. Moreton Bay Regional Council has been advised and concurs with this strategy.

Somerset (Full Supply Level 99.00 m AHD)
At 1700 Friday, Somerset Dam level was 100.04 m AHD and rising steadily with one regulator open 100%. However, as the Wivenhoe headwater level is rising and may impact upon the operation of the regulator, this will be closed in the next few hours and a sluice gate opened. However, this strategy may need to be reviewed if significant runoff occurs in the Stanley and Upper Brisbane. Under circumstances of high inflows to Somerset and Wivenhoe, it is the usual practice to hold flood water in Somerset until there is a high level of confidence in the estimated inflows to Wivenhoe.

Since the commencement of the event on 02/01/2011, approximately $55,000 \mathrm{ML}$ has flowed into Somerset Dam with a further $25,000 \mathrm{ML}$ expected based on the recorded rainfall to date. Approximately $16,000 \mathrm{ML}$ has been released into Wivenhoe.

APPENDIX E - SITUATION REPORTS

Wivenhoe (Full Supply Level 67.00 m AHD)

At 1700 Friday, Wivenhoe Dam was 68.10 m AHD and rising steadily with one gate open to 1.5 metres and releasing about $168 \mathrm{~m} 3 / \mathrm{s}$. River levels upstream of Wivenhoe Dam were rising again, generating further inflow to the dam It is intended to ramp up the release from Wivenhoe to about $1,200 \mathrm{~m} 3 / \mathrm{s}$ during the next 18 hours. However, given the high likelihood of significant inflows in the next week, this may be increased later on the weekend.

Since the commencement of the event on 02/01/2011, approximately $140,000 \mathrm{ML}$ has flowed into Wivenhoe Dam with a further 160,000ML expected (including Somerset release) based on the recorded rainfall to date. Approximately $24,000 \mathrm{ML}$ has been released from Wivenhoe via the hydro and regulator at about $50 \mathrm{~m} 3 / \mathrm{s}$.

Impacts downstream of Wivenhoe

The projected Wivenhoe release of $1,200 \mathrm{~m} 3 / \mathrm{s}$ combined with Lockyer flows and local runoff will mean that all crossings downstream of Wivenhoe (Twin Bridges, Savages Crossing, Burtons Bridge, Kholo Bridge and Colleges Crossing) will be adversely impacted for several days. At this stage Fernvale and Mt Crosby Weir Bridge are not expected to be affected.

Discussions were held with Brisbane City Council and BoM with all agencies agreeing that the combined flow in the lower Brisbane R will only add 50 mm to an upper limit of 100 mm to the recorded water levels in the City Reach of the Brisbane River. However, it is noted that tides in the lower Brisbane R will be 0.4 to 0.5 metres higher than predicted tides

Somerset Regional, Ipswich City and Brisbane City Councils have been advised of the Wivenhoe operating strategy.

Leslie Harrison

Given its proximity to the coast Leslie Harrison is likely to be most impacted by the forecast rain over the next 4 days.

Engineer 2
Duty Engineer
Flood Operations Centre

Important information: This email and any attached information is intended only for the addressee and may contain confidential and/or privileged information. If you are not the addressee, you are notified that any transmission, distribution, or other use of this information is strictly prohibited. The confidentiality attached to this email is not waived, lost or destroyed by reasons of mistaken delivery to you. If you have received this email in error please contact the sender immediately and delete the material from your email system. QLD Bulk Water Supply Authority ABN75450239876 (Trading as Seqwater).

APPENDIX E - SITUATION REPORTS

Situation Report 6

Date: Friday 7 January 2011
Time: 18:59

From: Duty Engineer
Sent: Friday, 7 January 2011 6:59 PM
To: Distribution List
Cc: Distribution List
Subject: SitRep Clarification
BCC pointed out that they have not done any analysis and do not necessarily agree with the 50 to 100 mm but have accepted the BoM and Seqwater estimate.

Engineer 2
Duty Engineer
Flood Operations Centre

Important information: This email and any attached information is intended only for the addressee and may contain confidential and/or privileged information. If you are not the addressee, you are notified that any transmission, distribution, or other use of this information is strictly prohibited. The confidentiality attached to this email is not waived, lost or destroyed by reasons of mistaken delivery to you. If you have received this email in error please contact the sender immediately and delete the material from your email system. QLD Bulk Water Supply Authority ABN75450239876 (Trading as Seqwater).

APPENDIX E - SITUATION REPORTS

Situation Report 7

Date: Saturday 8 January 2011
Time: 06:32

From: Duty Engineer
Sent: Saturday, 8 January 2011 6:32 AM
To: Distribution List
Subject: Situation Report 0600 Saturday 08/01/2011

Rainfall

Since 0900 Friday, there has been widespread 20 to 40 mm throughout North Pine, Somerset and Wivenhoe catchments with isolated higher totals of 70 mm in the upper reaches of the Brisbane R. No significant rain has fallen in the past 12 hours.

Advice from BoM indicates that SE Qid can expect further high rainfall totals over the next 4 days.

Saturday: Rain light at times $5-50 \mathrm{~mm}$ with higher falls along the coast
Sunday: Widespread rain with totals between $50-100 \mathrm{~mm}$
Monday: Widespread rain again with totals between $50-100 \mathrm{~mm}$
Tuesday: \quad Rain easing with totals between $25-50 \mathrm{~mm}$
Given the saturated conditions of the catchments, significant inflows to Seqwater dams will be generated, especially following the forecast rainfall on Sunday/Monday

North Pine (Full Supply Level 39.60 m AHD)
At 0600 Saturday, North Pine Lake Level was 39.46 m AHD and slowly rising. Currently 3 gates are open to release runoff from rain on Wed/Thursday/Friday. Given the very high likelihood of significant runoff during the next 4 days, gates will be keep open to match inflows over the next few days, rather than opening and closing at various times with short notice. Youngs Crossing will remain adversely impacted for the duration of the gates being open. Moreton Bay Regional Council has been advised and concurs with this strategy.

Somerset (Full Supply Level 99.00 m AHD)

At 0500 Saturday, Somerset Dam level was 100.42 m AHD and rising. The Dam is releasing into Wivenhoe through one open sluice gate. Water will be temporarily held in Somerset to allow the inflow from the upper Brisbane is passed through the system. However, this strategy may need to be reviewed if significant runoff occurs in the Stanley and Upper Brisbane. Under circumstances of high inflows to Somerset and Wivenhoe, it is the usual practice to hold flood water in Somerset until there is a high level of confidence in the estimated inflows to Wivenhoe.

Since the commencement of the event on 02/01/2011, approximately $85,000 \mathrm{ML}$ has flowed into Somerset Dam with a further $20,000 \mathrm{ML}$ expected based on the recorded rainfall to date. Approximately $25,000 \mathrm{ML}$ has been released into Wivenhoe.

Wivenhoe (Full Supply Level 67.00 m AHD)

APPENDIX E-SITUATION REPORTS

At 0600 Saturday, Wivenhoe Dam was 68.45 m AHD and rising steadily with all five gates open and releasing about $890 \mathrm{~m} 3 / \mathrm{s}$. River levels upstream of Wivenhoe Dam were rising again, generating further inflow to the dam It is intended to ramp up the release from Wivenhoe to $1,200 \mathrm{~m} 3 / \mathrm{s}$ by midday Saturday $08 / 01 / 2011$. Further assessments will be undertaken to determine increases above this level. However, given the high likelihood of significant inflows in the next week, this may be increased.

Since the commencement of the event on 02/01/2011, approximately $200,000 \mathrm{ML}$ has flowed into Wivenhoe Dam (including Somerset releases) with a further 180,000ML expected based on the recorded rainfall to date. Approximately $50,000 \mathrm{ML}$ has been released from Wivenhoe via the hydro and regulator at about $50 \mathrm{~m} 3 / \mathrm{s}$.

Impacts downstream of Wivenhoe

The projected Wivenhoe release of $1,200 \mathrm{~m} 3 / \mathrm{s}$ combined with Lockyer flows and local runoff will mean that all crossings downstream of Wivenhoe (Twin Bridges, Savages Crossing, Burtons Bridge, Kholo Bridge and Colleges Crossing) will be adversely impacted for several days. At this stage Fernvale and Mt Crosby Weir Bridge are not expected to be affected but they could potentially be affected if the predicted rainfall totals eventuate.

The current available assessments indicate that the combined flow in the lower Brisbane R would only add 50 mm to an upper limit of 100 mm to the recorded water levels in the City Reach of the Brisbane Rive. However, it is noted that tides in the lower Brisbane R will be 0.4 to 0.5 metres higher than predicted tides

Somerset Regional, Ipswich City and Brisbane City Councils have been advised of the Wivenhoe operating strategy.

Engineer 3

Duty Engineer
Flood Operations Centre
Important information: This email and any attached information is intended only for the addressee and may contain confidential and/or privileged information. If you are not the addressee, you are notified that any transmission, distribution, or other use of this information is strictly prohibited. The confidentiality attached to this email is not waived, lost or destroyed by reasons of mistaken delivery to you. If you have received this email in error please contact the sender immediately and delete the material from your email system. QLD Bulk Water Supply Authority ABN75450239876 (Trading as Seqwater).

APPENDIX E - SITUATION REPORTS

Situation Report 8

Date: Saturday 8 January 2011
Time: 14:22

From: Duty Engineer
Sent: Saturday, 8 January 2011 2:22 PM
To: Distribution List
Subject: Seqwater Situation Report at 12:00 on Saturday 8 January 2011
Peter
I have added you to the distribution list of the Situation Report for Seqwater dams. This is distributed every 12 hours (approximately) during gate releases. Let me know if you do not wish to get this.

Rainfall

No significant rain has fallen over the dam catchments in the past 18 hours.
Advice from BoM indicates that SE Qld can expect further high rainfall totals over the next 4 days.

Saturday: Rain light at times 5 - 50 mm with higher falls along the coast
Sunday: Widespread rain with totals between $50-100 \mathrm{~mm}$
Monday: \quad Widespread rain again with totals between $50-100 \mathrm{~mm}$
Tuesday: \quad Rain easing with totals between $25-50 \mathrm{~mm}$
Given the saturated conditions of the catchments, significant inflows to Seqwater dams will be generated, especially following the forecast rainfall on Sunday/Monday.

North Pine (Full Supply Level 39.60 m AHD)

At 1200 Saturday, North Pine Lake Level was 39.46 m AHD and is steady. Currently 2 gates are open to release runoff generated from rainfall over the last three days. Given the very high likelihood of significant runoff during the next 4 days, gates will be kept open to match inflows over the next few days, rather than opening and closing at various times with short notice. Lake Kurwongbah spillway flows are also contributing to the adverse impacts experienced at Youngs Crossing.

Youngs Crossing will remain adversely impacted for the duration of the gates being open.
Moreton Bay Regional Council has been advised and concurs with this strategy.

Somerset (Full Supply Level 99.00 m AHD)

At 1000 Saturday, Somerset Dam level peaked at 100.47 m AHD and is now slowly falling. At 1200 it is now 100.45 m . Somerset Dam is releasing into Wivenhoe through two open sluice gates and over the fixed crest at a rate of about $415 \mathrm{~m} 3 / \mathrm{s}$.

Since the commencement of the event on 02/01/2011, approximately $91,000 \mathrm{ML}$ has flowed into Somerset Dam with a further $20,000 \mathrm{ML}$ expected based on the recorded rainfall to date. Approximately $29,000 \mathrm{ML}$ has been released into Wivenhoe.

APPENDIX E - SITUATION REPORTS

Wivenhoe (Full Supply Level 67.00 m AHD)

At 1200 Saturday, Wivenhoe Dam was 68.60 m AHD and rising steadily with all five gates open and releasing about $1,150 \mathrm{~m} 3 / \mathrm{s}$. River levels upstream of Wivenhoe Dam have peaked and are now receding. However the further inflows into the dam has led to elevated levels It is intended to increase the release from Wivenhoe to $1,250 \mathrm{~m} 3 / \mathrm{s}$ by $14: 00$ on Saturday $08 / 01 / 2011$. This will maintain flows of up to $1,600 \mathrm{~m} 3 / \mathrm{s}$ in the midBrisbane River throughout the afternoon.
Further assessments will be undertaken to determine increases above this level given the high likelihood of significant inflows in the next few days. The interaction with runoff from the Bremer River and Warrill Creek catchment will also be assessed to determine an appropriate release strategy. Projections based upon the forecast rainfalls suggest flows of up to $1,200 \mathrm{~m} 3 / \mathrm{s}$ will emanate from the Bremer River catchment.

Since the commencement of the event on 02/01/2011, approximately 202,000ML has flowed into Wivenhoe Dam (including Somerset releases) with a further 210,000ML expected based on the recorded rainfall to date. Approximately $66,000 \mathrm{ML}$ has been released from Wivenhoe via the radial gates, hydro and regulator.

Impacts downstream of Wivenhoe

The projected Wivenhoe release of $1,250 \mathrm{~m} 3 / \mathrm{s}$ and combined with Lockyer flows and local runoff will mean that all low level crossings downstream of Wivenhoe (Twin Bridges, Savages Crossing, Burtons Bridge, Kholo Bridge and Colleges Crossing) will be adversely impacted for several days. At this stage Fernvale and Mt Crosby Weir Bridge are not expected to be affected, but they could potentially be affected if the predicted rainfall totals eventuate and higher releases from Wivenhoe Dam are considered necessary.

The current available assessments indicate that the combined flow in the lower Brisbane River would only add 50 mm to an upper limit of 100 mm to the recorded water levels in the City Reach of the Brisbane River. However, it is noted that tides in the lower Brisbane R will be 0.4 to 0.5 metres higher than predicted tides. The tide level at the Port Office Gauge at 1200 Saturday was 1.56 m and rising.

Somerset Regional, Ipswich City and Brisbane City Councils have been advised of the Wivenhoe operating strategy.

Regards
Engineer 1
Duty Engineer
Flood Operations Centre

Important information: This email and any attached information is intended only for the addressee and may contain confidential and/or privileged information. If you are not the addressee, you are notified that any transmission, distribution, or other use of this information is strictly prohibited. The confidentiality attached to this email is not waived, lost or destroyed by reasons of mistaken delivery to you. If you have received this email in error please contact the sender immediately and delete the material from your email system. QLD Bulk Water Supply Authority ABN75450239876 (Trading as Seqwater).

APPENDIX E - SITUATION REPORTS

Situation Report 9

Date: Sunday 9 January 2011
Time: 17:51

From: Duty Engineer
Sent: Sunday, 9 January 2011 5:51 PM
To: Distribution List
Cc: Distribution List
Subject: Situation Report 1700 Sunday 9/1/2011

Rainfall

Catchment average rainfall for the past 12 hours is; North Pine Dam (60 mm); Somerset Dam (150 mm); Wivenhoe Dam (80 mm). The bulk of the rain that has fallen in the upper reaches of the Stanley and Brisbane Rivers.

The BOM rainfall forecast for the next few days is:-
Monday: Very heavy rain periods with totals up to 300 mm centred around North
Pine.
Tuesday: \quad Rain periods with totals up to 150 mm centred around North Pine.
Wednesday A few showers less than 10 mm
Thursday A shower or two.
Friday A shower or two.
Saturday Mostly fine.
A severe whether warning remains current for heavy rainfall in the dam catchment areas. The dam catchments are relatively saturated and significant inflows will be generated if the forecast rainfall eventuates.

North Pine Dam (Full Supply Level 39.60 m AHD)

The dam level is currently 39.65 m AHD and rising at 1600 . Following the rain in the 9 hours, the number of open gates has been increased from 2 to 5 which are expected to remain open for the next 12 hours. Youngs Crossing will remain closed while releases are in progress.

Somerset Dam (Full Supply Level 99.00 m AHD)

The dam level is 100.75 m AHD and rising quickly. Estimated peak inflow to the dam is about $3,000 \mathrm{~m} 3 / \mathrm{s}$. Five sluice gates are open releasing about $1,100 \mathrm{~m} 3 / \mathrm{s}(95,000 \mathrm{Ml} / \mathrm{d})$ into Wivenhoe Dam. At this stage the dam will reach at least 101.5 during early Tuesday morning.

Since the commencement of the event on 02/01/2011approximately 80,000ML has been released from the dam, with an event total of at least $320,000 \mathrm{ML}$ based on the recorded rainfall to date. The event total is expected to increase significantly due to the forecast rain in the next 24 to 48 hours. At this stage, releases will continue until at least Wednesday.

Wivenhoe Dam (Full Supply Level 67.00 m AHD)

APPENDIX E - SITUATION REPORTS

The dam level is currently rising again, with the current level being 68.70 m AHD. Estimated peak inflow to the dam just from the Upper Brisbane R is about $5,000 \mathrm{~m} 3 / \mathrm{s}$ and, at this stage, the dam will reach at least 72.5 m AHD during Wednesday morning. River levels upstream of the dam are rising quickly with significant inflow being generated from the intense heavy rainfall. The current gate operation strategy will maintain flows of around $1,600 \mathrm{~m}^{3} / \mathrm{s}$ in the mid-Brisbane River for the next 24 hours. This may mean temporarily reducing releases from Wivenhoe Dam as Lockyer flows increase. However, releases may have to be increased significantly during Monday depending on the rain in the next 12 to 24 hours. The current release rate from Wivenhoe Dam is $1,400 \mathrm{~m} 3 / \mathrm{s}(120,000 \mathrm{ML} / \mathrm{day})$.

Since the commencement of the event on 02/01/2011 approximately $210,000 \mathrm{ML}$ has been released from the dam, with an event total approaching 1,000,000ML (including Somerset outflow) based on the recorded rainfall to date. The total release for the event is likely to increase over the next few days based on the current rainfall forecasts. At this stage, releases will continue until at least Saturday $15^{\text {th }}$ January 2011.

Impacts downstream of Wivenhoe Dam

The current Wivenhoe Dam release combined with Lockyer flows and local runoff will mean that all low level crossings downstream of Wivenhoe (Twin Bridges, Savages Crossing, Burtons Bridge, Kholo Bridge and Colleges Crossing) will be adversely impacted until at least Saturday 15 January.

At this stage Fernvale and Mt Crosby Weir Bridge will not be affected for the next 24 hours but there is a strong possibility that, if the predicted rainfall totals eventuate in the next 12 to 24 hours, higher releases from Wivenhoe Dam will be necessary. This may adversely impact upon Fernvale and Mt Crosby Weir Bridges as early as Tuesday morning.

Water levels in the lower Brisbane R will be impacted by the combined flows of Lockyer Ck , Bremer River, local runoff and releases from Wivenhoe Dam.

Somerset Regional, Ipswich City and Brisbane City Councils have been advised of the Wivenhoe operating strategy.

Engineer 2
Duty Engineer
Flood Operations Centre

Important information: This email and any attached information is intended only for the addressee and may contain confidential and/or privileged information. If you are not the addressee, you are notified that any transmission, distribution, or other use of this information is strictly prohibited. The confidentiality attached to this email is not waived, lost or destroyed by reasons of mistaken delivery to you. If you have received this email in error please contact the sender immediately and delete the material from your email system. QLD Bulk Water Supply Authority ABN75450239876 (Trading as Seqwater).

APPENDIX E - SITUATION REPORTS

Situation Report 10

Date: Sunday 9 January 2011
Time: 21:04

From: Duty Engineer
Sent: Sunday, 9 January 2011 9:04 PM
To: Distribution List
Cc: Distribution List
Subject: Situation Report 2100 9/01/2011
Importance: High

Rainfall

Very heavy rainfall has been recorded in the upper reaches of the Brisbane and Stanley in the last 6 hours with totals up 100 to 140 mm . Totals for the last 24 hours range from 100 to 300 mm .

Rainfall of similar magnitudes is expected in the 12 to 24 hours, especially around the Bremer/Warrill catchments as the system tracks south.

A severe weather warning remains current for heavy rainfall in the dam catchment areas.

Somerset Dam (Full Supply Level 99.00 m AHD)

The dam level is 101.68 m AHD (about $500,000 \mathrm{ML}$ currently in storage) and rising quickly. Peak inflow to the dam is estimated to be about $4,000 \mathrm{~m} 3 / \mathrm{s}$ based on observed rainfall and could be as high as $5,000 \mathrm{~m} 3 / \mathrm{s}$ with additional forecast rainfall. Five sluice gates are open releasing about $1,100 \mathrm{~m} 3 / \mathrm{s}(95,000 \mathrm{Ml} / \mathrm{d})$ into Wivenhoe Dam. At this stage the dam will reach at least 103.5 early Tuesday morning which will adversely impact areas around Kilcoy.

Since the commencement of the event on 02/01/2011approximately $100,000 \mathrm{ML}$ has been released from the dam into Wivenhoe, with an event total of the order of $520,000 \mathrm{ML}$ expected. This may increase due to the forecast rain in the next 24 to 48 hours. At this stage, releases will continue until at least Thursday.

Wivenhoe Dam (Full Supply Level 67.00 m AHD)

River levels upstream of the dam are rising quickly with significant inflow being generated from the intense heavy rainfall. Flows in the Brisbane River at Gregor's Ck have already reached $6,700 \mathrm{~m} 3 / \mathrm{s}$ and the river is still rising.

The dam level is rising again, with the current level being 69.10 m AHD $(1,410,000 \mathrm{ML}$ with about 300,00 of flood storage). Estimated peak inflow to the dam just from the Upper Brisbane R alone may reach as high as $7,500 \mathrm{~m} 3 / \mathrm{s}$ and, at this stage, the dam will reach at least 73.0 m AHD during Tuesday morning. Given the rapid increase in inflow volumes, it will be necessary to increase the release from Wivenhoe Monday morning.

The objective for dam operations will be to minimise the impact of urban flooding in areas downstream of the dam and, at this stage, releases will be kept below $3,500 \mathrm{~m} 3 / \mathrm{s}$ and the

APPENDIX E - SITUATION REPORTS

combined flows is the lower Brisbane will be limited to $4,000 \mathrm{~m} 3 / \mathrm{s}$. This is below the limit of urban damages in the City reaches.

The current release rate from Wivenhoe Dam is $1,400 \mathrm{~m} 3 / \mathrm{s}(120,000 \mathrm{ML} / \mathrm{day})$. Gate opening will start to be increased from noon Monday and the release is expected increase to at least $2,600 \mathrm{~m} 3 / \mathrm{s}$ during Tuesday morning.

Since the commencement of the event on 02/01/2011 approximately $220,000 \mathrm{ML}$ has been released from the dam, with an event total approaching $1,000,000 \mathrm{ML}$ without further rain and as much as $1,500,000 \mathrm{ML}$ with forecast rainfall of (both including Somerset outflow). At this stage, releases will continue until at least Sunday $16^{\text {th }}$ January 2011.

Impacts downstream of Wivenhoe Dam

The projected Wivenhoe Dam releases combined with Lockyer flows and local runoff will mean that all crossings downstream of Wivenhoe (Twin Bridges, Fernvale, Savages Crossing, Burtons Bridge, Kholo Bridge, Mt Crosby Weir and Colleges Crossing) will be adversely impacted until at least Saturday 15 January in varying degrees.

Water levels in the lower Brisbane R will be impacted by the combined flows of Lockyer Ck , Bremer River, local runoff and releases from Wivenhoe Dam.

Somerset Regional, Ipswich City and Brisbane City Councils have been advised of the updated Wivenhoe operating strategy.

Engineer 2
Duty Engineer
Flood Operations Centre

Important information: This email and any attached information is intended only for the addressee and may contain confidential and/or privileged information. If you are not the addressee, you are notified that any transmission, distribution, or other use of this information is strictly prohibited. The confidentiality attached to this email is not waived, lost or destroyed by reasons of mistaken delivery to you. If you have received this email in error please contact the sender immediately and delete the material from your email system. QLD Bulk Water Supply Authority ABN75450239876 (Trading as Seqwater).

APPENDIX E - SITUATION REPORTS

Situation Report 11

Date: Monday 10 January 2011
Time: 01:14

From: Duty Engineer
Sent: Monday, 10 January 2011 1:14 AM
To: Distribution List
Cc: Distribution List
Subject: FOC Situation Report at 01:00 hrs on Monday 10 January 2011

Rainfall

Very heavy rainfall has been recorded in the Upper Brisbane and Stanley Rivers in the last 12 hours with totals up 100 to 240 mm . Totals for the last 24 hours range from 100 to 300 mm .

Rainfall of similar magnitudes is expected in the 12 to 24 hours around the downstream catchments as the system tracks south.

A severe weather warning remains current for heavy rainfall in the dam catchment areas.

North Pine Dam (Full Supply Level 39.60 m AHD)

The dam level was 39.95 m and steady. Five gates are open releasing $445 \mathrm{~m} 3 / \mathrm{s}$. The inflow into the dam since the commencement of the event is $42,000 \mathrm{ML}$. Estimated event volume is $57,000 \mathrm{ML}$ assuming no further rainfall. Gate operations will continue until at least Tuesday 11 January 2011.

Somerset Dam (Full Supply Level 99.00 m AHD)

The dam level is 102.22 m AHD and rising quickly (storing 157,000 ML above FSL). Peak inflow to the dam is estimated to be about $4,200 \mathrm{~m} 3 / \mathrm{s}$ based on observed rainfall and could be as high as $5,000 \mathrm{~m} 3 / \mathrm{s}$ with additional forecast rainfall. Five sluice gates are open releasing about $1,100 \mathrm{~m} 3 / \mathrm{s}(95,000 \mathrm{M} / \mathrm{d})$ into Wivenhoe Dam. At this stage the dam will reach at least 103.5 on Monday afternoon which will adversely impact areas around Kilcoy.

Since the commencement of the event on 02/01/2011approximately $115,000 \mathrm{ML}$ has been released from the dam into Wivenhoe, with an event total of the order of $520,000 \mathrm{ML}$ expected. This is expected to increase due to the forecast rain in the next 24 to 48 hours. At this stage, releases will continue until at least Thursday.

Wivenhoe Dam (Full Supply Level 67.00 m AHD)

River levels upstream of the dam are rising quickly with significant inflow being generated from the intense heavy rainfall. Flows in the Brisbane River at Gregor's Ck have already reached $7,350 \mathrm{~m} 3 / \mathrm{s}$ and the river has just peaked at 23:00 on Sunday 9 January.

The dam level is rising quickly, with the current level being 69.60m AHD (storing 301,000 ML). Estimated peak inflow to the dam just from the Upper Brisbane R alone may reach

APPENDIX E - SITUATION REPORTS

as high as $8,800 \mathrm{~m} 3 / \mathrm{s}$ and, at this stage, the dam will reach at least 73.3 m AHD during Tuesday morning. Given the rapid increase in inflow volumes, it will be necessary to increase the release from Wivenhoe during Monday morning.

The objective for dam operations will be to minimise the impact of urban flooding in areas downstream of the dam and, at this stage, releases will be kept below 3,500m3/s and the combined flows in the lower Brisbane will be limited to $4,000 \mathrm{~m} 3 / \mathrm{s}$ if possible.

Fernvale Bridge approaches and Mt Crosby Weir Bridge have been inundated and both bridges are now closed or are in the process of being closed.

The current release rate from Wivenhoe Dam is $1,400 \mathrm{~m} 3 / \mathrm{s}(120,000 \mathrm{ML} / \mathrm{day})$. Gate opening will start to be increased during early Monday morning and the release is expected to increase to at least $2,600 \mathrm{~m} 3 / \mathrm{s}$.

Since the commencement of the event on 02/01/2011 approximately $240,000 \mathrm{ML}$ has been released from the dam, with an event total approaching $1,500,000 \mathrm{ML}$ without further rain and as much as $2,100,000 \mathrm{ML}$ with forecast rainfall of (both including Somerset outflow). At this stage, releases will continue until at least Sunday $16^{\text {th }}$ January 2011.

Impacts downstream of Wivenhoe Dam

The projected Wivenhoe Dam releases combined with Lockyer flows and local runoff will mean that all crossings downstream of Wivenhoe (Twin Bridges, Fernvale, Savages Crossing, Burtons Bridge, Kholo Bridge, Mt Crosby Weir and Colleges Crossing) will be adversely impacted until at least Saturday 15 January in varying degrees.

Water levels in the lower Brisbane R will be impacted by the combined flows of Lockyer Ck , Bremer River, local runoff and releases from Wivenhoe Dam. If the predicted rainfall eventuates in the downstream tributary catchments the resultant combined flows in the lower Brisbane may exceed the threshold of damaging discharge in the urban areas within the next 24 to 48 hours.

Somerset Regional, Ipswich City and Brisbane City Councils have been advised of the updated Wivenhoe operating strategy.

Regards

Engineer 3

Duty Engineer
Flood Operations Centre

Important information: This email and any attached information is intended only for the addressee and may contain confidential and/or privileged information. If you are not the addressee, you are notified that any transmission, distribution, or other use of this information is strictly prohibited. The confidentiality attached to this email is not waived, lost or destroyed by reasons of mistaken delivery to you. If you have received this email in error please contact the sender immediately and delete the material from your email system. QLD Bulk Water Supply Authority ABN75450239876 (Trading as Seqwater).

APPENDIX E - SITUATION REPORTS

Situation Report 12

Date: Monday 10 January 2011
Time: 06:30

From: Duty Engineer
Sent: Monday, 10 January 2011 6:30 AM
To: Distribution List
Cc: Distribution List
Subject: FOC Situation Report at 06:00 on Monday 10 January 2011

Rainfall

Moderate to heavy rainfall has been recorded in the Upper Brisbane and Stanley Rivers in the last 12 hours with totals up to 90 mm . Totals for the last 24 hours range from 100 to 325 mm .

Mt Glorious recorded 100 mm in the last 12 hours.
Rainfall of similar magnitudes is expected in the 12 to 24 hours around the downstream catchments as the system tracks south.

A severe weather warning remains current for heavy rainfall in the dam catchment areas.

North Pine Dam (Full Supply Level 39.60 m AHD)

The dam level was 39.97 m and steady. Five gates are open releasing $475 \mathrm{~m} 3 / \mathrm{s}$. The inflow into the dam since the commencement of the event is $52,000 \mathrm{ML}$. Estimated event volume is $72,000 \mathrm{ML}$ assuming no further rainfall. Gate operations will continue until at least Tuesday 11 January 2011.

Somerset Dam (Full Supply Level 99.00 m AHD)

The dam level at 05:00 was 102.84 m AHD and rising (storing 193,000 ML above FSL). Peak inflow to the dam is estimated to be about $4,200 \mathrm{~m} 3 / \mathrm{s}$ based on observed rainfall and could be as high as $5,000 \mathrm{~m} 3 / \mathrm{s}$ with additional forecast rainfall. Five sluice gates are open releasing about $1,100 \mathrm{~m} 3 / \mathrm{s}(95,000 \mathrm{Ml} / \mathrm{d})$ into Wivenhoe Dam. At this stage the dam lake level will reach about 103.5 mAHD on Monday afternoon. Areas around Kilcoy will continue to be adversely affected.

Since the commencement of the event on 02/01/2011approximately $142,000 \mathrm{ML}$ has been released from the dam into Wivenhoe, with an event total of the order of $520,000 \mathrm{ML}$ expected. This is expected to increase due to the forecast rain in the next 24 to 48 hours. At this stage, releases will continue until at least Thursday.

Wivenhoe Dam (Full Supply Level 67.00 m AHD)

River levels upstream of the dam have peaked and are falling slowly with significant inflow being generated from the intense heavy rainfall. Flows in the Brisbane River at Gregor's Ck have peaked at $7,350 \mathrm{~m} 3 / \mathrm{s}$ at 23:00 on Sunday 9 January. This peak is bigger than January 1974 and February 1999 at this location.

APPENDIX E - SITUATION REPORTS

The dam level is rising quickly, with the current level being 70.77m AHD (storing 450,000 ML). Estimated peak inflow to the dam just from the Upper Brisbane R is around $8,800 \mathrm{~m} 3 / \mathrm{s}$ and, at this stage, the dam will reach at least 73.3 m AHD during Tuesday morning. Given the rapid increase in inflow volumes, it was necessary to start to increase the release from Wivenhoe during Monday morning.

The objective for dam operations will be to minimise the impact of urban flooding in areas downstream of the dam and, at this stage, releases will be kept below $3,500 \mathrm{~m} 3 / \mathrm{s}$ and the combined flows in the lower Brisbane will be limited to $4,000 \mathrm{~m} 3 / \mathrm{s}$ if possible. This is significantly less than the current estimated combined pre-dam peak inflow of 12,000 $\mathrm{m} 3 / \mathrm{s}$.

Fernvale Bridge approaches and Mt Crosby Weir Bridge have been inundated and both bridges are now closed.

The current release rate from Wivenhoe Dam is $1,753 \mathrm{~m} 3 / \mathrm{s}(150,000 \mathrm{ML} / \mathrm{day})$. Gate opening will continue to be increased during Monday and the release is expected to increase to at least $2,600 \mathrm{~m} 3 / \mathrm{s}$ in the next 12 to 24 hours.

Since the commencement of the event on 02/01/2011 approximately $275,000 \mathrm{ML}$ has been released from the dam, with an event total approaching $1,600,000 \mathrm{ML}$ without further rain and as much as $2,100,000 \mathrm{ML}$ with forecast rainfall of (both including Somerset outflow). At this stage, releases will continue until at least Sunday $16^{\text {th }}$ January 2011.

Impacts downstream of Wivenhoe Dam

The projected Wivenhoe Dam releases combined with Lockyer flows and local runoff will mean that all crossings downstream of Wivenhoe (Twin Bridges, Fernvale, Savages Crossing, Burtons Bridge, Kholo Bridge, Mt Crosby Weir and Colleges Crossing) will be adversely impacted until at least Saturday 15 January in varying degrees.

Water levels in the lower Brisbane R will be impacted by the combined flows of Lockyer Ck, Bremer River, local runoff and releases from Wivenhoe Dam. If the predicted rainfall eventuates in the downstream tributary catchments the resultant combined flows in the lower Brisbane may exceed the threshold of damaging discharge in the urban areas within the next 24 to 48 hours. Currently the estimate peak flow in the lower Brisbane River will be the highest since Wivenhoe Dam was completed in 1984 but still well below flows the 1974 levels. Somerset Regional, Ipswich City and Brisbane City Councils have been advised of the updated Wivenhoe operating strategy.

Outlook

Heavy rainfall continues throughout South East Queensland and the situation could deteriorate rapidly over the next 24 hours. The flood operation centre will continue to monitor the situation and provide every six hours until the situation stabilizes.

Engineer 3

Duty Engineer
Flood Operations Centre
Important information: This email and any attached information is intended only for the addressee and may contain confidential and/or privileged information. If you are not the addressee, you are notified that any transmission, distribution, or other use of this information is strictly prohibited. The confidentiality attached to this email is not waived,

APPENDIX E - SITUATION REPORTS

lost or destroyed by reasons of mistaken delivery to you. If you have received this email in error please contact the sender immediately and delete the material from your email system. QLD Bulk Water Supply Authority ABN75450239876 (Trading as Seqwater).

Situation Report 13

Date: Monday 10 January 2011
Time: 12:16

From: Duty Engineer
Sent: Monday, 10 January 2011 12:16 PM
To: Distribution List
Cc: Distribution List
Subject: FOC Situation Report at 12:00 on Monday 10 January 2011

Rainfall

Rainfall has continued in the dam catchments over the last 6 hours, with approximate catchment averages as follows: North Pine (30mm); Wivenhoe Dam (20 mm); Somerset Dam (40 mm). A severe weather warning remains current for heavy rainfall in the dam catchment areas. The QPF issued by BOM at 10:00 estimates rainfalls for the 24 hours to 10:00 Tuesday as North Pine Dam (75 mm to 150 mm); Wivenhoe/Somerset Dam Catchments ($50 \mathrm{~mm}-100 \mathrm{~mm}$).

North Pine Dam (Full Supply Level 39.60 m AHD)

The dam level is 40.00 m AHD and relatively steady (storing $9,000 \mathrm{ML}$ above FSL). Five gates are open and releasing $500 \mathrm{~m} 3 / \mathrm{s}$. The inflow into the dam since the commencement of the event is $63,000 \mathrm{ML}$. Estimated event volume is $77,000 \mathrm{ML}$ assuming no further rainfall. Gate operations will continue until at least Wednesday 12 January 2011.

Somerset Dam (Full Supply Level 99.00 m AHD)

The dam level is 103.11 m AHD and rising (storing $210,000 \mathrm{ML}$ above FSL). Peak inflow to the dam is estimated to be about $4,200 \mathrm{~m} 3 / \mathrm{s}$. Five sluice gates are open releasing about $1,100 \mathrm{~m} 3 / \mathrm{s}(95,000 \mathrm{ML} / \mathrm{day})$ into Wivenhoe Dam. At this stage the dam lake level will reach about 103.5 m AHD on Monday afternoon. Areas around Kilcoy will continue to be adversely affected.

Since the commencement of the event on 02/01/2011approximately 182,000ML has been released from the dam into Wivenhoe, with an event total of the order of $520,000 \mathrm{ML}$ expected. This is expected to increase due to the forecast rain in the next 24 to 48 hours. At this stage, releases will continue until at least Thursday 13 January 2011.

Wivenhoe Dam (Full Supply Level 67.00 m AHD)

The dam level is 71.95 m AHD and rising quickly (storing $610,000 \mathrm{ML}$ above FSL). Peak inflow to the dam is estimated to be about $8,800 \mathrm{~m} 3 / \mathrm{s}$. Five radial gates are open releasing about $2000 \mathrm{~m} 3 / \mathrm{s}(170,000 \mathrm{ML} / \mathrm{day})$ into the Brisbane River. At this stage, the dam will reach about 73.5 m AHD during Tuesday morning. Flows in the Brisbane River above the dam at Gregor's Creek peaked at $7,350 \mathrm{~m} 3 / \mathrm{s}$ and this peak is bigger than both the January 1974 and February 1999 flood events at this location.

The objective for dam operations is to minimise the impact of urban flooding in areas downstream of the dam and the current aim is to keep river flows in the lower Brisbane River below $3,500 \mathrm{~m} 3 / \mathrm{s}$ if possible. This is significantly less than the current estimated combined pre-dam peak inflow of $12,000 \mathrm{~m} 3 / \mathrm{s}$.

APPENDIX E - SITUATION REPORTS

Since the commencement of the event on 02/01/2011 approximately $325,000 \mathrm{ML}$ has been released from the dam, with an event total approaching $1,600,000 \mathrm{ML}$ without further rain and as much as $2,100,000 \mathrm{ML}$ with forecast rainfall of (both including Somerset outflow). At this stage, releases will continue until at least Sunday 16 January 2011.

The volume between the expected peak (73.5 m AHD) and the level at which the safety of the dam becomes the primary objective in managing flood releases (74.0 m AHD) is $75,000 \mathrm{ML}$. The volume between the expected peak (73.5 m AHD) and initiation of the first Fuse Plug is $330,000 \mathrm{ML}$.

Impacts downstream of Wivenhoe Dam

The projected Wivenhoe Dam releases combined with Lockyer Creek flows and local runoff will mean that all crossings downstream of Wivenhoe (Twin Bridges, Fernvale, Savages Crossing, Burtons Bridge, Kholo Bridge, Mt Crosby Weir and Colleges Crossing) will be adversely impacted until at least Saturday 15 January in varying degrees.

Water levels in the lower Brisbane River will be impacted by the combined flows of Lockyer Creek, Bremer River, local runoff and releases from Wivenhoe Dam. If the predicted rainfall eventuates in the downstream tributary catchments the resultant combined flows in the lower Brisbane may exceed the threshold of damaging discharge in the urban areas within the next 24 to 48 hours. Currently the estimate peak flow in the lower Brisbane River will be the highest since Wivenhoe Dam was completed in 1984 but still well below flows the 1974 levels.

Somerset Regional, Ipswich City and Brisbane City Councils have been advised of the updated Wivenhoe operating strategy.

Outlook

Heavy rainfall continues throughout South East Queensland and the situation could deteriorate rapidly over the next 24 hours. The flood operation centre will continue to monitor the situation and provide every six hours until the situation stabilizes.

Engineer 2
Duty Engineer
Flood Operations Centre
Important information: This email and any attached information is intended only for the addressee and may contain confidential and/or privileged information. If you are not the addressee, you are notified that any transmission, distribution, or other use of this information is strictly prohibited. The confidentiality attached to this email is not waived, lost or destroyed by reasons of mistaken delivery to you. If you have received this email in error please contact the sender immediately and delete the material from your email system. QLD Bulk Water Supply Authority ABN75450239876 (Trading as Seqwater).

APPENDIX E - SITUATION REPORTS

Situation Report 14

Date: Monday 10 January 2011
Time: 18:43

From: Duty Engineer
Sent: Monday, 10 January 2011 6:43 PM
To: Distribution List
Cc: Distribution List
Subject: FOC Situation Report at 18:00 on Monday 10 January 2011

Rainfall

Only minor rainfall has been experienced in the North Pine Dam and Somerset Dam catchments with a catchment averages of less than 20 mm .

However, significant rain has fallen in the Wivenhoe Dam catchment over the last 6 hours, with isolated falls exceeding 100 mm . This rainfall has significantly increase inflows into the dam. A severe weather warning remains current for heavy rainfall in the dam catchment areas. The QPF issued by BOM at 10:00 estimates rainfalls for the 24 hours to $10: 00$ Tuesday as North Pine Dam (25 mm to 50 mm , with isolated falls to 100 mm); Wivenhoe/Somerset Dam Catchments (25 mm to 50 mm , with isolated falls to 100 mm). Potentially significant rain moving towards the dam catchments is currently evident on the BOM radar.

North Pine Dam (Full Supply Level 39.60 m AHD)

The dam level is 39.84 m AHD and falling slowly (storing $9,000 \mathrm{ML}$ above FSL). Five gates are open and releasing $362 \mathrm{~m} 3 / \mathrm{s}$. The inflow into the dam since the commencement of the event is $72,000 \mathrm{ML}$. Estimated event volume is $84,000 \mathrm{ML}$ assuming no further rainfall. Releases from the dam will continue until at least Wednesday 12 January 2011.

Somerset Dam (Full Supply Level 99.00 m AHD)

The dam level is 103.46 m AHD and rising slowly. Peak inflow to the dam is estimated to be about $4,200 \mathrm{~m} 3 / \mathrm{s}$. Total discharge into Wivenhoe Dam is currently $1700 \mathrm{~m} 3 / \mathrm{s}$ and this discharge will decrease slowly in the next 24 hours to be around $1200 \mathrm{~m} 3 / \mathrm{s}$ late Tuesday. The dam level will peak at 103.5 m AHD in the next few hours, unless further significant rainfall is experienced. Areas around Kilcoy will continue to be adversely affected.

Wivenhoe Dam (Full Supply Level 67.00 m AHD)

The dam level is 72.92 m AHD and rising quickly. Releases from the dam have been increased over the last 3 hours in accordance with Flood Mitigation procedures and to ensure that a fuse plug is not initiated. The initiation of a fuse plug will result in a rapid uncontrolled outflow from the dam of $2,000 \mathrm{~m} 3 / \mathrm{s}$ being added to the gate release outflow. Outflows into the Brisbane River from both Lockyer Creek and the Bremer River are also increasing. The flash flooding experienced in the upper areas of Lockyer Creek have been examined and are not expected to significantly increase Brisbane River flows above the current projection of $4000 \mathrm{~m} 3 / \mathrm{s}$ at Moggill.

APPENDIX E - SITUATION REPORTS

Five radial gates are currently open at the dam releasing about $2,400 \mathrm{~m} 3 / \mathrm{s}$ into the Brisbane River and this will need to be increased steadily to an outflow of $2,800 \mathrm{~m} 3 / \mathrm{s}$. At this stage, the dam will reach about 73.8 m AHD during Tuesday morning.

The objective for dam operations is currently to minimise the impact of urban flooding in areas downstream of the dam and to keep river flows in the lower Brisbane River below $4,000 \mathrm{~m} 3 / \mathrm{s}$ if possible. This is significantly less than the current estimated combined predam peak inflow of $12,000 \mathrm{~m} 3 / \mathrm{s}$. If further rainfall occurs, dam releases may need to be increased further and this may result in river flows in the lower Brisbane River approaching or exceeding $5,000 \mathrm{~m} 3 / \mathrm{s}$.

Impacts downstream of Wivenhoe Dam

The projected Wivenhoe Dam releases combined with Lockyer Creek flows and local runoff will mean that all crossings downstream of Wivenhoe (Twin Bridges, Fernvale, Savages Crossing, Burtons Bridge, Kholo Bridge, Mt Crosby Weir and Colleges Crossing) will be adversely impacted until at least Sunday 16 January in varying degrees.

Water levels in the lower Brisbane River will be impacted by the combined flows of Lockyer Creek, Bremer River, local runoff and releases from Wivenhoe Dam.

Outlook

Heavy rainfall continues throughout South East Queensland and the situation could deteriorate rapidly over the next 24 hours. The flood operation centre will continue to monitor the situation and provide every six hours until the situation stabilizes.

Engineer 2
Duty Engineer
Flood Operations Centre

Important information: This email and any attached information is intended only for the addressee and may contain confidential and/or privileged information. If you are not the addressee, you are notified that any transmission, distribution, or other use of this information is strictly prohibited. The confidentiality attached to this email is not waived, lost or destroyed by reasons of mistaken delivery to you. If you have received this email in error please contact the sender immediately and delete the material from your email system. QLD Bulk Water Supply Authority ABN75450239876 (Trading as Seqwater).

APPENDIX E - SITUATION REPORTS

Situation Report 15

Date: Monday 10 January 2011
Time: 23:56

From: Duty Engineer
Sent: Monday, 10 January 2011 11:56 PM
To: Distribution List
Cc: Distribution List
Subject: FOC Situation Report at 00:00 Tuesday 11 January 2011

Rainfall

Rainfall continues in the North Pine Dam, Somerset Dam and Wivenhoe Dam catchments with falls of generally less than 20 mm since 18:00 today. However, some isolated falls in the Upper Brisbane River of up to 110 mm have been recorded at Monsildale in this time. This rainfall will increase inflows into the dam.

A severe weather warning remains current for heavy rainfall in the dam catchment areas. The QPF issued by BOM at 16:00 estimates rainfalls for the 24 hours to 10:00 Tuesday as North Pine Dam (25 mm to 50 mm , with isolated falls to 100 mm); Wivenhoe/Somerset Dam Catchments (25 mm to 50 mm , with isolated falls to 100 mm).

North Pine Dam (Full Supply Level 39.60 m AHD)

The dam level is 39.80 m AHD and falling slowly (storing 4,400ML above FSL). Five gates are open, releasing $153 \mathrm{~m} 3 / \mathrm{s}$. The inflow into the dam since the commencement of the event is $74,000 \mathrm{ML}$. Estimated event volume is $84,000 \mathrm{ML}$ assuming no further rainfall. Releases from the dam will continue until at least Wednesday 12 January 2011.

Somerset Dam (Full Supply Level 99.00 m AHD)

The dam level is 103.40 m AHD and falling slowly. Peak inflow to the dam is estimated to be about $4,200 \mathrm{~m} 3 / \mathrm{s}$. Total discharge into Wivenhoe Dam is currently $1700 \mathrm{~m} 3 / \mathrm{s}$ and this discharge will decrease slowly in the next 24 hours to be around $1200 \mathrm{~m} 3 / \mathrm{s}$ late Tuesday. The dam level peaked at 103.52m AHD at 19:00 on Monday 10 January 2011, unless further significant rainfall is experienced. Areas around Kilcoy will continue to be adversely affected.

Wivenhoe Dam (Full Supply Level 67.00 m AHD)

The dam level is 73.22 m AHD and rising at about $50 \mathrm{~mm} /$ hour. Releases from the dam have been held at a rate of $2,750 \mathrm{~m} 3 / \mathrm{s}$ since 19:30 hours. Outflows into the Brisbane River from both Lockyer Creek and the Bremer River are also increasing.

The BoM has provided further advice about the flash flooding experienced in the upper areas of Lockyer Creek. The rainfall responsible for this event was not observed at any rainfall stations but it is considered to be very significant. Flood levels in the Lockyer Creek catchment will exceed maximum recorded levels in some stations in the upper catchment. This flow may result in increases in Brisbane River levels below the junction of Lockyer Creek.

APPENDIX E - SITUATION REPORTS

Five radial gates are currently open at the dam releasing about $2,750 \mathrm{~m} 3 / \mathrm{s}$ into the Brisbane River. At this stage, the dam will reach about 73.8m AHD during Tuesday afternoon.

The objective for dam operations is currently to minimise the impact of urban flooding in areas downstream of the dam and to keep river flows in the lower Brisbane River below $4,000 \mathrm{~m} 3 / \mathrm{s}$ if possible. This is significantly less than the current estimated combined predam peak inflow of $12,000 \mathrm{~m} 3 / \mathrm{s}$. If further rainfall occurs, dam releases may need to be increased further and this may result in river flows in the lower Brisbane River approaching or exceeding $5,000 \mathrm{~m} 3 / \mathrm{s}$.

Impacts downstream of Wivenhoe Dam

The projected Wivenhoe Dam releases combined with Lockyer Creek flows and local runoff will mean that all crossings downstream of Wivenhoe (Twin Bridges, Fernvale, Savages Crossing, Burtons Bridge, Kholo Bridge, Mt Crosby Weir and Colleges Crossing) will be adversely impacted until at least Sunday 16 January in varying degrees.

Water levels in the lower Brisbane River will be impacted by the combined flows of Lockyer Creek, Bremer River, local runoff and releases from Wivenhoe Dam.

The BoM will provide further information regarding the magnitude of the flash flood event occurring in Lockyer Creek early Tuesday morning. Consideration will be given to modifying the releases from Wivenhoe Dam to try to moderate the peak flows emanating from Lockyer Creek.

Outlook

Heavy rainfall continues throughout South East Queensland and the situation could deteriorate over the next 24 hours. The flood operation centre will continue to monitor the situation and provide situation reports every six hours until the situation stabilizes.

Regards

Engineer 1

Duty Engineer
Flood Operations Centre

Important information: This email and any attached information is intended only for the addressee and may contain confidential and/or privileged information. If you are not the addressee, you are notified that any transmission, distribution, or other use of this information is strictly prohibited. The confidentiality attached to this email is not waived, lost or destroyed by reasons of mistaken delivery to you. If you have received this email in error please contact the sender immediately and delete the material from your email system. QLD Bulk Water Supply Authority ABN75450239876 (Trading as Seqwater).

APPENDIX E - SITUATION REPORTS

Situation Report 16

Date: Tuesday 11 January 2011
Time: 06:12

From: Duty Engineer
Sent: Tuesday, 11 January 2011 6:12 AM
To: Distribution List
Cc: Distribution List
Subject: FOC Situation Report at 06:00 on Tuesday 11 January 2011

Rainfall

Rainfall continues in the North Pine Dam, Somerset Dam and Wivenhoe Dam catchments. Isolated falls in the Upper Brisbane River of up to 125 mm have been recorded with widespread falls of 40 to 70 mm in the Somerset Dam catchment. This rainfall will increase inflows into the dam.

There has also been 20 to 60 mm in the Lockyer Creek catchment in the last 12 hours with falls of up to 30 mm in the Bremer River.

A severe weather warning remains current for heavy rainfall in the dam catchment areas. The QPF issued by BOM at 16:00 estimates rainfalls for the 24 hours to 10:00 Tuesday as North Pine Dam (25 mm to 50 mm , with isolated falls to 100 mm); Wivenhoe/Somerset Dam Catchments (25 mm to 50 mm , with isolated falls to 100 mm).

North Pine Dam (Full Supply Level 39.60 m AHD)

The dam level is 39.80 m AHD and has commenced rising again (storing 4,400ML above FSL). Five gates are open releasing $177 \mathrm{m3} / \mathrm{s}$. The inflow into the dam since the commencement of the event is $77,000 \mathrm{ML}$. Estimated event volume is $88,000 \mathrm{ML}$ assuming no further rainfall. Releases from the dam will continue until at least Wednesday 12 January 2011.

Somerset Dam (Full Supply Level 99.00 m AHD)

The dam level is 103.27 m AHD and falling slowly. Peak inflow to the dam is estimated to be about $4,200 \mathrm{~m} 3 / \mathrm{s}$. Total discharge into Wivenhoe Dam is currently $1400 \mathrm{~m} 3 / \mathrm{s}$ and this discharge will be decreased in the next few hours to be around $500 \mathrm{m3} / \mathrm{s}$ later on Tuesday. This is to ensure that the combined flood mitigation capacity in Somerset and Wivenhoe Dam is maximized.

The dam level peaked at 103.52 m AHD at 19:00 on Monday 10 January 2011, (unless further significant rainfall is experienced). Areas around Kilcoy will continue to be adversely affected.

Wivenhoe Dam (Full Supply Level 67.00 m AHD)

The dam level is 73.51 m AHD and rising at about $25 \mathrm{~mm} /$ hour. Releases from the dam have been held at a rate of $2,750 \mathrm{~m} 3 / \mathrm{s}$ since 19:30 hours on Monday 10 January 2011. Outflows into the Brisbane River from both Lockyer Creek and the Bremer River are also increasing.

APPENDIX E - SITUATION REPORTS

The BoM has provided further advice about the flash flooding experienced in the upper areas of Lockyer Creek. The rainfall responsible for this event was not observed at any rainfall stations but it is considered to be extreme. Flood levels in the Lockyer Creek catchment will exceed maximum recorded levels in some stations in the upper catchment. This flow will result in increases in Brisbane River levels below the junction of Lockyer Creek.

Five radial gates are currently open at the dam releasing about $2,750 \mathrm{~m} 3 / \mathrm{s}$ into the Brisbane River. At this stage, the dam will reach just over 74.0 m AHD during Tuesday evening.

Above EL 74.0m AHD the objective for dam operations is to maintain the security of the dam and minimise downstream flood flows if possible.

If further rainfall occurs, dam releases may need to be increased further and this may result in river flows in the lower Brisbane River approaching or exceeding 5,000m3/s.

Impacts downstream of Wivenhoe Dam

The projected Wivenhoe Dam releases combined with Lockyer Creek flows and local runoff will mean that all crossings downstream of Wivenhoe (Twin Bridges, Fernvale, Savages Crossing, Burtons Bridge, Kholo Bridge, Mt Crosby Weir and Colleges Crossing) will be adversely impacted until at least Sunday 16 January in varying degrees.

Water levels in the lower Brisbane River will be impacted by the combined flows of Lockyer Creek, Bremer River, local runoff and releases from Wivenhoe Dam.

The BoM will provide further information regarding the magnitude of the flash flood event occurring in Lockyer Creek early Tuesday morning. Consideration was given to modifying the releases from Wivenhoe Dam to try to moderate the peak flows emanating from Lockyer Creek but the rainfall in the past 12 hours in the catchment above the dam makes this option not possible. Therefore instead of decreasing releases to accommodate the Lockyer Creek flows, the strategy will endeavour to maintain the current releases until Lockyer Creek peaks.

Outlook

Heavy rainfall continues throughout South East Queensland and the situation could deteriorate over the next 24 hours. The flood operation centre will continue to monitor the situation and provide situation reports every six hours until the situation stabilizes.

Duty Engineer
Flood Operations Centre

Important information: This email and any attached information is intended only for the addressee and may contain confidential and/or privileged information. If you are not the addressee, you are notified that any transmission, distribution, or other use of this information is strictly prohibited. The confidentiality attached to this email is not waived, lost or destroyed by reasons of mistaken delivery to you. If you have received this email in error please contact the sender immediately and delete the material from your email system. QLD Bulk Water Supply Authority ABN75450239876 (Trading as Seqwater).

APPENDIX E - SITUATION REPORTS

Situation Report 17

Date: Tuesday 11 January 2011
Time: 12:11

From: Duty Engineer
Sent: Tuesday, 11 January 2011 12:11 PM
To: Distribution List
Subject: SitRep 1200 11/1/2011

Somerset/Wivenhoe

Our current strategy revolves around trying to prevent initiation of the first fuse plug at EL 75.6 m . If this happens we will get a rapid increase of about $2,000 \mathrm{~m} 3 / \mathrm{s}$ in outflow from the dam in addition to the gate release which could be as high as 4,500 to $5,000 \mathrm{~m} 3 / \mathrm{s}$ at the time. However, it may be that fuse plug initiation might provide a lower outflow than increasing the gate outflow to protect it. In this case, we would adopt an alternate scenario.

Sluices have been closed at Somerset and this will result in high upstream water levels affecting Kilcoy.

1. With no further rainfall, Wivenhoe will approach 75.0 m AHD and there will be an attempt to limit the dam outflow to $4,500 \mathrm{~m} 3 / \mathrm{s}$, however this strategy currently being reviewed on an hour by hour basis. The release will be $4,000 \mathrm{~m} 3 / \mathrm{s}$ by 1300 .
2. With 50 mm rainfall in the Stanley and Upper Brisbane in the next 12 to 24 hours, the release will need to be significantly increased to be in the order $6,000 \mathrm{~m} 3 / \mathrm{s}$.

It should be noted that the flow in the lower Brisbane River in 1974 was about $9,500 \mathrm{~m} 3 /$ s
Wivenhoe has lost incoming mains power and are on backup power. Energex are attempting to rectify.

North Pine

Inflows and outflows are increasing very rapid and will exceed 2,000m3/s.
Duty Engineer
Flood Operations Centre
Important information: This email and any attached information is intended only for the addressee and may contain confidential and/or privileged information. If you are not the addressee, you are notified that any transmission, distribution, or other use of this information is strictly prohibited. The confidentiality attached to this email is not waived, lost or destroyed by reasons of mistaken delivery to you. If you have received this email in error please contact the sender immediately and delete the material from your email system. QLD Bulk Water Supply Authority ABN75450239876 (Trading as Seqwater).

APPENDIX E - SITUATION REPORTS

Situation Report 18

Date: Tuesday 11 January 2011
Time: 18:00

From: Duty Engineer
Sent: Tuesday, 11 January 2011 6:00 PM
To: Distribution List
Subject: Situation Report 180012 January 2011
In the last twelve hours totals of up to 370 mm have fallen in the area around Wivenhoe Dam. In the last hour, rainfalls between 15 and 30 mm have been recorded in the same area. At 1600 , the BoM advised that falls between 50 to 100 mm are still forecast for the 24 hrs to 1600 Wednesday 12 January 2011 for the North Pine and Somerset/Wivenhoe catchments.

At 1730 Wivenhoe Dam was 74.92 m AHD and rising slowly and releasing about 6,700m3/s.

The current expectation is that the dam will reach a steady state (outflow equals inflow) within the next 3 hours without further significant rainfall. At this time, release from the dam will be about $8,000 \mathrm{~m} 3 / \mathrm{s}$.

If there is no further rainfall, it may be possible to then slowly reduce this release overnight.

The dam is expected to peak below 75.5 m AHD which is 100 mmm below the first fuse plug initiation level.

Note that the automatic recorder as indicated on the BoM website is affected by drawdown and is not reflecting the actual lake level and tendency.

The Flood Operations Centre is continuing to monitor rainfalls and water levels through the Brisbane and Pine catchments and reviewing operating strategy every 30 minutes. The FOC is also maintaining close contact with warning agencies and local councils.

The next report will be issued at 210012 January 2011.

Engineer 2
Duty Engineer
Flood Operations Centre

Important information: This email and any attached information is intended only for the addressee and may contain confidential and/or privileged information. If you are not the addressee, you are notified that any transmission, distribution, or other use of this information is strictly prohibited. The confidentiality attached to this email is not waived, lost or destroyed by reasons of mistaken delivery to you. If you have received this email in error please contact the sender immediately and delete the material from your email system. QLD Bulk Water Supply Authority ABN75450239876 (Trading as Seqwater).

APPENDIX E - SITUATION REPORTS

Situation Report 19

Date: Wednesday 12 January 2011
Time: 05:49

From: Duty Engineer
Sent: Wednesday, 12 January 2011 5:49 AM
To: Distribution List
Subject: Situation Report 0600 Wed 12/01/2011
No significant rain has fallen over the catchments in the past twelve hours. Less than 10 to 15 millimeters of rainfall is expected over the next $24-48$ hours.

Wivenhoe Dam peaked on the $11^{\text {th }}$ January, Tuesday night at 19:00 at 74.97 mAHD with a corresponding discharge of $7,450 \mathrm{~m} 3 / \mathrm{s}$. The release have now been scaled back to $4,300 \mathrm{~m} 3 / \mathrm{s}$ at 05:00 am. Wivenhoe Dam is currently 74.77 m AHD and falling slowly.

The releases from Wivenhoe Dam will be temporarily reduced to $2,500 \mathrm{~m} 3 / \mathrm{s}$ to allow the peak of Lockyer Creek to enter the Brisbane River, after which they will be increased to maximum of $3,500 \mathrm{~m} 3 / \mathrm{s}$. This release will then be maintained to drain the flood storage component within the required 7 days.

Somerset Dam is at 105.10 mAHD and slowly rising. The dam is discharging $1,230 \mathrm{~m} 3 / \mathrm{s}$ over the spillway. The dam is expected to peak this morning near its current level. Sluice gates will be utilised to assist the draining of the flood storage compartment commencing on Thursday. The combined flood event volume in Somerset and Wivenhoe Dams is estimated to be in excess of 2 million megalitres.

North Pine Dam is currently releasing $105 \mathrm{~m} 3 / \mathrm{s}$ through five gates. At 17:00 the lake was 39.78 mAHD . The event has a volume of around $200,000 \mathrm{ML}$. The peak discharge from the dam was $2,800 \mathrm{~m} 3 / \mathrm{s}$. This is categorised as an extreme event in the order of 1 in 10,000.

The Flood Operations Centre is continuing to monitor rainfalls and water levels through the Brisbane and Pine catchments and reviewing operating strategy every 30 minutes. The FOC is also maintaining close contact with warning agencies and local councils.

The next report will be issued at 08:00 12 January 2011.
Regards

Engineer 1
Duty Engineer
Flood Operations Centre
Important information: This email and any attached information is intended only for the addressee and may contain confidential and/or privileged information. If you are not the addressee, you are notified that any transmission, distribution, or other use of this information is strictly prohibited. The confidentiality attached to this email is not waived, lost or destroyed by reasons of mistaken delivery to you. If you have received this email in

APPENDIX E - SITUATION REPORTS

error please contact the sender immediately and delete the material from your email system. QLD Bulk Water Supply Authority ABN75450239876 (Trading as Seqwater).

APPENDIX E - SITUATION REPORTS

Situation Report 20

Date: Wednesday 12 January 2011
Time: 07:57

From: Duty Engineer
Sent: Wednesday, 12 January 2011 7:57 AM
To: Distribution List
Subject: RE: Situation Report 0800 Wed 12/01/2011

Rainfall

No significant rain has fallen over the catchments in the past twelve hours. Less than 10 to 15 millimeters of rainfall is expected over the next 24-48 hours.

Somerset/Wivenhoe

Somerset Dam has peaked at 105.11 mAHD at 06:00 on 12 January 2011 and the dam is discharging $1,230 \mathrm{~m} 3 / \mathrm{s}$ over the spillway. Sluice gates will be utilised to assist the draining of the flood storage compartment commencing later Wednesday.

Wivenhoe Dam peaked at 74.97 mAHD at 19:00 on 11 January 2011 with a corresponding discharge of $7,450 \mathrm{~m} 3 / \mathrm{s}$. Wivenhoe Dam was 74.75 m AHD at 07:30 and generally falling slowly.

The releases from Wivenhoe Dam have been temporarily reduced to $2,500 \mathrm{~m} 3 / \mathrm{s}$ at 07:30 to allow the peak of Lockyer Creek to enter the Brisbane River. After the downstream peak in the lower Brisbane River has passed, releases will be increased to maximum of $3,500 \mathrm{~m} 3 / \mathrm{s}$. This release will then be maintained to drain the flood storage component within the required 7 days.

The combined flood event volume in Somerset and Wivenhoe Dams is estimated to be in excess of 2 million megalitres.

North Pine

At 07:00 North Pine Dam was 39.78 mAHD falling and releasing about $105 \mathrm{~m} 3 / \mathrm{s}$. North Pine has peaked at 41.11 mAHD at 14:00 on 11 January 1974 with peak release of 2,800 $\mathrm{m} 3 / \mathrm{s}$. The event has a volume of around $200,000 \mathrm{ML}$. It is expected that gates will be close later Wednesday or early Thursday.

Strategy

The Flood Operations Centre is continuing to monitor rainfalls and water levels through the Brisbane and Pine catchments and reviewing operating strategy every 30 minutes. The FOC is maintaining close contact with warning agencies and local councils.

The next report will be issued at 12:00 12 January 2011.

Regards

APPENDIX E - SITUATION REPORTS

Engineer 2

Duty Engineer
Flood Operations Centre

Important information: This email and any attached information is intended only for the addressee and may contain confidential and/or privileged information. If you are not the addressee, you are notified that any transmission, distribution, or other use of this information is strictly prohibited. The confidentiality attached to this email is not waived, lost or destroyed by reasons of mistaken delivery to you. If you have received this email in error please contact the sender immediately and delete the material from your email system. QLD Bulk Water Supply Authority ABN75450239876 (Trading as Seqwater).

APPENDIX E - SITUATION REPORTS

Situation Report 21

Date: Wednesday 12 January 2011
Time: 15:18

From: Duty Engineer
Sent: Wednesday, 12 January 2011 3:18 PM
To: Distribution List
Cc: Distribution List
Subject: Situation Report 1500 Wed 12/01/2011

Rainfall

Rainfall in the last 12 hours is generally below 5 mm with a couple of 10 mm falls in the Stanley and North Pine catchments. There is no significant rain expected fin the next 4 days.

Somerset/Wivenhoe

Somerset Dam has peaked at 105.11 mAHD at 06:00 on 12 January 2011. One sluice was opened at 103012 January 2011 and the dam is discharging $1,440 \mathrm{~m} 3 / \mathrm{s}$. Sluice gates will be utilised to drain of the flood storage compartment during the next 5 days.

Wivenhoe Dam peaked at 74.97 mAHD at 19:00 on 11 January 2011 with a corresponding discharge of $7,450 \mathrm{~m} 3 / \mathrm{s}$. Wivenhoe Dam was 74.81 m AHD at 15:00 and steady.

The releases from Wivenhoe Dam have been temporarily reduced to $2,500 \mathrm{~m} 3 / \mathrm{s}$ at 07:30 12 January 2011 to allow the peak of Lockyer Creek to enter the Brisbane River. After the downstream peak in the lower Brisbane River has passed, releases will be increased to maximum of $3,500 \mathrm{~m} 3 / \mathrm{s}$. This release will then be maintained to drain the flood storage component within the required 7 days.

The combined flood event volume in Somerset and Wivenhoe Dams is estimated to be in excess of 2 million megalitres.

North Pine

At 15:00 North Pine Dam was 39.74 mAHD falling with all gates open 1 increment, releasing about $80 \mathrm{~m} 3 / \mathrm{s}$. North Pine peaked at 41.11 mAHD at 14:00 on 11 January 1974 with peak release of $2,800 \mathrm{~m} 3 / \mathrm{s}$. The event has a volume of around $200,000 \mathrm{ML}$. It is expected that gates will be closed on Thursday or Thursday.

Strategy

The Flood Operations Centre is continuing to monitor rainfalls and water levels through the Brisbane and Pine catchments and reviewing operating strategy every 30 minutes. The FOC is maintaining close contact with warning agencies and local councils.

The next report will be issued at 18:00 12 January 2011.
Regards

APPENDIX E - SITUATION REPORTS

Engineer 2

Duty Engineer
Flood Operations Centre
Important information: This email and any attached information is intended only for the addressee and may contain confidential and/or privileged information. If you are not the addressee, you are notified that any transmission, distribution, or other use of this information is strictly prohibited. The confidentiality attached to this email is not waived, lost or destroyed by reasons of mistaken delivery to you. If you have received this email in error please contact the sender immediately and delete the material from your email system. QLD Bulk Water Supply Authority ABN75450239876 (Trading as Seqwater).

APPENDIX E - SITUATION REPORTS

Situation Report 22

Date: Wednesday 12 January 2011
Time: 17:57

From: Duty Engineer
Sent: Wednesday, 12 January 2011 5:57 PM
To: Distribution List
Cc: Distribution List
Subject: Situation Report 1800 Wed 12/01/2011

Rainfall

Rainfall in the last 12 hours is generally below 5 mm with a couple of 10 mm falls in the Stanley and North Pine catchments. There is no significant rain expected fin the next 4 days.

Somerset/Wivenhoe

Somerset Dam has peaked at 105.11 mAHD at 06:00 on 12 January 2011. One sluice was opened at 103012 January 2011. Somerset Dam was 104.87 mAHD at 170012 January 2011 and discharging $1,410 \mathrm{~m} 3 / \mathrm{s}$. Sluice gates will be utilised to drain of the flood storage compartment during the next 5 days.

Wivenhoe Dam peaked at 74.97 mAHD at 19:00 on 11 January 2011 with a corresponding discharge of $7,450 \mathrm{~m} 3 / \mathrm{s}$. Wivenhoe Dam was 74.82 m AHD at 17:00 and steady.

The release from Wivenhoe Dam was reduced to $2,500 \mathrm{m3} / \mathrm{s}$ at 07:30 12 January 2011 to allow the peak of Lockyer Creek to enter the Brisbane River and this release has been maintained since. After the downstream peak in the lower Brisbane River has passed, releases will be increased to maximum of $3,500 \mathrm{~m} 3 / \mathrm{s}$. The release is expected to commence Thursday and then be maintained at this level to drain the flood storage component within the required 7 days. The releases will not result in any renewed rises at downstream locations.

The combined flood event volume in Somerset and Wivenhoe Dams is estimated to be 2.6 million megalitres.

North Pine

At 17:00 North Pine Dam was 39.74 mAHD steady with all gates open 1 increment, releasing about $80 \mathrm{~m} 3 / \mathrm{s}$. North Pine peaked at 41.11 mAHD at 14:00 on 11 January 1974 with peak release of $2,800 \mathrm{~m} 3 / \mathrm{s}$. The event has a volume of around $200,000 \mathrm{ML}$. It is expected that gates will be closed on Thursday or Friday.

Strategy

The Flood Operations Centre is continuing to monitor rainfalls and water levels through the Brisbane and Pine catchments and reviewing operating strategy regularly. The FOC is maintaining close contact with warning agencies and local councils.

APPENDIX E - SITUATION REPORTS

The next report will be issued at 06:00 13 January 2011.

Regards

Engineer 2

Duty Engineer
Flood Operations Centre

Important information: This email and any attached information is intended only for the addressee and may contain confidential and/or privileged information. If you are not the addressee, you are notified that any transmission, distribution, or other use of this information is strictly prohibited. The confidentiality attached to this email is not waived, lost or destroyed by reasons of mistaken delivery to you. If you have received this email in error please contact the sender immediately and delete the material from your email system. QLD Bulk Water Supply Authority ABN75450239876 (Trading as Seqwater).

APPENDIX E - SITUATION REPORTS

Situation Report 23

Date: Thursday 13 January 2011
Time: 05:43

From: DutyEngineer
Sent: Thursday, 13 January 2011 5:43 AM
To: 'DutyEngineer'
Subject: Situation Report 060013 January 2011

Rainfall

Rainfall in the last 12 hours is generally below 5 mm with isolated falls of up to 15 mm in the Stanley, Lockyer and Pine River catchments. There is no significant rain expected fin the next 4 days.

Somerset/Wivenhoe

Somerset Dam peaked at 105.11 mAHD at 06:00 on Wednesday 12 January 2011. The current level is 104.34 mAHD. One sluice was opened at 10:30 on 12 January 2011 and the dam is currently discharging $1,130 \mathrm{~m} 3 / \mathrm{s}$. Sluice gates will be utilised to drain of the flood storage compartment during the next 5 days.

Wivenhoe Dam peaked at 74.97 mAHD at 19:00 on Tuesday 11 January 2011 with a corresponding discharge of $7,450 \mathrm{~m} 3 / \mathrm{s}$. Wivenhoe Dam was 74.72 m AHD at 06:00 and commence to fall slowly.

The releases from Wivenhoe Dam have been temporarily reduced to $2,500 \mathrm{~m} 3 / \mathrm{s}$ at 07:30 on Wednesday 12 January 2011 to allow the peak of Lockyer Creek to enter the Brisbane River. The Brisbane River has peaked at the Port Office Gauge early Thursday morning. Releases from Wivenhoe Dam will be managed to achieve a target flow of around 3,500 $\mathrm{m} 3 / \mathrm{s}$ at Moggill. This release will then be maintained to drain the flood storage component within the required 7 days.

The combined flood event volume in Somerset and Wivenhoe Dams is estimated to be in excess of 2.6 million megalitres.

North Pine

At 06:00 North Pine Dam was 39.70 mAHD falling with all gates open 1 increment, releasing about $80 \mathrm{~m} 3 / \mathrm{s}$. North Pine peaked at 41.11 mAHD at 14:00 on Tuesday 11 January 2011 with peak release of $2,800 \mathrm{~m} 3 / \mathrm{s}$. The event has a volume of around $200,000 \mathrm{ML}$. It is expected that all gates will be closed on Friday.

Strategy

The Flood Operations Centre is continuing to monitor rainfalls and water levels throughout the Brisbane and Pine River catchments and reviewing operating strategy. The FOC will continue to maintain close contact with warning agencies and local councils.

The next report will be issued at 18:00 on Thursday 13 January 2011.

APPENDIX E - SITUATION REPORTS

Regards

Engineer 1

Duty Engineer
Flood Operations Centre

Important information: This email and any attached information is intended only for the addressee and may contain confidential and/or privileged information. If you are not the addressee, you are notified that any transmission, distribution, or other use of this information is strictly prohibited. The confidentiality attached to this email is not waived, lost or destroyed by reasons of mistaken delivery to you. If you have received this email in error please contact the sender immediately and delete the material from your email system. QLD Bulk Water Supply Authority ABN75450239876 (Trading as Seqwater).

APPENDIX E-SITUATION REPORTS

Situation Report 24

Date: Thursday 13 January 2011
Time: 18:43

From: Duty Engineer
Sent: Thursday, 13 January 2011 6:43 PM
To: Distribution List
Subject: Situation Report 183013 January 2011

Rainfall

There has been no significant rainfall in the last 12 hours and none is expected for the next 5 days.

Somerset/Wivenhoe

Somerset Dam peaked at 105.11 mAHD at 18:00 on Wednesday 12 January 2011. The current level is 103.60 mAHD and falling. Four sluices are open and the dam is currently discharging $1,528 \mathrm{~m} 3 / \mathrm{s}$.

Wivenhoe Dam peaked at 74.97 mAHD at 19:00 on Tuesday 11 January 2011 with a corresponding discharge of $7,450 \mathrm{~m} 3 / \mathrm{s}$. Wivenhoe Dam was 74.5 mAHD at 18:00 and continuing to fall slowly.

The releases from Wivenhoe Dam are currently $2,888 \mathrm{~m} 3 / \mathrm{s}$ and are being managed to achieve a target flow of around $3,500 \mathrm{~m} 3 / \mathrm{s}$ at Moggill. This release will then be maintained to drain the flood storage component within the required 7 days.

The combined flood event volume in Somerset and Wivenhoe Dams is estimated to be in excess of 2.6 million megalitres.

North Pine

At 18:00 North Pine Dam was 39.60 mAHD and falling with 5 gates open, releasing about $151 \mathrm{~m} 3 / \mathrm{s}$. North Pine peaked at 41.11 mAHD at 14:00 on Tuesday 11 January 2011 with a peak release of $2,800 \mathrm{~m} 3 / \mathrm{s}$. The flood event volume is estimated to be around 200,000 ML.

All gates will be closed at 05:00 Friday to enable MMRC to consider reopening Youngs Crossing.

Strategy

The Flood Operations Centre is continuing to monitor rainfalls and water levels throughout the Brisbane and Pine River catchments and reviewing operating strategy. The FOC will continue to maintain close contact with warning agencies and local councils.

The next report will be issued at 06:00 on Friday 14 January 2011.

Engineer 2
Duty Engineer

APPENDIX E - SITUATION REPORTS

Flood Operations Centre

APPENDIX E - SITUATION REPORTS

Situation Report 25

Date: Friday 14 January 2011
Time: 05:35

From: Duty Engineer
Sent: Friday, 14 January 2011 5:35 AM
To: Distribution List
Subject: FOC Situation Report at 06:00 on Friday 14 January 2011

Rainfall

There has been no significant rainfall in the last 12 hours and falls of only 5 mm is expected in the next twenty-four hours. Mostly fine conditions are expected over the weekend, but showers will return early next week.

Somerset/Wivenhoe

Somerset Dam peaked at 105.11 mAHD at 18:00 on Wednesday 12 January 2011. The current level is 102.87 mAHD and falling. Four sluices are open and the dam is currently discharging about $1,300 \mathrm{~m} 3 / \mathrm{s}$.

Wivenhoe Dam peaked at 74.97 mAHD at 19:00 on Tuesday 11 January 2011 with a corresponding discharge of $7,450 \mathrm{~m} 3 / \mathrm{s}$. At 05:00 Wivenhoe Dam was 74.74 .08 mAHD and continuing to fall.

The releases from Wivenhoe Dam are currently about $3,500 \mathrm{~m} 3 / \mathrm{s}$ and are being managed to achieve a target flow of around $3,500 \mathrm{~m} 3 / \mathrm{s}$ at Moggill. This release will then be maintained to drain the flood storage component by Wednesday.

The combined flood event volume in Somerset and Wivenhoe Dams is estimated to be in excess of 2.6 million megalitres.

North Pine

At 05:00 North Pine Dam was 39.40 mAHD and gate operations have ceased. The current level is expected to increase to just over 39.5 mAHD in the next few days due to base-flow. This could be higher if further rainfall occurs.
Fish recovery has commenced and MBRC have been advised that the gates have been closed. MBRC will inspect Youngs Crossing to determine if the crossing can be reopened.

North Pine peaked at 41.11 mAHD at 14:00 on Tuesday 11 January 2011 with a peak release of $2,800 \mathrm{m3} / \mathrm{s}$. The flood event volume is estimated to be around $200,000 \mathrm{ML}$.

Strategy

The Flood Operations Centre is continuing to monitor rainfalls and water levels throughout the Brisbane and Pine River catchments. The FOC will continue to maintain close contact with warning agencies and local councils.

The next report will be issued at 18:00 on Friday 14 January 2011.

APPENDIX E - SITUATION REPORTS

Regards
Engineer 1
Duty Engineer
Flood Operations Centre

Important information: This email and any attached information is intended only for the addressee and may contain confidential and/or privileged information. If you are not the addressee, you are notified that any transmission, distribution, or other use of this information is strictly prohibited. The confidentiality attached to this email is not waived, lost or destroyed by reasons of mistaken delivery to you. If you have received this email in error please contact the sender immediately and delete the material from your email system. QLD Bulk Water Supply Authority ABN75450239876 (Trading as Seqwater).

APPENDIX E - SITUATION REPORTS

Situation Report 26

Date: Saturday 15 January 2011
Time: 06:36

From: Duty Engineer
Sent: Saturday, 15 January 2011 6:36 AM
To: Distribution List
Subject: Situation Report 0630 Saturday 15 January 2011

Rainfall

There has been no significant rainfall in the last 24 hours and no significant rainfall is expected in the next twenty-four hours. Mostly fine conditions are expected over the weekend, but showers will return early next week.

Somerset/Wivenhoe

At 06:00 Somerset Dam was 101.35 mAHD and falling. Four sluices are open and the dam is currently discharging about $920 \mathrm{m3} / \mathrm{s}$. Somerset Dam peaked at 105.11 mAHD at 18:00 on Wednesday 12 January 2011.

At 05:00 Wivenhoe Dam was 72.86 mAHD and continuing to fall. The releases from Wivenhoe Dam are currently about $3,500 \mathrm{~m} 3 / \mathrm{s}$ and are being managed to achieve a target flow of around $3,500 \mathrm{~m} 3 / \mathrm{s}$ at Moggill. This release level is being maintained to drain the flood storage component by Wednesday.

Wivenhoe Dam peaked at 74.97 mAHD at 19:00 on Tuesday 11 January 2011 with a corresponding discharge of $7,450 \mathrm{~m} / \mathrm{s}$.

The combined flood event volume in Somerset and Wivenhoe Dams is estimated to be in excess of 2.6 million megalitres.

North Pine

At 05:00 North Pine Dam was 39.40 mAHD and gate operations have ceased. This level is expected to increase to just over 39.5 mAHD in the next few days due to base-flow. This could be higher if further rainfall occurs.

North Pine peaked at 41.11 mAHD at 14:00 on Tuesday 11 January 2011 with a peak release of $2,800 \mathrm{~m} 3 / \mathrm{s}$. The flood event volume is estimated to be around $200,000 \mathrm{ML}$.

Strategy

The Flood Operations Centre is continuing to monitor rainfalls and water levels throughout the Brisbane and Pine River catchments and is maintaining close contact with warning agencies and local councils.

The next report will be issued at 18:00 on Saturday 15 January 2011.

[^6]
APPENDIX E - SITUATION REPORTS

Situation Report 27

Date: Sunday 16 January 2011
Time: 06:09

From: Duty Engineer
Sent: Sunday, 16 January 2011 6:09 AM
To: Distribution List
Subject: Situation Report 0600 Sunday 16 January 2011

Rainfall

There has been no significant rainfall in the last 24 hours and no significant rainfall is expected in the next twenty-four hours. Mostly fine conditions are expected over the weekend, but showers will return early next week.

Somerset/Wivenhoe

At 06:00 Somerset Dam was 100.01 mAHD and falling. Four sluices are open and the dam is currently discharging about $820 \mathrm{~m} 3 / \mathrm{s}$. Somerset Dam peaked at 105.11 mAHD at 18:00 on Wednesday 12 January 2011.

At 06:00 Wivenhoe Dam was 71.3 mAHD and continuing to fall. The releases from Wivenhoe Dam are currently about $3,477 \mathrm{~m} 3 / \mathrm{s}$ and are being managed to achieve a target flow of around $3,500 \mathrm{~m} 3 / \mathrm{s}$ at Moggill. This release level is being maintained to drain the flood storage component by Wednesday.

Wivenhoe Dam peaked at 74.97 mAHD at 19:00 on Tuesday 11 January 2011 with a corresponding discharge of $7,450 \mathrm{~m} 3 / \mathrm{s}$.

The combined flood event volume in Somerset and Wivenhoe Dams is estimated to be in excess of 2.6 million megalitres.

North Pine

At 06:00 North Pine Dam was 39.46 mAHD. All gates are closed. The lake level is expected to increase to just over 39.5 mAHD in the next few days due to base-flow. This could be higher if further rainfall occurs.

North Pine peaked at 41.11 mAHD at 14:00 on Tuesday 11 January 2011 with a peak release of $2,800 \mathrm{m3} / \mathrm{s}$. The flood event volume is estimated to be around $200,000 \mathrm{ML}$.

Strategy

The Flood Operations Centre is continuing to monitor rainfalls and water levels throughout the Brisbane and Pine River catchments and is maintaining close contact with warning agencies and local councils.

The next report will be issued at 18:00 on Sunday 16 January 2011.
Engineer 3
Duty Engineer
Flood Operations Centre

APPENDIX E - SITUATION REPORTS

Situation Report 28

Date: Monday 17 January 2011
Time: 16:56

From: Duty Engineer
Sent: Monday, 17 January 2011 4:56 PM
To: Distribution List
Subject: Situation Report 1700 Monday 16 January 2011

Rainfall

There has been no significant rainfall in the last 24 hours and no significant rainfall is expected in the next twenty-four hours. Mostly fine conditions are expected over the weekend, but showers will return early next week.

Somerset/Wivenhoe

At 16:00 Somerset Dam was 99.02 mAHD and steady. The last sluice gate was closed at 7:00 17/01/2011 and one regulator was opened the base-flow into the Dam. Somerset Dam peaked at 105.11 mAHD at 18:00 on Wednesday 12 January 2011.

At 16:00 Wivenhoe Dam was 68.66 mAHD and continuing to fall. The releases from Wivenhoe Dam are currently about $2946 \mathrm{~m} 3 / \mathrm{s}$. Releases will be steadily reduced before final closure on Thursday morning. The Dam will be near full supply and releases will be made through the regulator to account for ongoing base-flow.

Wivenhoe Dam peaked at 74.97 mAHD at 19:00 on Tuesday 11 January 2011 with a corresponding discharge of $7,450 \mathrm{~m} 3 / \mathrm{s}$.

The combined flood event volume in Somerset and Wivenhoe Dams is estimated to be in excess of 2.6 million megalitres.

It should be noted that the automatic recorder currently being reported on the BoM website is currently incorrect and has been since early Tuesday 112011.

North Pine

At 09:00 North Pine Dam was 39.5 mAHD . All gates are closed. No further gate operations are expected unless additional rainfall falls.

North Pine peaked at 41.11 mAHD at 14:00 on Tuesday 11 January 2011 with a peak release of $2,800 \mathrm{~m} 3 / \mathrm{s}$. The flood event volume is estimated to be around $200,000 \mathrm{ML}$.

Strategy

The Flood Operations Centre is continuing to monitor rainfalls and water levels throughout the Brisbane and Pine River catchments and is maintaining close contact with warning agencies and local councils. Councils have been informed of the current release strategy. The bridges below Wivenhoe Dam will progressively come out of water over the next few days.

APPENDIX E - SITUATION REPORTS

Duty Engineer
Flood Operations Centre
Important information: This email and any attached information is intended only for the addressee and may contain confidential and/or privileged information. If you are not the addressee, you are notified that any transmission, distribution, or other use of this information is strictly prohibited. The confidentiality attached to this email is not waived, lost or destroyed by reasons of mistaken delivery to you. If you. have received this email in error please contact the sender immediately and delete the material from your email system. QLD Bulk Water Supply Authority ABN75450239876 (Trading as Seqwater).

APPENDIX E - SITUATION REPORTS

Situation Report 29

Date: Tuesday 18 January 2011
Time: 06:17

From: Duty Engineer
Sent: Tuesday, 18 January 2011 6:17 AM
To: Distribution List
Subject: Situation Report 0615 Tuesday 18 January 2011

Rainfall

There has been no significant rainfall in the last 24 hours and no significant rainfall is expected in the next twenty-four hours. Mostly fine conditions are expected over the weekend, but showers will return early next week.

Somerset/Wivenhoe

At 16:00 Monday Somerset Dam was 99.02 mAHD and steady. The last sluice gate was closed at 07:00 17/01/2011 and one regulator remains open managing the base-flow into the Dam. Somerset Dam peaked at 105.11 mAHD at 18:00 on Wednesday 12 January 2011.

At 06:00 Tuesday Wivenhoe Dam was 67.82 mAHD and continuing to fall slowly. Releases were held constant overnight at about $2,050 \mathrm{~m} 3 / \mathrm{s}$ to assist water supply pumping at Lowood. Following discussions with water supply operators, it has been decided to resume closing gates at 09:00 Tuesday before final closure on Thursday morning. The Dam will be near full supply and releases will be made through the regulator to account for ongoing base-flow.

Wivenhoe Dam peaked at 74.97 mAHD at 19:00 on Tuesday 11 January 2011 with a corresponding discharge of $7,450 \mathrm{~m} 3 / \mathrm{s}$.

The combined flood event volume in Somerset and Wivenhoe Dams is estimated to be in excess of 2.6 million megalitres.

It should be noted that the Seqwater water level gauge currently being reported on the BoM website is currently slightly under reading by about 50 mm .

North Pine

At 09:00 North Pine Dam was 39.5 mAHD. All gates are closed. No further gate operations are expected unless additional rainfall falls.

North Pine peaked at 41.11 mAHD at 14:00 on Tuesday 11 January 2011 with a peak release of $2,800 \mathrm{~m} 3 / \mathrm{s}$. The flood event volume is estimated to be around $200,000 \mathrm{ML}$.

Strategy

The Flood Operations Centre is continuing to monitor rainfalls and water levels throughout the Brisbane and Pine River catchments and is maintaining close contact with warning agencies and local councils. Councils have been informed of the current release strategy.

APPENDIX E - SITUATION REPORTS

At 05:00, the Wivenhoe Dam operator reported that the Fernvale Bridge was out of water but water remained over the approaches from Fernvale. He also advised that there were power lines on the bridge and that Energex was advised.

The remaining bridges below Wivenhoe Dam will progressively come out of water over the next few days.

Engineer 2
Duty Engineer
Flood Operations Centre

Important information: This email and any attached information is intended only for the addressee and may contain confidential and/or privileged information. If you are not the addressee, you are notified that any transmission, distribution, or other use of this information is strictly prohibited. The confidentiality attached to this email is not waived, lost or destroyed by reasons of mistaken delivery to you. If you have received this email in error please contact the sender immediately and delete the material from your email system. QLD Bulk Water Supply Authority ABN75450239876 (Trading as Seqwater).

APPENDIX E - SITUATION REPORTS

Situation Report 30

Date: Tuesday 18 January 2011
Time: 17:40

From: Duty Engineer
Sent: Tuesday, 18 January 2011 5:40 PM
To: Distribution List
Cc: Distribution List
Subject: FOC Situation Report at 18:00 on Tuesday 18 January 2011

Rainfall

Severe thunderstorms are passing over Wivenhoe, Somerset and North Pine Dams this afternoon. To 17:00 falls of 20 to 30 mm where recorded at isolated locations including Mt Pechey and Kluvers Lookout.

A severe thunderstorm warning remains in place for the Stanley River Valley near Kilcoy.

Somerset/Wivenhoe

At 16:00 Tuesday Somerset Dam was 98.95 mAHD and steady. The last sluice gate was closed at 07:00 17/01/2011 and one regulator remains open managing the base-flow into the Dam. Somerset Dam peaked at 105.11 mAHD at 18:00 on Wednesday 12 January 2011.

At 16:00 Tuesday Wivenhoe Dam was 66.31 mAHD and continuing to fall slowly. Releases were held constant since 15:00 at about $1,450 \mathrm{~m} 3 / \mathrm{s}$ to assist water supply pumping at Lowood. The shutdown sequence is scheduled to re-commence at 03:00 on Wednesday 19 January 2011 morning before final closure on Thursday morning. The Dam will be lowered to 66.5 mAHD (95% capacity) and releases will be made through the regulator to account for ongoing base-flow.

Wivenhoe Dam peaked at 74.97 mAHD at 19:00 on Tuesday 11 January 2011 with a corresponding discharge of $7,450 \mathrm{~m} 3 / \mathrm{s}$.

The combined flood event volume in Somerset and Wivenhoe Dams is estimated to be in excess of 2.6 million megalitres.

It should be noted that the Seqwater water level gauge currently being reported on the BoM website is currently slightly under reading by about 50 mm .

North Pine

At 09:00 North Pine Dam was 39.56 mAHD and rising slowly. All gates are closed. No further gate operations are expected unless additional rainfall falls. This situation will be closely monitored whilst storms remain in the vicinity.

North Pine peaked at 41.11 mAHD at 14:00 on Tuesday 11 January 2011 with a peak release of $2,800 \mathrm{~m} 3 / \mathrm{s}$. The flood event volume is estimated to be around $200,000 \mathrm{ML}$.

APPENDIX E - SITUATION REPORTS

Strategy

The Flood Operations Centre is continuing to monitor rainfalls and water levels throughout the Brisbane and Pine River catchments and is maintaining close contact with warning agencies and local councils. Councils have been informed of the current release strategy.

The remaining bridges below Wivenhoe Dam will progressively come out of water over the next few days.

Regards
Engineer 1
Duty Engineer
Flood Operations Centre

Important information: This email and any attached information is intended only for the addressee and may contain confidential and/or privileged information. If you are not the addressee, you are notified that any transmission, distribution, or other use of this information is strictly prohibited. The confidentiality attached to this email is not waived, lost or destroyed by reasons of mistaken delivery to you. If you have received this email in error please contact the sender immediately and delete the material from your email system. QLD Bulk Water Supply Authority ABN75450239876 (Trading as Seqwater).

APPENDIX E - SITUATION REPORTS

Situation Report 31

Date: Wednesday 19 January 2011
Time: 05:28

From: Duty Engineer
Sent: Wednesday, 19 January 2011 5:28 AM
To: Distribution List
Cc: Distribution List)
Subject: FOC Situation Report at 06:00 on Wednesday 19 January 2011

Rainfall

Severe thunderstorms passed over the Wivenhoe, Somerset and North Pine dam catchments yesterday afternoon and evening. Falls of 20 mm to 30 mm where recorded at isolated locations.

North Pine

A decision was made at 1900 yesterday to drain the dam down to 39.40 m AHD overnight to cater for the inflow resulting from yesterday's storms and ensure that Youngs Crossing remains open during the day today. All gates were closed at 0500 today and a fish recovery operation also commenced at this time. Youngs Crossing will be reopened by the MBRC at around 0700. The dam level will rise slowly during the day and further releases may be required again tonight with more rainfall forecast. The current lake level is 39.42 m AHD.

Somerset Dam

All regulators were closed at 2000 yesterday. The dam level is currently 98.95 m AHD and rising slowly. Further regulator releases will take place today and again over the next few days to maintain the dam at the full supply level. Somerset Dam peaked at 105.11 mAHD at 18:00 on Wednesday 12 January 2011; all sluice gates were closed on Monday 17 January 2011.

Wivenhoe Dam

The Lowood temporary pump station was relocated at 2100 yesterday. This relocation removed the need to continue high flow releases from the dam to ensure treated water supplies to Lowood are maintained. Discussions with BCC last night also concluded that tidal variations are primarily back to normal patterns and having a greater impact on the foundation conditions of Coronation Drive than the tapering of releases from the dam. Accordingly the radial gate close down sequence recommenced at 21:45 last night and all gates will be closed by 1600 today. The dam level when the last gate is closed will be around 66.90 m AHD and a fish recovery operation will continue through most of the day during the close down sequence. Releases will continue through the regulator cone valve and possibly the Mini-Hydro (depending on when it can be re-started) to account for ongoing base-flow once all radial gates are closed.

Wivenhoe Dam peaked at 74.97 mAHD at 19:00 on Tuesday 11 January 2011 with a corresponding discharge of $7,450 \mathrm{~m} 3 / \mathrm{s}$. The combined flood event volume in Somerset and Wivenhoe Dams is estimated to be in excess of 2.6 million megalitres. It should be

APPENDIX E - SITUATION REPORTS

noted that the Seqwater water level gauge currently being reported on the BoM website is currently slightly under reading by about 50 mm .

Strategy

The Flood Operations Centre is continuing to monitor rainfalls and water levels throughout the Brisbane and Pine River catchments and is maintaining close contact with warning agencies and local councils. Councils have been informed of the current release strategy. A summary of the bridge status along the Brisbane River between Wivenhoe Dam and Moggill is as follows, with the exact timing of water coming clear of bridges depending on how the radial gate close down sequence progresses during the day:

- Water is clear of Fernvale Bridge and Mt Crosby Weir Bridge.
- Water should be clear of Burtons Bridge, Kholo Bridge and Savages Crossing tonight.
- Water should be clear of Colleges Crossing tomorrow.
- It is not yet certain when water will be clear of Twin Bridges as this will depend on base flow draining requirements and a decision will be made on this later today. The earliest that Twin Bridges would be clear of water is late this afternoon.

Engineer 4

Duty Engineer
Flood Operations Centre
Important information: This email and any attached information is intended only for the addressee and may contain confidential and/or privileged information. If you are not the addressee, you are notified that any transmission, distribution, or other use of this information is strictly prohibited. The confidentiality attached to this email is not waived, lost or destroyed by reasons of mistaken delivery to you. If you have received this email in error please contact the sender immediately and delete the material from your email system. QLD Bulk Water Supply Authority ABN75450239876 (Trading as Seqwater).

APPENDIX E - SITUATION REPORTS

Situation Report 32

Date: Wednesday 19 January 2011
Time: 13:45

From: Duty Engineer
Sent: Wednesday, 19 January 2011 1:45 PM
To: Distribution List
Subject: Situation Report 1345 Wednesday 2011

Rainfall

No significant rainfall has been recorded in Wivenhoe, Somerset and North Pine dam catchments since 0900 Thursday. The forecast rainfall indicates that falls between 15 to 25 mm with isolated heavier falls to 50 mm are expected in the next 24 hours.

North Pine

A decision was made at 1900 Wednesday to drain the dam down to 39.40 m AHD overnight to cater for the inflow resulting from Wednesday's storms and ensure that Youngs Crossing remains open during the day Thursday. All gates were closed at 0500 Thursday and a fish recovery operation also commenced at this time. Youngs Crossing was expected to be reopened by the MBRC at around 0700 . The dam level will rise slowly during the day and further releases may be required again tonight with more rainfall forecast. The lake level was 39.43 m AHD at 0700.

Somerset Dam

All regulators were closed at 2000 Wednesday. The dam level was 99.00 m AHD at 0700 Thursday and rising slowly. Further regulator releases may take place over the next few days to maintain the dam at the full supply level. Somerset Dam peaked at 105.11 mAHD at 18:00 on Wednesday 12 January 2011; all sluice gates were closed on Monday 17 January 2011.

Wivenhoe Dam

All gates were closed at Wivenhoe at 1200 Thursday, with the dam level at 66.89 m AHD at 1300. Following fish recovery and inspections, minor ongoing releases will be made for through the centre gate to account for ongoing small inflows. It is intended to drain down to 95%, approximately 66.5 m AHD .

Wivenhoe Dam peaked at 74.97 mAHD at 19:00 on Tuesday 11 January 2011 with a corresponding discharge of $7,450 \mathrm{~m} 3 / \mathrm{s}$. The combined flood event volume in Somerset and Wivenhoe Dams is estimated to be in excess of 2.6 million megalitres.

Strategy

A summary of the bridge status along the Brisbane River between Wivenhoe Dam and Moggill is as follows, with the exact timing of water coming clear of bridges depending on how the radial gate close down sequence progresses during the day:

- Water is clear of Fernvale Bridge and Mt Crosby Weir Bridge.

APPENDIX E - SITUATION REPORTS

- Water should be clear of Burtons Bridge, Kholo Bridge and Savages Crossing tonight.
- Water should be clear of Colleges Crossing tomorrow.
- It is not yet certain when water will be clear of Twin Bridges as this will depend on base flow draining requirements and a decision will be made on this later Thursday.

The Flood Operations Centre is now closed and control of the dams has reverted to normal Seqwater operations. However, the FOC will continue to monitor rainfalls and water levels throughout the Brisbane and Pine River catchments.

Engineer 2
Duty Engineer
Flood Operations Centre

Important information: This email and any attached information is intended only for the addressee and may contain confidential and/or privileged information. If you are not the addressee, you are notified that any transmission, distribution, or other use of this information is strictly prohibited. The confidentiality attached to this email is not waived, lost or destroyed by reasons of mistaken delivery to you. If you have received this email in error please contact the sender immediately and delete the material from your email system. QLD Bulk Water Supply Authority ABN75450239876 (Trading as Seqwater).

APPENDIX F - COMMUNICATION PROTOCOL TECHNICAL SITUATION REPORTS

Technical Situation Report 1

Date: Monday 27 December 2010
Time: 08:14

The Flood Centre will keep you informed or leave messages on your phones.
Below is the current strategy.
Any comments or assessments let me know.

Rainfall

Reasonably significant rainfalls in the order of 40 to 50 mm have been experienced in the dam catchments in the last 24 hours, but the rainfall has only been in the order of 5 to 10 mm in the last 6 hours. The QPF issued at 1600 yesterday was for 50 to 100 mm and the severe weather warning associated with possible widespread rainfall in the dam catchments remains current and was re-issued by BOM at 0445 today. The current BOM forecast is:

Monday 27 December Rain periods
Tuesday 28 December Rain at times
Wednesday 29 December Rain at times
Thursday 30 December Shower or two
Friday 31 December Fine
Saturday 31 December Fine
Sunday 1 January Fine
With the current wet catchments, there is a high probability that the forecast rain will result in further flood releases from the dams over the coming week.

Somerset Dam

Two regulators were opened yesterday morning, to provide a release of $12000 \mathrm{ML} /$ day. Since that time the lake has continued to rise steadily to currently be around 99.60 m or 600 mm above the full supply level. Another regulator was opened this morning. Further gate operations may be necessary today if forecast rainfall results in subsequent river rises. Draining will take at least until Wednesday. The next update will be provided at around 1200 today.

Currently at 107.7% with $30,000 \mathrm{ML}$ over FSL.

Wivenhoe Dam

Radial Gate operations recommenced yesterday at 0900 and since that time the lake has risen steadily to currently be around 67.57 m or 570 mm above the full supply level. Because of outflows from Lockyer Creek, outflows from Wivenhoe Dam have been steadily reduced during the night to ensure Burtons Bridge remained open (current river levels have water at Burtons Bridge deck level and falling slowly). Radial gates at Wivenhoe Dam are being progressively wound back this morning as the Lockyer Creek outflows into the Brisbane River increase above 250 cumecs. This will keep Burtons Bridge open until late this afternoon. However it is anticipated that Lockyer Creek

APPENDIX F - COMMUNICATION PROTOCOL TECHNICAL SITUATION REPORTS

outflows will peak above 500 cumecs later today or early tomorrow and these flows will inundate Burtons Bridge. As this occurs, outflows from Wivenhoe Dam will be increased to drain the lake to near full supply level. Draining will take at least until Thursday. Further gate operations may be necessary in coming days if forecast rainfall results in subsequent river rises.

Wivenhoe is around 105.6% and $65,000 \mathrm{ML}$ over FSL.

Impacts of Wivenhoe Dam Releases

Twin Bridges, Savages Crossing and Colleges Crossing are currently closed and will remain so until at least Thursday. Burtons Bridge is currently open, but will be closed late today or early tomorrow and is likely to remain closed until at least Wednesday. However, the length of time that Burtons Bridge will be closed is dependant upon the rainfall experienced over the next several days. Kholo Bridge remains unserviceable due to flood damage. There is no current expectation that either Mt Crosby Weir Bridge or Fernvale Bridge will be impacted by the current event.

An updated estimate of the time of closure of Burtons Bridge this afternoon will be provided to Council, but at this stage it is not expected to be before 1600 today. This may change as rainfall is experienced during the day.

Tide levels in Brisbane are decreasing generally so Wivenhoe releases should have minimal impact.

Dam Operations Manager
Water Delivery
Queensland Bulk Water Supply Authority trading as Seqwater

APPENDIX F - COMMUNICATION PROTOCOL TECHNICAL SITUATION REPORTS

Technical Situation Report 2

Date: Tuesday 28 December 2010
Time: 07:12

The Flood Centre will keep you informed or leave messages on your phones.
Below is the current strategy.
Any comments or assessments let me know.
Basically with all the rain in the Lockyer we have not ramped up until it peaks and starts to drop to ensure there is no impact on Fernvale or Mt Crosby bridges.
This should still be later today as the Lockyer starts to drop.

Rainfall

Rainfalls in the order of 20 to 40 mm have been experienced in the dam catchments in the last 24 hours, but the rainfall has only been in the order of 5 mm in the last 12 hours. The QPF issued at 1600 yesterday was reduced to 25 to 35 mm and the severe weather warning associated with possible widespread rainfall in the dam catchments is no longer current. The current BOM forecast is:

Tuesday 28 December Shower or two.
Wednesday 29 December Shower or two.
Thursday 30 December Fine.
Friday 31 December Fine
Saturday 31 December Mostly Fine
Sunday 1 January Few showers
Monday 27 December Showers
Although the dam catchments are saturated, BOM forecasts are currently indicating that dam inflows have peaked for the current event.

North Pine Dam - Just FYI

A flood release commenced at 2000 on Sunday 26 December 2010 and is now likely to continue until 0500 on Wednesday 29 December 2010 (tomorrow morning). This will allow Youngs Crossing to reopen by 0700 on Wednesday. Current outflows from Lake Kurwongbah would also be sufficient to inundate Youngs Crossing, regardless of releases from North Pine Dam, but these outflows should also subside by Wednesday morning. The current level in North Pine Dam is around 39.72 m AHD and falling, with all gates currently open. The situation will be reviewed throughout today, with the next update to be provided at around 1600 today.

Somerset Dam

A flood release through the regulator cone valves at the dam commenced at 0900 on Sunday 26 December 2010. The current release rate is $18000 \mathrm{ML} / \mathrm{day}$. Since commencing the release the lake has continued to rise steadily to currently be around 99.96 m AHD or 960 mm above the full supply level. Inflows into the dam are subsiding and unless further rainfall in the dam catchment is experienced, the lake will soon start to

APPENDIX F - COMMUNICATION PROTOCOL TECHNICAL SITUATION REPORTS

fall slowly to be back near the dam full supply level by Thursday. Sluice gate operations will commence this morning as Wivenhoe levels are approaching the point at which the regulator cone valves should not be used due to back water impacts. The total volume of water released since the release commenced on 26 December 2010 is $37,000 \mathrm{ML}$, with the current projected total release volume for this event being $80,000 \mathrm{ML}$.

Wivenhoe Dam

Radial Gate operations for the current event commenced at 0900 on Sunday 26 December 2010. After scaling up to an initial release rate of $30,000 \mathrm{ML} /$ day, the release was scaled back yesterday to the minimum radial gate release rate of $4,000 \mathrm{ML} /$ day to ensure that Burtons Bridge remained open until yesterday afternoon and to reduce flooding impacts in the Brisbane River caused by outflows into the river from Lockyer Creek. The current release rate remains at $4,000 \mathrm{ML} /$ day, but will be scaled up later today as Lockyer Creek flows subside. The current lake level is 68.55 m AHD or 1550 mm above the full supply level. Inflows into the dam are subsiding and unless further rainfall in the dam catchment is experienced, the lake will fall slowly once to release rate is scaled up, for the level to be back near the dam full supply level by around Sunday. The total volume of water released since the release commenced on 26 December 2010 is $28,000 \mathrm{ML}$, with the current projected total release volume for this event being in the order of $375,000 \mathrm{ML}$ (includes inflows from Somerset Dam).

Impacts of Wivenhoe Dam Releases

Twin Bridges, Savages Crossing, Colleges Crossing, Burtons Bridge and Kholo Bridge are currently closed and will remain so until at least Friday. There is no current expectation that either Mt Crosby Weir Bridge or Fernvale Bridge will be impacted by the current event, but Lockyer Creek outflows are being closely monitored and will come close to impacting upon the Mt Crosby Weir Bridge. An updated estimate of the likely time of opening of Burtons Bridge will be provided tomorrow.

Tide levels in Brisbane are decreasing generally so Wivenhoe releases should have minimal impact. BoM advice confirms this. Impacts from Bremer and other inflows should have mostly passed by the time any release from Wivenhoe gets to downstream river reaches.

[^7]
APPENDIX F - COMMUNICATION PROTOCOL TECHNICAL SITUATION REPORTS

Technical Situation Report 3

Date: Wednesday 29 December 2010
Time: 07:16

The Flood Centre will keep you informed or leave messages on your phones.
Below is the current strategy.
Any comments or assessments let me know.

Rainfall

No rainfall has fallen in the past 12 hours to 0600 Wednesday with the exception of 2-4 mm in the upper Somerset Dam catchment.
The rainfall forecast issued by BOM at 1600 Tuesday indicated only $3-5 \mathrm{~mm}$ in the Somerset and Wivenhoe catchments and $5-10 \mathrm{~mm}$ in the North Pine catchment for the next 24 hours. The current BOM forecast for SE QId over the next few days is mostly fine with a few showers

However, catchments remain saturated and are primed for additional runoff in the event of rain.

Somerset Dam

A flood release through the regulator cone valves at the dam commenced at 0900 on Sunday 26 December 2010. Early Tuesday the regulators were closed and sluices progressively opened throughout the day. At 1800 Tuesday 2 sluices were open, releasing about $35,000 \mathrm{ML} /$ day into Wivenhoe. A further two sluice gates where opened overnight in an attempt to bring the lake level down to 99.75 to enable recreational use of Somerset water activities to resume on Wednesday. At 1800, the lake level was 99.83 m AHD and falling slowly. Two sluice gates will be closed by 12:00 29/12/2010 and two sluice gates are expected to remain open until Thursday and will be closed when the lake returns to the full supply level of 99 m AHD. The total volume of water released since the event commenced on 26 December 2010 is $66,000 \mathrm{ML}$, with the current projected total release volume for this event approaching $110,000 \mathrm{ML}$.

Wivenhoe Dam

Radial gate operations for the current event commenced at 0900 on Sunday 26 December 2010. After scaling up to an initial release rate of $30,000 \mathrm{ML} / \mathrm{day}$, the release was scaled back Monday to the minimum radial gate release rate of $4,000 \mathrm{ML} /$ day to ensure that Burtons Bridge remained open and to reduce flooding impacts in the Brisbane River caused by flows from Lockyer Creek. Lockyer Ck outflow peaked at midday Tuesday and Wivenhoe gates were commenced to be re-opened at 1500 Tuesday, releasing on the back of the Lockyer recession. It is intended to gradually increase the Wivenhoe releases during Tuesday and Wednesday so that the combined release and Lockyer flow is maintained at about $1600 \mathrm{~m} 3 / \mathrm{s}$. $140,000 \mathrm{ML} /$ day $)$ in the mid Brisbane R. Note this is similar to the flows in the mid Brisbane in mid October and mid December 2010. This will be maintained until at least Saturday when it is expected that shut down procedure will commence. Gate closure sequencing will be such that the releases will mimic the natural pre-dam flows.

APPENDIX F - COMMUNICATION PROTOCOL TECHNICAL SITUATION REPORTS

At 0600, the Wivenhoe water level was 69.26 m AHD and rising slowly with the current release rate at $60,000 \mathrm{ML}$ /day. Inflows into the dam are subsiding and the lake will fall slowly once the release rate is scaled up $130,000 \mathrm{ML} /$ day during Wednesday. It is aimed to return the dam to full supply level by Sunday. The total volume of water released since the event commenced on 26 December 2010 is $56,000 \mathrm{ML}$, with the current projected total release volume for this event being in the order of $385,000 \mathrm{ML}$ (includes inflows from Somerset Dam).

Impacts of Wivenhoe Dam Releases

Twin Bridges, Savages Crossing, Colleges Crossing, Burtons Bridge and Kholo Bridge are currently closed and will remain so until at least Sunday. There is no current expectation that either Mt Crosby Weir Bridge or Fernvale Bridge will be impacted by the current event. At this stage, it is estimated that the flow at Burtons Bridge will fall below the bridge deck on Sunday morning.

Tide levels in Brisbane are decreasing generally so Wivenhoe releases should have minimal impact. BoM advice confirms this. Impacts from Bremer and other inflows should have mostly passed by the time any release from Wivenhoe gets to downstream river reaches.

Dam Operations Manager
Water Delivery
Queensland Bulk Water Supply Authority trading as Seqwater

APPENDIX F - COMMUNICATION PROTOCOL TECHNICAL SITUATION REPORTS

Technical Situation Report 4

Date: Thursday 30 December 2010
Time: 07:03

The Flood Centre will keep you informed or leave messages on your phones.
Below is the current strategy.
Any comments or assessments let me know.

Rainfall

There has been no significant rainfall in the North Pine, Somerset and Wivenhoe catchments since 09:00 on Wednesday 29 December 2010. The current BOM forecast for SE Qld over the next few days is mostly fine with a few light showers, although there is a chance of storms on Tuesday and Wednesday next week.

The catchments remain saturated and are primed for additional runoff in the event of rain.

Somerset Dam

At 06:00 Thursday 30 December 2010, two sluices remain open, releasing about 35,000 ML/d into Lake Wivenhoe and are expected to remain open until Thursday afternoon when the lake returns to the full supply level of 99.00 m AHD. The total volume of water released since the event commenced on 26 December 2010 is $104,000 \mathrm{ML}$, with the current projected total release volume for this event approaching 123,000ML.

Wivenhoe Dam

Releases were gradually increased during Wednesday and Thursday morning until the combined release and Lockyer flow reached about $1,600 \mathrm{~m} 3 / \mathrm{s}(140,000 \mathrm{ML} / \mathrm{d})$ in the middle Brisbane River. (Note this is similar to the flows in the releases made in midOctober and earlier in December 2010). This release will be maintained until mid-day Friday 31 December 2010, when the shut down procedure will commence and gates are expected to be fully closed by Sunday morning 2 January 2010. The proposed gate closure sequence will be such that the releases will mimic the natural pre-dam recessional flows.

Gauge board readings indicate that the Wivenhoe dam water level peaked at 69.33 m at noon Wednesday 29 December 2010, about 2.3m above the full supply level. At this level, the dam was temporarily storing over $270,000 \mathrm{ML}$ of flood water. At 06:00 on Thursday 30 December 2010, the level had fallen slightly to 69.07 m AHD and was releasing about $1,530 \mathrm{~m} 3 / \mathrm{s}(132,000 \mathrm{ML} / \mathrm{d})$. The total volume of water released from Wivenhoe dam since the event commenced on 26 December 2010 is $160,000 \mathrm{ML}$, with the current projected total release volume for this event being in the order of $425,000 \mathrm{ML}$ (includes inflows from Somerset Dam).

Impacts of Wivenhoe Dam Releases

Twin Bridges, Savages Crossing, Colleges Crossing, Burtons Bridge and Kholo Bridge are currently closed due to inundation and will remain so until at least Sunday 2 January

APPENDIX F - COMMUNICATION PROTOCOL TECHNICAL SITUATION REPORTS

2011. There is no current expectation that either Mt Crosby Weir Bridge or Fernvale Bridge will be impacted by this event. At this stage, it is estimated that the flow at Burtons Bridge will fall below the bridge deck on Sunday morning.
Wivenhoe releases should have minimal impact on tides based on planned releases. BoM advice confirmed this earlier in the week. Impacts from Bremer and other inflows should have mostly passed by the time any release from Wivenhoe gets to downstream river reaches.

Dam Operations Manager
Water Delivery
Queensland Bulk Water Supply Authority trading as Seqwater

APPENDIX F - COMMUNICATION PROTOCOL TECHNICAL SITUATION REPORTS

Technical Situation Report 5

Date: Friday 31 December 2010
Time: 06:51

The Flood Centre will keep you informed or leave messages on your phones of any issues or major changes.

Below is the current strategy.
Any comments or assessments let me know.

Rainfall

There has been no significant rainfall in the North Pine, Somerset and Wivenhoe catchments since 0900 on Wednesday 29 December 2010. The current BOM forecast for SE Qld over the next few days is mostly fine with a few light showers, although there is a chance of storms on Tuesday and Wednesday next week.

The catchments remain wet and are likely to generate additional runoff in the event of rain.

Somerset Dam

At 0500 on Friday 31 December 2010, the lake level was 99.01 m AHD falling from a peak of 100.0 m AHD reached around noon Tuesday 28 December 2010. Two regulators are currently operating and will remain open until the lake returns to the full supply level of 99.00 m AHD. The total volume of water released since the event commenced on 26 December 2010 is $126,000 \mathrm{ML}$, with the current projected total release volume for this event approaching $130,000 \mathrm{ML}$.

Wivenhoe Dam

Releases were gradually increased during Wednesday and Thursday morning until the combined release and Lockyer flow reached about $1,600 \mathrm{~m} 3 / \mathrm{s}(140,000 \mathrm{ML} / \mathrm{d})$ in the middle Brisbane River. (Note this is similar to the flows in the releases made in midOctober and earlier in December 2010). Flow measurement carried out by the Department of Environment and Heritage during Thursday has confirmed this flow. This release will be maintained until late Friday 31 December 2010, when the shut down procedure will commence and gates are expected to be fully closed by Sunday 2 January 2010. The proposed gate closure sequence will be such that the releases will mimic the natural pre-dam recessional flows.

Gauge board readings indicate that the Wivenhoe dam water level peaked at 69.33 m at noon Wednesday 29 December 2010, about 2.3 m above the full supply level. At this level, the dam was temporarily storing over $270,000 \mathrm{ML}$ of flood water. At 0500 on Friday 31 December 2010, the level had fallen slightly to 68.40 m AHD and was releasing about $1,550 \mathrm{~m} 3 / \mathrm{s}(132,000 \mathrm{ML} / \mathrm{d})$. The total volume of water released from Wivenhoe dam since the event commenced on 26 December 2010 is $293,000 \mathrm{ML}$, with the current projected total release volume for this event being in the order of $450,000 \mathrm{ML}$ (includes inflows from Somerset Dam).

APPENDIX F - COMMUNICATION PROTOCOL TECHNICAL SITUATION REPORTS

Impacts of Wivenhoe Dam Releases

Twin Bridges, Savages Crossing, Colleges Crossing, Burtons Bridge and Kholo Bridge are currently closed due to inundation and will remain so until at least Sunday 2 January 2011. There is no current expectation that either Mt Crosby Weir Bridge or Fernvale Bridge will be impacted by this event. At this stage, it is estimated that the flow at Burtons Bridge will fall below the bridge deck on Sunday morning.

Wivenhoe releases should have minimal impact on tides based on planned releases. BoM advice confirmed this earlier in the week. Impacts from Bremer and other inflows should have mostly passed by the time any release from Wivenhoe gets to downstream river reaches.

Dam Operations Manager

Water Delivery
Queensland Bulk Water Supply Authority trading as Seqwater

APPENDIX F - COMMUNICATION PROTOCOL TECHNICAL SITUATION REPORTS

Technical Situation Report 6

Date: Sunday 2 January 2011
Time: 09:37

This is the last update.
Let me know of any issues.

Many thanks for everyone's support.

Rainfall

There has been light falls of up to 30 mm in the North Pine and Somerset Dam catchments in the 24 hours to 06:00 Sunday 2 January 2011 which has resulted in some runoff in the Stanley and Pine Rivers. The current BOM forecast for SE Qld over the next week is for light showers, although there is a chance of storms on Wednesday and Thursday next week.

The catchments remain wet and are likely to generate additional runoff in the event of rain.

Somerset Dam

The rain in the Stanley River catchment has produced minor inflows and one regulator is partially open, managing the small inflows.

At 07:30 on Sunday 2 January 2010, the lake level was EL 99.10m AHD and rising slowly. The peak of the event occurred around noon on Tuesday 28 December 2010 with a level of EL 100.0 m . The total volume of water released since the event commenced on 26 December 2010 is $135,000 \mathrm{ML}$.

Wivenhoe Dam

At 09:00 on Sunday 2 January 2011, Wivenhoe Dam level was EL 67.10 m and gates are fully closed and fish recovery has commenced. Upon completion of this operation, a regulator will be fully opened to manage continuing low inflows to the dam.

The total volume of water released from Wivenhoe dam since the event commenced on 26 December 2010 is 480,000ML (includes inflows from Somerset Dam).

Impacts of Wivenhoe Dam Releases

Somerset Regional, Ipswich City and Brisbane City Councils have been advised of the closure.

It is expected that the flow in the mid Brisbane R will fall below Burtons Bridge on Sunday morning and below Colleges Crossing by Monday morning. Twin Bridge will continue to be impact by the continuing low releases for several days.

APPENDIX F - COMMUNICATION PROTOCOL TECHNICAL SITUATION REPORTS

Technical Situation Report 7

Date: Thursday 6 January 2011
Time: 12:16

The Flood Centre will keep you informed or leave messages on your phones.
Below is the current strategy.
Any comments or assessments let me know.

Rainfall

Since 9 am Wednesday, there have been widespread falls of 30 mm with isolated heavy falls up to 50 mm in the Somerset and Wivenhoe catchments. Totals in the North Pine catchment have generally been below 10 mm . Falls up to 60 mm were recorded in the Leslie Harrison catchment.

The forecast for the next 24 to 48 hours is for totals up to 150 mm in SE Qld.
The catchments remain wet and are likely to generate additional runoff in the event of rain.

North Pine Dam

At 0700 Thursday, North Pine Dam was $39.60 \mathrm{~m}, 0.05 \mathrm{~m}$ below gate trigger level and having risen 0.18 m since $2 / 1 / 2011$ due to a combination of baseflow and runoff from rain in the last 24 hours.

Given the forecast rain, gate operations will commence tonight. MBRC will be advised this morning

Somerset Dam

At 0700 Thursday, Somerset Dam was $99.34 \mathrm{~m}, 0.34 \mathrm{~m}$ above FSL, and rising slowly. The rain in the Stanley River catchment has produced a small amount of runoff in the upper Stanley but there have been significant rises in Kilcoy Ck. Further regulator operations will be required later Thursday.

Wivenhoe Dam

At 0700 Thursday, Wivenhoe Dam was 67.31 m and rising slowly. This is 0.31 m above FSL and above the gate trigger level of 67.25 m . There have been rises recorded at rivers and stream upstream of Wivenhoe Dam. Gates will be opened in the next 24 hours to manage the inflows from the upper Brisbane River and the outflow from Somerset.

Impacts of Wivenhoe Dam Releases

Based upon rain to date, expecting about 70,000ML from upper Brisbane. Lockyer Ck peak of about $100 \mathrm{~m} 3 / \mathrm{s}$ Friday afternoon. This will take out Twin Bridges and nearly inundate Savages Crossing. Colleges Crossing could be taken out by a combined Lockyer and local runoff.

APPENDIX F - COMMUNICATION PROTOCOL TECHNICAL SITUATION REPORTS

Current strategy is to keep Burton Bridge free. On this basis, we will commence opening Wivenhoe at 1800 Thursday and ramp up to about $300 \mathrm{~m} 3 / \mathrm{s}$ by 2200 . This would limit mid Brisbane flows to just under $400 \mathrm{~m} 3 / \mathrm{s}$ (Burtons capacity $450 \mathrm{~m} 3 / \mathrm{s}$).
If rainfall increases and Lockyer and local runoff also increase, we can close/reduce
Wivenhoe accordingly to ensure that that $450 \mathrm{~m} 3 / \mathrm{s}$ is not exceeded unless necessary.
Councils have been advised of this strategy and are contacting residents
Dam Operations Manager
Water Delivery
Queensland Bulk Water Supply Authority trading as Seqwater

APPENDIX F - COMMUNICATION PROTOCOL TECHNICAL SITUATION REPORTS

Technical Situation Report 8

Date: Saturday 8 January 2011
Time: 07:51

The Flood Centre will keep you informed or leave messages on your phones. Give them a call if you need further information.

Below is the current strategy.
Any comments or assessments let me know.

Rainfall

Since 0900 Friday, there has been widespread 20 to 40 mm throughout North Pine, Somerset and Wivenhoe catchments with isolated higher totals of 70 mm in the upper reaches of the Brisbane R . No significant rain has fallen in the past 12 hours.

Advice from BoM indicates that SE Qid can expect further high rainfall totals over the next 4 days.

Saturday: Rain light at times 5 -50mm with higher falls along the coast
Sunday: Widespread rain with totals between $50-100 \mathrm{~mm}$
Monday: Widespread rain again with totals between $50-100 \mathrm{~mm}$
Tuesday: \quad Rain easing with totals between $25-50 \mathrm{~mm}$
Given the saturated conditions of the catchments, significant inflows to Seqwater dams will be generated, especially following the forecast rainfall on Sunday/Monday.

North Pine (Full Supply Level 39.60 m AHD)

At 0600 Saturday, North Pine Lake Level was 39.46 m AHD and slowly rising. Currently 3 gates are open to release runoff from rain on Wed/Thursday/Friday. Given the very high likelihood of significant runoff during the next 4 days, gates will be keep open to match' inflows over the next few days, rather than opening and closing at various times with short notice. Youngs Crossing will remain adversely impacted for the duration of the gates being open. Moreton Bay Regional Council has been advised and concurs with this strategy.

Somerset (Full Supply Level 99.00 m AHD)

At 0500 Saturday, Somerset Dam level was 100.42 m AHD and rising. The Dam is releasing into Wivenhoe through one open sluice gate. Water will be temporarily held in Somerset to allow the inflow from the upper Brisbane is passed through the system. However, this strategy may need to be reviewed if significant runoff occurs in the Stanley and Upper Brisbane. Under circumstances of high inflows to Somerset and Wivenhoe, it is the usual practice to hold flood water in Somerset until there is a high level of confidence in the estimated inflows to Wivenhoe.

Since the commencement of the event on 02/01/2011, approximately $85,000 \mathrm{ML}$ has flowed into Somerset Dam with a further $20,000 \mathrm{ML}$ expected based on the recorded rainfall to date. Approximately $25,000 \mathrm{ML}$ has been released into Wivenhoe.

APPENDIX F - COMMUNICATION PROTOCOL TECHNICAL SITUATION REPORTS

Wivenhoe (Full Supply Level 67.00 m AHD)

At 0600 Saturday, Wivenhoe Dam was 68.45 m AHD and rising steadily with all five gates open and releasing about $890 \mathrm{~m} 3 / \mathrm{s}$. River levels upstream of Wivenhoe Dam were rising again, generating further inflow to the dam It is intended to ramp up the release from Wivenhoe to $1,200 \mathrm{~m} 3 / \mathrm{s}$ by midday Saturday $08 / 01 / 2011$. Further assessments will be undertaken to determine increases above this level. However, given the high likelihood of significant inflows in the next week, this may be increased.

Since the commencement of the event on 02/01/2011, approximately $200,000 \mathrm{ML}$ has flowed into Wivenhoe Dam (including Somerset releases) with a further 180,000ML expected based on the recorded rainfall to date. Approximately $50,000 \mathrm{ML}$ has been released from Wivenhoe via the hydro and regulator at about $50 \mathrm{~m} 3 / \mathrm{s}$.

Impacts downstream of Wivenhoe

The projected Wivenhoe release of $1,200 \mathrm{~m} 3 / \mathrm{s}$ combined with Lockyer flows and local runoff will mean that all crossings downstream of Wivenhoe (Twin Bridges, Savages Crossing, Burtons Bridge, Kholo Bridge and Colleges Crossing) will be adversely impacted for several days. At this stage Fernvale and Mt Crosby Weir Bridge are not expected to be affected but they could potentially be affected if the predicted rainfall totals eventuate.

The current available assessments indicate that the combined flow in the lower Brisbane R would only add 50 mm to an upper limit of 100 mm to the recorded water levels in the City Reach of the Brisbane River. However, it is noted that tides in the lower Brisbane R will be 0.4 to 0.5 metres higher than predicted tides

Somerset Regional, Ipswich City and Brisbane City Councils have been advised of the Wivenhoe operating strategy.

Dam Operations Manager
Water Delivery
Queensland Bulk Water Supply Authority trading as Seqwater

APPENDIX F - COMMUNICATION PROTOCOL TECHNICAL SITUATION REPORTS

Technical Situation Report 9

Date: Sunday 9 January 2011
Time: 07:32

The Flood Centre will keep you informed or leave messages on your phones. Give them a call if you need further information.

Below is the current strategy.
Any comments or assessments let me know.

Rainfall

Catchment average rainfall for the past 12 hours is; North Pine Dam (less than 10 mm); Somerset Dam (40 mm); Wivenhoe Dam (less than 10 mm). The bulk of the rain that has fallen in the Somerset Dam catchment has occurred in the last two hours, with recorded falls exceeding 60 mm in some areas. The BOM forecast for the next seven days issued at 0450 this morning is:-

Sunday: Rain periods.
Monday: Rain periods.
Tuesday: Rain periods.
Wednesday A few showers.
Thursday A shower or two.
Friday A shower or two.
Saturday Mostly fine.
A severe whether warning remains current for heavy rainfall in the dam catchment areas. The dam catchments are relatively saturated and significant inflows will be generated if the forecast rainfall eventuates.

North Pine Dam (Full Supply Level 39.60 m AHD)

The dam level is currently 39.47 m AHD and steady. Two radial gates remain open to release runoff generated from recent rainfall. Based on rainfall forecasts, the radial gates have been kept open in anticipation of further inflows over the next few days. However unless significant rain falls today, consideration will be given to closing the gates late this afternoon or early tomorrow morning and discussions to finalise a decision on the timing of radial gate closure will be held with the Moreton Bay Regional Council later today. Youngs crossing will remain closed while releases are in progress.

Somerset Dam (Full Supply Level 99.00 m AHD)

The dam level is currently falling slowly, with the current level being 100.27 m AHD. However the rain that has fallen in the dam catchment over the last two hours (recorded falls exceed 60 mm in some areas) will result in significant inflows later today. The current release rate into Wivenhoe Dam is $35,000 \mathrm{ML} /$ day. Since the commencement of the event on 02/01/2011approximately $56,000 \mathrm{ML}$ has been released from the dam, with a total of at least $150,000 \mathrm{ML}$ to be released based on the currently recorded rainfall. The total release for the event is likely to increase significantly over the next few days based on the current rainfall forecasts. At this stage, releases will continue until at least Tuesday.

APPENDIX F - COMMUNICATION PROTOCOL TECHNICAL SITUATION REPORTS

Wivenhoe Dam (Full Supply Level 67.00 m AHD)

The dam level is currently falling slowly, with the current level being 68.58m AHD. River levels upstream of the dam are receding, however further inflows will result from any additional rainfall. The current gate operation strategy will maintain flows of around $1,600 \mathrm{~m}^{3} / \mathrm{s}$ in the mid-Brisbane River. The current release rate from Wivenhoe Dam is $116,000 \mathrm{ML} /$ day. Since the commencement of the event on 02/01/2011approximately $150,000 \mathrm{ML}$ has been released from the dam, with a total of at least $450,000 \mathrm{ML}$ to be released based on the currently recorded rainfall. The total release for the event is likely to increase over the next few days based on the current rainfall forecasts. At this stage, releases will continue until at least Wednesday.

Impacts downstream of Wivenhoe Dam

The current Wivenhoe Dam release combined with Lockyer flows and local runoff will mean that all low level crossings downstream of Wivenhoe (Twin Bridges, Savages Crossing, Burtons Bridge, Kholo Bridge and Colleges Crossing) will be adversely impacted until at least Wednesday 12 January. At this stage Fernvale and Mt Crosby Weir Bridge are not expected to be affected, but this may be revised if the predicted rainfall totals eventuate and higher releases from Wivenhoe Dam are considered necessary.

Somerset Regional, Ipswich City and Brisbane City Councils have been advised of the Wivenhoe operating strategy.

The current available assessments indicate that the combined flow in the lower Brisbane R would only add 50 mm to an upper limit of 100 mm to the recorded water levels in the City Reach of the Brisbane River. However, it is noted that tides in the lower Brisbane R will be 0.4 to 0.5 metres higher than predicted tides

Dam Operations Manager
Water Delivery
Queensland Bulk Water Supply Authority trading as Seqwater

APPENDIX F - COMMUNICATION PROTOCOL TECHNICAL SITUATION REPORTS

Technical Situation Report 10

Date: Monday 10 January 2011
Time: 06:23

The Flood Centre has kept you informed (and discussed with the BCC Flood Centre) of where we are at but below is a summary as at 1 am this morning.

I will send off another Technical Report this morning so if you have any assessments or actions you are undertaking that you want included send them in.

Rainfall

Very heavy rainfall has been recorded in the Upper Brisbane and Stanley Rivers in the last 12 hours with totals up 100 to 240 mm . Totals for the last 24 hours range from 100 to 300 mm .

Rainfall of similar magnitudes is expected in the 12 to 24 hours around the downstream catchments as the system tracks south.

A severe weather warning remains current for heavy rainfall in the dam catchment areas.

North Pine Dam (Full Supply Level 39.60 m AHD)

The dam level was 39.95 m and steady. Five gates are open releasing $445 \mathrm{~m} 3 / \mathrm{s}$. The inflow into the dam since the commencement of the event is $42,000 \mathrm{ML}$. Estimated event volume is $57,000 \mathrm{ML}$ assuming no further rainfall. Gate operations will continue until at least Tuesday 11 January 2011.

Somerset Dam (Full Supply Level 99.00 m AHD)

The dam level is 102.22 m AHD and rising quickly (storing $157,000 \mathrm{ML}$ above FSL). Peak inflow to the dam is estimated to be about $4,200 \mathrm{~m} 3 / \mathrm{s}$ based on observed rainfall and could be as high as $5,000 \mathrm{~m} 3 / \mathrm{s}$ with additional forecast rainfall. Five sluice gates are open releasing about $1,100 \mathrm{~m} 3 / \mathrm{s}(95,000 \mathrm{M} / \mathrm{d})$ into Wivenhoe Dam. At this stage the dam will reach at least 103.5 on Monday afternoon which will adversely impact areas around Kilcoy.

Since the commencement of the event on 02/01/2011approximately $115,000 \mathrm{ML}$ has been released from the dam into Wivenhoe, with an event total of the order of $520,000 \mathrm{ML}$ expected. This is expected to increase due to the forecast rain in the next 24 to 48 hours. At this stage, releases will continue until at least Thursday.

Wivenhoe Dam (Full Supply Level 67.00 m AHD)

River levels upstream of the dam are rising quickly with significant inflow being generated from the intense heavy rainfall. Flows in the Brisbane River at Gregor's Ck have already reached $7,350 \mathrm{~m} 3 / \mathrm{s}$ and the river has just peaked at 23:00 on Sunday 9 January.

APPENDIX F - COMMUNICATION PROTOCOL TECHNICAL SITUATION REPORTS

The dam level is rising quickly, with the current level being 69.60 m AHD (storing 301,000 ML). Estimated peak inflow to the dam just from the Upper Brisbane R alone may reach as high as $8,800 \mathrm{~m} 3 / \mathrm{s}$ and, at this stage, the dam will reach at least 73.3 m AHD during Tuesday morning. Given the rapid increase in inflow volumes, it will be necessary to increase the release from Wivenhoe during Monday morning.
The objective for dam operations will be to minimise the impact of urban flooding in areas downstream of the dam and, at this stage, releases will be kept below 3,500 m3/s and the combined flows in the lower Brisbane will be limited to $4,000 \mathrm{~m} 3 / \mathrm{s}$ if possible.

Fernvale Bridge approaches and Mt Crosby Weir Bridge have been inundated and both bridges are now closed or are in the process of being closed.

The current release rate from Wivenhoe Dam is $1,400 \mathrm{~m} 3 / \mathrm{s}$ ($120,000 \mathrm{ML} / \mathrm{day}$). Gate opening will start to be increased during early Monday morning and the release is expected to increase to at least $2,600 \mathrm{~m} 3 / \mathrm{s}$.

Since the commencement of the event on 02/01/2011 approximately $240,000 \mathrm{ML}$ has been released from the dam, with an event total approaching $1,500,000 \mathrm{ML}$ without further rain and as much as $2,100,000 \mathrm{ML}$ with forecast rainfall of (both including Somerset outflow). At this stage, releases will continue until at least Sunday $16^{\text {th }}$ January 2011.

Impacts downstream of Wivenhoe Dam

The projected Wivenhoe Dam releases combined with Lockyer flows and local runoff will mean that all crossings downstream of Wivenhoe (Twin Bridges, Fernvale, Savages Crossing, Burtons Bridge, Kholo Bridge, Mt Crosby Weir and Colleges Crossing) will be adversely impacted until at least Saturday 15 January in varying degrees.

Water levels in the lower Brisbane R will be impacted by the combined flows of Lockyer Ck, Bremer River, local runoff and releases from Wivenhoe Dam.
Somerset Regional, Ipswich City and Brisbane City Councils have been advised of the Wivenhoe operating strategy.

Dam Operations Manager
Water Delivery
Queensland Bulk Water Supply Authority trading as Seqwater

APPENDIX F - COMMUNICATION PROTOCOL TECHNICAL SITUATION REPORTS

Technical Situation Report 11

Date: Monday 10 January 2011
Time: 15:27

The Flood Centre will keep you informed or leave messages on your phones. Give them a call if you need further information.

Below is the current strategy.
Any comments or assessments let me know.

Rainfall

Significant rainfall has fallen in the Wivenhoe Dam catchment over the last 3 hours, with falls exceeding 100 mm . This rainfall will significantly increase inflows into the dam. A severe weather warning remains current for heavy rainfall in the dam catchment areas. The QPF issued by BOM at 10:00 estimates rainfalls for the 24 hours to 10:00 Tuesday as North Pine Dam (75 mm to 150 mm); Wivenhoe/Somerset Dam Catchments (50 mm 100 mm). Potentially significant rain moving towards the dam catchments is currently evident on the BOM radar.

Somerset Dam (Full Supply Level 99.00 m AHD)

The dam level is 103.41 m AHD and rising. Peak inflow to the dam is estimated to be about $4,200 \mathrm{~m} 3 / \mathrm{s}$. Five sluice gates are open releasing about $1,100 \mathrm{~m} 3 / \mathrm{s}(95,000 \mathrm{ML} / \mathrm{day})$ into Wivenhoe Dam. At this stage the dam lake level will reach about 103.5 m AHD on Monday afternoon. Areas around Kilcoy will continue to be adversely affected.

Wivenhoe Dam (Full Supply Level 67.00 m AHD)

The dam level is 72.41 m AHD and rising quickly. The rainfall experienced over the last 2 to 3 hours will result in significant further inflows into the dam and releases from the dam will need to be increased in accordance with Flood Mitigation procedures and to ensure that a fuse plug is not initiated. The initiation of a fuse plug will result in a rapid uncontrolled outflow from the dam of $2,000 \mathrm{~m} 3 / \mathrm{s}$ being added to the gate release outflow. Outflows into the Brisbane River from both Lockyer Creek and the Bremer River are also increasing.

Five radial gates are currently open at the dam releasing about $2,000 \mathrm{~m} 3 / \mathrm{s}$ into the Brisbane River and this will need to be increased steadily to an outflow of $2,800 \mathrm{~m} 3 / \mathrm{s}$ over the next 9 hours (commencing at 1500). At this stage, the dam will reach about 73.8 m AHD during Tuesday morning.

The objective for dam operations is currently to minimise the impact of urban flooding in areas downstream of the dam and to keep river flows in the lower Brisbane River below $4,000 \mathrm{~m} 3 / \mathrm{s}$ if possible. This is significantly less than the current estimated combined predam peak inflow of $12,000 \mathrm{~m} 3 / \mathrm{s}$. If further rainfall occurs, dam releases may need to be increased further and this may result in river flows in the lower Brisbane River approaching or exceeding $5,000 \mathrm{~m} 3 / \mathrm{s}$.

Impacts downstream of Wivenhoe Dam

APPENDIX F - COMMUNICATION PROTOCOL TECHNICAL SITUATION REPORTS

The projected Wivenhoe Dam releases combined with Lockyer Creek flows and local runoff will mean that all crossings downstream of Wivenhoe (Twin Bridges, Fernvale, Savages Crossing, Burtons Bridge, Kholo Bridge, Mt Crosby Weir and Colleges Crossing) will be adversely impacted until at least Sunday 16 January in varying degrees.

Water levels in the lower Brisbane River will be impacted by the combined flows of Lockyer Creek, Bremer River, local runoff and releases from Wivenhoe Dam.

Outlook

Heavy rainfall continues throughout South East Queensland and the situation could deteriorate rapidly over the next 24 hours. The flood operation centre will continue to monitor the situation and provide every six hours until the situation stabilizes.

Dam Operations Manager
Water Delivery
Queensland Bulk Water Supply Authority trading as Seqwater

APPENDIX F - COMMUNICATION PROTOCOL TECHNICAL SITUATION REPORTS

Technical Situation Report 12

Date: Tuesday 11 January 2011
Time: 06:38

The Flood Centre has kept you informed (and discussed with the BCC Flood Centre) of where we are at but below is a summary as at 6am this morning.

I will send off another Technical Report this morning so if you have any assessments or actions you are undertaking that you want included send them in.

Rainfall

Rainfall continues in the North Pine Dam, Somerset Dam and Wivenhoe Dam catchments. Isolated falls in the Upper Brisbane River of up to 125 mm have been recorded with widespread falls of 40 to 70 mm in the Somerset Dam catchment. This rainfall will increase inflows into the dam.

There has also been 20 to 60 mm in the Lockyer Creek catchment in the last 12 hours with falls of up to 30 mm in the Bremer River.

A severe weather warning remains current for heavy rainfall in the dam catchment areas. The QPF issued by BOM at 16:00 estimates rainfalls for the 24 hours to 10:00 Tuesday as North Pine Dam (25 mm to 50 mm , with isolated falls to 100 mm); Wivenhoe/Somerset Dam Catchments (25 mm to 50 mm , with isolated falls to 100 mm).

North Pine Dam (Full Supply Level 39.60 m AHD)
The dam level is 39.80 m AHD and has commenced rising again (storing 4,400ML above FSL). Five gates are open releasing $177 \mathrm{m3} / \mathrm{s}$. The inflow into the dam since the commencement of the event is $77,000 \mathrm{ML}$. Estimated event volume is $88,000 \mathrm{ML}$ assuming no further rainfall. Releases from the dam will continue until at least Wednesday 12 January 2011.

Somerset Dam (Full Supply Level 99.00 m AHD)

The dam level is 103.27 m AHD and falling slowiy. Peak inflow to the dam is estimated to be about $4,200 \mathrm{~m} 3 / \mathrm{s}$. Total discharge into Wivenhoe Dam is currently $1400 \mathrm{~m} 3 / \mathrm{s}$ and this discharge will be decreased in the next few hours to be around $500 \mathrm{m3} / \mathrm{s}$ later on Tuesday. This is to ensure that the combined flood mitigation capacity in Somerset and Wivenhoe Dam is maximized.

The dam level peaked at 103.52 m AHD at 19:00 on Monday 10 January 2011, (unless further significant rainfall is experienced). Areas around Kilcoy will continue to be adversely affected.

Wivenhoe Dam (Full Supply Level 67.00 m AHD)

The dam level is 73.51 m AHD and rising at about $25 \mathrm{~mm} /$ hour. Releases from the dam have been held at a rate of $2,750 \mathrm{~m} 3 / \mathrm{s}$ since 19:30 hours on Monday 10 January

APPENDIX F - COMMUNICATION PROTOCOL TECHNICAL SITUATION REPORTS

2011. Oufflows into the Brisbane River from both Lockyer Creek and the Bremer River are also increasing.

The BoM has provided further advice about the flash flooding experienced in the upper areas of Lockyer Creek. The rainfall responsible for this event was not observed at any rainfall stations but it is considered to be extreme. Flood levels in the Lockyer Creek catchment will exceed maximum recorded levels in some stations in the upper catchment. This flow will result in increases in Brisbane River levels below the junction of Lockyer Creek.

Five radial gates are currently open at the dam releasing about $2,750 \mathrm{~m} 3 / \mathrm{s}$ into the Brisbane River. At this stage, the dam will reach just over 74.0 m AHD during Tuesday evening.

Above EL 74.0 m AHD the objective for dam operations is to maintain the security of the dam and minimise downstream flood flows if possible.

If further rainfall occurs, dam releases may need to be increased further and this may result in river flows in the lower Brisbane River approaching or exceeding $5,000 \mathrm{~m} 3 / \mathrm{s}$.

Impacts downstream of Wivenhoe Dam

The projected Wivenhoe Dam releases combined with Lockyer Creek flows and local runoff will mean that all crossings downstream of Wivenhoe (Twin Bridges, Fernvale, Savages Crossing, Burtons Bridge, Kholo Bridge, Mt Crosby Weir and Colleges Crossing) will be adversely impacted until at least Sunday 16 January in varying degrees.

Water levels in the lower Brisbane River will be impacted by the combined flows of Lockyer Creek, Bremer River, local runoff and releases from Wivenhoe Dam.

The BoM will provide further information regarding the magnitude of the flash flood event occurring in Lockyer Creek early Tuesday morning. Consideration was given to modifying the releases from Wivenhoe Dam to try to moderate the peak flows emanating from Lockyer Creek but the rainfall in the past 12 hours in the catchment above the dam makes this option not possible. Therefore instead of decreasing releases to accommodate the Lockyer Creek flows, the strategy will endeavour to maintain the current releases until Lockyer Creek peaks.

Outlook

Heavy rainfall continues throughout South East Queensland and the situation could deteriorate over the next 24 hours. The flood operation centre will continue to monitor the situation and provide situation reports every six hours until the situation stabilizes.

Dam Operations Manager
Water Delivery
Queensland Bulk Water Supply Authority trading as Seqwater

APPENDIX F - COMMUNICATION PROTOCOL TECHNICAL SITUATION REPORTS

Technical Situation Report 13

Date: Wednesday 12 January 2011
Time: 11:30

I haven't been sending many of these as the Flood Centre has been forwarding all their sit reps to you directly which are the same.

However will keep sending these in case there are other issues that may come up or issues you want to raise.

Rainfall

No significant rain has fallen over the catchments in the past twelve hours. Less than 10 to 15 millimeters of rainfall is expected over the next $24-48$ hours.

Somerset/Wivenhoe

Somerset Dam has peaked at 105.11 m AHD at 08:00 on 12 January 2011 and the dam is discharging over the spillway.
One Sluice gate has been opened around 11am to assist the draining of the flood storage compartment. Further sluices may be opened during the day to relieve upstream impacts. At 11 am Somerset was 105.06 m and $716,900 \mathrm{ML}$ at 188.7% and dropping slightly.

Wivenhoe Dam peaked at 74.97 m AHD at 19:00 on 11 January 2011 with a corresponding discharge of $7,450 \mathrm{~m} 3 / \mathrm{s}$.
At 11 am Wivenhoe Dam was 74.78 m AHD at $2,197,000 \mathrm{ML}$ and 188.5% and generally steady.

The releases from Wivenhoe Dam have been temporarily reduced to $2,500 \mathrm{~m} 3 / \mathrm{s}$ at 07:30 to allow the peak of Lockyer Creek to enter the Brisbane River. After the downstream peak in the lower Brisbane River has passed, releases will be increased to maximum of $3,500 \mathrm{~m} 3 / \mathrm{s}$. This release will then be maintained to drain the flood storage component within the required 7 days.

The combined flood event volume in Somerset and Wivenhoe Dams is estimated to be around 2.3 million megalitres.

North Pine

At 11:00 North Pine Dam was 39.77 mAHD and falling and still releasing from 5 gates. North Pine has peaked at 41.11 mAHD at 14:00 on 11 January 1974 with peak release of $2,800 \mathrm{~m} 3 / \mathrm{s}$. The event has a volume of around $200,000 \mathrm{ML}$. It is expected that gates will now not close until Thursday or Friday.

Dam Operations Manager
Water Delivery
Queensland Bulk Water Supply Authority trading as Seqwater

APPENDIX F - COMMUNICATION PROTOCOL TECHNICAL SITUATION REPORTS

Technical Situation Report 14

Date: Thursday 13 January 2011
Time: 12:46

Attached is an update as at 12 pm .
Again let me know of any issues.
Will send one each day.

Rainfall

Rainfall in the last 12 hours is generally below 5 mm with isolated falls of up to 15 mm in the Stanley, Lockyer and Pine River catchments. There is no significant rain expected fin the next 4 days.

Somerset/Wivenhoe

Somerset Dam has peaked at 105.11 mAHD at 06:00 on 12 January 2011. Three sluices are opened as at 130012 January 2011 and discharging 1,250 m3/s into Wivenhoe Dam. Sluice gates will be utilised to drain of the flood storage compartment during the next 5 days. Water levels in Somerset Dam will fall slowly in the next 24 hours.

At 12 pm Somerset was 103.96 m and $642,535 \mathrm{ML}$ at 169.2%.
Wivenhoe Dam peaked at 74.97 mAHD at 19:00 on 11 January 2011 with a corresponding discharge of $7,450 \mathrm{~m} 3 / \mathrm{s}$.

The releases from Wivenhoe Dam had been temporarily reduced to $2,500 \mathrm{m3} / \mathrm{s}$ at 07:30 on Wednesday 12 January 2011 to allow the peak of Lockyer Creek to enter the Brisbane River. The Brisbane River has peaked at the Port Office Gauge early Thursday morning. Releases from Wivenhoe Dam will now be managed gradually from 1pm Thursday 13.1.2011 to achieve a target flow of around $3,500 \mathrm{~m} 3 / \mathrm{s}$ at Moggill. This release will then be managed to drain the flood storage component within the required 7 days. This will not cause renewed rises downstream.

At 12 pm Wivenhoe Dam was 74.61 m AHD at $2,170,100 \mathrm{ML}$ and 186.2% and dropping slowly.

The combined flood event volume in Somerset and Wivenhoe Dams is estimated to be in excess of 2.6 million megalitres.

North Pine

At 12 pm North Pine Dam still gates open. North Pine peaked at 41.11 mAHD at 14:00 on 11 January 2011 with peak release of $2,800 \mathrm{~m} 3 / \mathrm{s}$. The event has a volume of around 200,000 ML

APPENDIX F - COMMUNICATION PROTOCOL TECHNICAL SITUATION REPORTS

At12pm North Pine Dam was 39.64 mAHD and $215,179 \mathrm{ML}$ and 100.4% and slowly falling. It is expected that gates will be closed early Friday morning.

Strategy

The Flood Operations Centre is continuing to monitor rainfalls and water levels through the Brisbane and Pine catchments and reviewing operating strategy every 30 minutes. The FOC is maintaining close contact with warning agencies and local councils.

Leslie Harrison Dam:

Gates closed.

Hinze Dam:

A release of around 8,000 megalitres a day is being made through the emergency gates. The Lake Level is dropping. There is no public access to the spillway.

Dam Operations Manager
Water Delivery
Queensland Bulk Water Supply Authority frading as Seqwater

APPENDIX F - COMMUNICATION PROTOCOL TECHNICAL SITUATION REPORTS

Technical Situation Report 15

Date: Friday 14 January 2011
Time: 05:38

Update as of this morning.
As usual, let us know if there are any issues or concerns.
And feel free to contact the Flood Centre for details or discuss.

Rainfall

There has been no significant rainfall in the last 12 hours and none is expected for the next 5 days.

Somerset/Wivenhoe

Somerset Dam has peaked at 105.11 mAHD at 06:00 on 12 January 2011. Four sluices are opened. Sluice gates will be utilised to drain of the flood storage compartment during the next 4 days. Water levels in Somerset Dam will fall slowly in the next 24 hours.

At 5 am Somerset was 102.87 m and $574,852 \mathrm{ML}$ at 151.3% and discharging $1,277 \mathrm{cumecs}$.
Wivenhoe Dam peaked at 74.97 mAHD at 19:00 on 11 January 2011 with a corresponding discharge of $7,450 \mathrm{~m} 3 / \mathrm{s}$.

The releases from Wivenhoe Dam are being managed to achieve a target flow of around $3,500 \mathrm{~m} 3 / \mathrm{s}$ at Moggill. This release will then be maintained to drain the flood storage component within the required 7 days.

At 5 am Wivenhoe Dam was 74.08 m AHD at $2,087,960 \mathrm{ML}$ and 179.22% and dropping slowly and discharging around 3,500 cumecs and this flow will be maintained until early next week.

The combined flood event volume in Somerset and Wivenhoe Dams is estimated to be in excess of 2.6 million megalitres.

North Pine

North Pine peaked at 41.11 mAHD at 14:00 on 11 January 2011 with peak release of $2,800 \mathrm{~m} 3 / \mathrm{s}$. The event has a volume of around $200,000 \mathrm{ML}$

At 5am North Pine Dam was 39.4 mAHD and $210,040 \mathrm{ML}$ and 98.0% and all gates were closed.

Strategy

The Flood Operations Centre is continuing to monitor rainfalls and water levels through the Brisbane and Pine catchments and reviewing operating strategy every 30 minutes. The FOC is maintaining close contact with warning agencies and local councils.

APPENDIX F - COMMUNICATION PROTOCOL TECHNICAL SITUATION REPORTS

Technical Situation Report 16

Date: Saturday 15 January 2011
Time: 07:08

Attached is an update as at 6am today.
Again let me know of any issues.
The FOC and the BCC have kept up discussions re any impacts of release strategy. If there are any concerns re effects on houses or recovery that arrive get back to the FOC any time.

Will send one each day.
Aiming to have most of flood storage drained by Wednesday but will have better idea of closing times over next few days. Then may have better idea as to when bridges will come out. But again contact the FOC if you want.

Rainfall

There has been no significant rainfall in the last 24 hours and no significant rainfall is expected in the next twenty-four hours. Mostly fine conditions are expected over the weekend, but showers will return early next week.

Somerset/Wivenhoe

Somerset Dam has peaked at 105.11 mAHD at 06:00 on 12 January 2011. Four sluices are opened. Sluice gates will be utilised to drain of the flood storage compartment during the next 4 days. Water levels in Somerset Dam will fall slowly in the next 24 hours.

At 6 am Somerset was 101.35 m and $490,137 \mathrm{ML}$ at 129.0% and discharging 920 cumecs.

Wivenhoe Dam peaked at 74.97 mAHD at 19:00 on 11 January 2011 with a corresponding discharge of $7,450 \mathrm{~m} 3 / \mathrm{s}$.

The releases from Wivenhoe Dam are being managed to achieve a target flow of around $3,500 \mathrm{~m} 3 / \mathrm{s}$ at Moggill. This release will then be maintained to drain the flood storage component by around Wednesday $19^{\text {th }}$ January.

At 5am Wivenhoe Dam was 72.86 m AHD at $1,905,900 \mathrm{ML}$ and 163.6% and dropping slowly and discharging around 3,500 cumecs and this flow will be maintained.

The combined flood event volume in Somerset and Wivenhoe Dams is estimated to be in excess of 2.6 million megalitres.

North Pine

North Pine peaked at 41.11 mAHD at 14:00 on 11 January 2011 with peak release of $2,800 \mathrm{~m} 3 / \mathrm{s}$. The event has a volume of around $200,000 \mathrm{ML}$

APPENDIX F - COMMUNICATION PROTOCOL TECHNICAL SITUATION REPORTS

At closure North Pine Dam was 39.4 mAHD and $210,040 \mathrm{ML}$ and 98.0% and all gates were closed. The current level is expected to increase to just over 39.5 mAHD in the next few days due to base-flow. This could be higher if further rainfall occurs.

MBRC will inspect Youngs Crossing to determine if the crossing can be re-opened

Strategy

The Flood Operations Centre is continuing to monitor rainfalls and water levels throughout the Brisbane and Pine River catchments and is maintaining close contact with warning agencies and local councils.

Leslie Harrison Dam:

Gates closed.

Hinze Dam:

A release of around 6,800 megalitres a day is being made through the emergency gates. The Lake Level is dropping and the gate should be closed around Tuesday next week. There is no public access to the spillway.

Dam Operations Manager
Water Delivery
Queensland Bulk Water Supply Authority trading as Seqwater

APPENDIX F - COMMUNICATION PROTOCOL TECHNICAL SITUATION REPORTS

Technical Situation Report 17

Date: Sunday 16 January 2011
Time: 06:39

Attached is an update as at 6am today.
Again let me know of any issues.
The FOC and the BCC have kept up discussions re any impacts of release strategy. If there are any concerns re effects on houses or recovery that arrive get back to the FOC any time.

Will send one each day.
Aiming to have most of flood storage drained by Wednesday but will have better idea of closing times over next few days. Then may have better idea as to when bridges will come out. But again çontact the FOC if you want.

Rainfall

There has been no significant rainfall in the last 24 hours and no significant rainfall is expected in the next twenty-four hours. Mostly fine conditions are expected over the weekend, but showers will return early next week.

Somerset/Wivenhoe

Somerset Dam has peaked at 105.11 mAHD at 06:00 on 12 January 2011. Four sluices are opened. Sluice gates will be utilised to drain of the flood storage compartment during the next 4 days. Water levels in Somerset Dam will fall slowly in the next 24 hours.

At 6am Somerset was 100.01 m and $424,360 \mathrm{ML}$ at 111.7% and discharging 820 cumecs.
Wivenhoe Dam peaked at 74.97 mAHD at 19:00 on 11 January 2011 with a corresponding discharge of $7,450 \mathrm{~m} 3 / \mathrm{s}$.

The releases from Wivenhoe Dam are being managed to achieve a target flow of around $3,500 \mathrm{~m} 3 / \mathrm{s}$ at Moggill. This release will then be maintained to drain the flood storage component by around Wednesday $19^{\text {th }}$ January.

At 6 am Wivenhoe Dam was 71.3 m AHD at $1,687,269 \mathrm{ML}$ and 144.8% and dropping slowly and discharging around 3,477 cumecs and this flow will be maintained.

The combined flood event volume in Somerset and Wivenhoe Dams is estimated to be in excess of 2.6 million megalitres.

North Pine

APPENDIX F - COMMUNICATION PROTOCOL TECHNICAL SITUATION REPORTS

North Pine peaked at 41.11 mAHD at 14:00 on 11 January 2011 with peak release of $2,800 \mathrm{~m} 3 / \mathrm{s}$. The event has a volume of around $200,000 \mathrm{ML}$

At 6am North Pine Dam was 39.46mAHD and 211,319ML and 98.6% and all gates were closed. The current level is expected to increase to just over 39.5 mAHD in the next few days due to base-flow. This could be higher if further rainfall occurs.

Dam Operations Manager
Water Delivery
Queensland Bulk Water Supply Authority trading as Seqwater

APPENDIX F - COMMUNICATION PROTOCOL TECHNICAL SITUATION REPORTS

Technical Situation Report 18

Date: Monday 17 January 2011
Time: 09:46

The FOC is planning to initiate a closing sequence some time this afternoon if levels of the dam are tracking properly.
With final closure Wednesday, probably in the morning at this stage.
They will give you a call later today once they have a better idea of timing.

Rainfall

There has been no significant rainfall in the last 24 hours and no significant rainfall is expected in the next twenty-four hours.

Somerset/Wivenhoe

Somerset Dam peaked at 105.11 mAHD at 06:00 on 12 January 2011.
At 6 am Somerset was 99.07 m and $382,829 \mathrm{ML}$ at 100.8% and discharging through cone valves. All sluices are shut.

Wivenhoe Dam peaked at 74.97 mAHD at 19:00 on 11 January 2011 with a corresponding discharge of $7,450 \mathrm{~m} 3 / \mathrm{s}$.

The releases from Wivenhoe Dam are being managed to achieve a target flow of around $3,500 \mathrm{~m} 3 / \mathrm{s}$ at Moggill. This release will then be maintained to drain the flood storage component by around Wednesday $19^{\text {th }}$ January with a closing sequence to start today some time.

At 6am Wivenhoe Dam was 69.4 m AHD at $1,441,983 \mathrm{ML}$ and 123.8% and dropping and discharging around 3,477 cumecs and this flow will be maintained until the closing sequence begins. Aim is for final closure on Wednesday.

The combined flood event volume in Somerset and Wivenhoe Dams is estimated to be in excess of 2.6 million megalitres.

North Pine

North Pine peaked at 41.11 mAHD at 14:00 on 11 January 2011 with peak release of $2,800 \mathrm{~m} 3 / \mathrm{s}$. The event has a volume of around $200,000 \mathrm{ML}$

At 6 am North Pine Dam was 39.54 mAHD and $213,024 \mathrm{ML}$ and 99.4% and all gates were closed. The current level is expected to increase to stay around this level. This could be higher if further rainfall occurs.

Strategy

APPENDIX F - COMMUNICATION PROTOCOL TECHNICAL SITUATION REPORTS

The Flood Operations Centre is continuing to monitor rainfalls and water levels throughout the Brisbane and Pine River catchments and is maintaining close contact with warning agencies and local councils.

Dam Operations Manager
Water Delivery
Queensland Bulk Water Supply Authority trading as Seqwater

APPENDIX F - COMMUNICATION PROTOCOL TECHNICAL SITUATION REPORTS

Technical Situation Report 19

Date: Monday 17 January 2011
Time: 16:37

The FOC initiated closing of the gates at Wivenhoe at 2pm this afternoon.
They will have advised you of this.
Any issues let us know.
Give them a call to discuss the closing sequence if you want.

Rainfall

There has been no significant rainfall in the last 24 hours and no significant rainfall is expected in the next twenty-four hours.

Somerset/Wivenhoe

Somerset Dam peaked at 105.11 mAHD at 06:00 on 12 January 2011.
At 4 pm Somerset was 99.02 m and $380,700 \mathrm{ML}$ at 100.2% and discharging through cone valves. All sluices are shut.

Wivenhoe Dam peaked at 74.97 mAHD at 19:00 on 11 January 2011 with a corresponding discharge of $7,450 \mathrm{~m} 3 / \mathrm{s}$.

At 4pm Wivenhoe Dam was 68.66 m AHD at $1,352,706 \mathrm{ML}$ and 116.1% and dropping. The closing sequence started at 2 pm today and releases will be slowly decreased through gate closures over the next few days to reach FSL around Thursday morning.

Discussions with BCC indicated they would prefer a Thursday closure to increase release time and minimize possible impacts re slumping along Coronation Drive. They also would like closure no later than Thursday prior to predicted high tides late this week.

The combined flood event volume in Somerset and Wivenhoe Dams is estimated to be in excess of 2.6 million megalitres.

North Pine

North Pine peaked at 41.11 mAHD at 14:00 on 11 January 2011 with peak release of $2,800 \mathrm{~m} 3 / \mathrm{s}$. The event has a volume of around $200,000 \mathrm{ML}$

At 4 pm North Pine Dam was 39.54 mAHD and $213,024 \mathrm{ML}$ and 99.4% and all gates were closed. The current level is expected to increase to stay around this level. This could be higher if further rainfall occurs.

APPENDIX F - COMMUNICATION PROTOCOL TECHNICAL SITUATION REPORTS

Strategy

The Flood Operations Centre is continuing to monitor rainfalls and water levels throughout the Brisbane and Pine River, catchments and is maintaining close contact with warning agencies and local councils.

Dam Operations Manager
Water Delivery
Queensland Bulk Water Supply Authority trading as Seqwater

APPENDIX F - COMMUNICATION PROTOCOL TECHNICAL SITUATION REPORTS

Technical Situation Report 20

Date: Tuesday 18 January 2011
Time: 06:51

The FOC initiated closing of the gates at Wivenhoe at 2pm this afternoon aiming at final closure Thursday morning.

Any issues let us know.
Give them a call to discuss the closing sequence if you want.

Rainfall

There has been no significant rainfall in the last 24 hours and no significant rainfall is expected in the next twenty-four hours. Mostly fine conditions are expected over the weekend, but showers will return early next week.

Somerset/Wivenhoe

Somerset Dam peaked at 105.11 mAHD at 06:00 on 12 January 2011.

At 6am Somerset was 98.98 m and $379,016 \mathrm{ML}$ at 99.8% and discharging through one cone valve. All sluices are shut.

Wivenhoe Dam peaked at 74.97 mAHD at 19:00 on 11 January 2011 with a corresponding discharge of $7,450 \mathrm{~m} 3 / \mathrm{s}$.

At 6am Wivenhoe Dam was 67.82 m AHD at $1,255,638 \mathrm{ML}$ and 107.8% and dropping.
Releases were held constant overnight at about $2,050 \mathrm{~m} 3 / \mathrm{s}$ to assist water supply pumping at Lowood. Following discussions with water supply operators, it has been decided to resume closing gates at 09:00 Tuesday before final closure on Thursday morning. The Dam will be near full supply and releases will be made through the regulator to account for ongoing base-flow.

Discussions with BCC indicated they would prefer a Thursday closure to increase release time and minimize possible impacts re slumping along Coronation Drive. They also would like closure no later than Thursday prior to predicted high tides late this week.

The combined flood event volume in Somerset and Wivenhoe Dams is estimated to be in excess of 2.6 million megalitres.

It should be noted that the Seqwater water level gauge currently being reported on the BoM website is currently slightly under reading by about 50 mm .

Dam Operations Manager
Water Delivery
Queensland Bulk Water Supply Authority frading as Seqwater

APPENDIX G - SEVERE WEATHER WARNINGS

THUNDERSTORM WARNINGS

Thunderstorm Warning 1

Date: Wednesday 5 January 2011
Time: 16:22

From: Aifs Operational Manager
Sent: Wednesday, January 05, 2011 4:22:08 PM
To: weather
Subject: BOM: Severe Thunderstorm Warning - SE Qld 1 [SEC=UNCLASSIFIED] Auto forwarded by a Rule

IDQ20038
Bureau of Meteorology
Queensland Regional Office

TOP PRIORITY FOR IMMEDIATE BROADCAST

SEVERE THUNDERSTORM WARNING - SOUTHEAST QUEENSLAND for DAMAGING WIND, FLASH FLOODING and LARGE HAILSTONES For people in parts of the BRISBANE CITY, LOCKYER VALLEY, MORETON BAY and SOMERSET Council Areas.

Issued at 4:19 pm Wednesday, 5 January 2011.
The Bureau of Meteorology warns that, at $4: 20 \mathrm{pm}$, severe thunderstorms were detected on weather radar near Esk and northern Lake Wivenhoe.

They are forecast to affect the area south of Esk by $4: 50 \mathrm{pm}$ and southern Lake Wivenhoe by $5: 20 \mathrm{pm}$.

Damaging winds, very heavy rainfall, flash flooding and large hailstones are likely.
Emergency Management Queensland advises that people should:

* Move your car under cover or away from trees.
* Secure loose outdoor items.
* Avoid driving, walking or riding through flood waters.
* Seek shelter, preferably indoors and never under trees.
* Avoid using the telephone during a thunderstorm.
* Beware of fallen trees and powerlines.
*For emergency assistance contact the SES on 132500.
The next warning is due to be issued by $5: 20 \mathrm{pm}$.
Warnings are also available through TV and Radio broadcasts, the Bureau's website at www.bom.gov.au or call 1300659 219. The Bureau and Emergency Management Queensland would appreciate warnings being broadcast regularly.

APPENDIX G - SEVERE WEATHER WARNINGS

Thunderstorm Warning 2

Date: Wednesday 5 January 2011
Time: 17:12

From: Aifs Operational Manager
Sent: Wednesday, January 05, 2011 5:12:36 PM
To: weather
Subject: BOM: Severe Thunderstorm Warning - SE QId 1 [SEC=UNCLASSIFIED] Auto forwarded by a Rule

IDQ20038
Bureau of Meteorology
Queensland Regional Office

TOP PRIORITY FOR IMMEDIATE BROADCAST
CANCELLATION SEVERE THUNDERSTORM WARNING - SOUTHEAST QUEENSLAND

Issued at 5:11 pm Wednesday, 5 January 2011.
Severe thunderstorms are no longer affecting the Southeast Queensland area [east of Dalby from Rainbow Beach to Stanthorpe].

The immediate threat of severe thunderstorms has passed, but further severe thunderstorms are possible and the situation will continue to be monitored and further warnings will be issued if necessary.

Emergency Management Queensland advises that people should:

* Beware of fallen trees and powerlines.
* Avoid driving, walking or riding through flood waters.
* For emergency assistance contact the SES on 132500.

APPENDIX G - SEVERE WEATHER WARNINGS

Thunderstorm Warning 3

Date: Tuesday 18 January 2011
Time: 12:48

From: Aifs Operational Manager
Sent: Tuesday, January 18, 2011 12:48:39 PM
To: weather
Subject: BOM: Severe Thunderstorm Warning - SE Qld 1 [SEC=UNCLASSIFIED] Auto forwarded by a Rule

IDQ20038
Bureau of Meteorology
Queensland Regional Office

TOP PRIORITY FOR IMMEDIATE BROADCAST

SEVERE THUNDERSTORM WARNING - SOUTHEAST QUEENSLAND for DAMAGING WIND, FLASH FLOODING and LARGE HAILSTONES For people in parts of the SCENIC RIM Council Area.

Issued at 12:47 pm Tuesday, 18 January 2011.
The Bureau of Meteorology warns that, at $12: 50 \mathrm{pm}$, severe thunderstorms were detected on weather radar near Mount Barney and the NSW border. These thunderstorms are slow moving. Damaging winds, very heavy rainfall, flash flooding and large hailstones are likely.

Emergency Management Queensland advises that people should:

* Move your car under cover or away from trees.
* Secure loose outdoor items.
* Avoid driving, walking or riding through flood waters.
* Seek shelter, preferably indoors and never under trees.
* Avoid using the telephone during a thunderstorm.
* Beware of fallen trees and powerlines.
* For emergency assistance contact the SES on 132500.

The next warning is due to be issued by $1: 50 \mathrm{pm}$.
Warnings are also available through TV and Radio broadcasts, the Bureau's website at www.bom.gov.au or call 1300659 219. The Bureau and Emergency Management Queensland would appreciate warnings being broadcast regularly.

APPENDIX G - SEVERE WEATHER WARNINGS

Thunderstorm Warning 9

Date: Tuesday 18 January 2011
Time: 15:41

From: Aifs Operational Manager
Sent: Tuesday, January 18, 2011 3:41:19 PM
To: weather
Subject: BOM: Severe Thunderstorm Warning - SE Qid 1 [SEC=UNCLASSIFIED] Auto forwarded by a Rule

IDQ20038
Bureau of Meteorology
Queensland Regional Office

TOP PRIORITY FOR IMMEDIATE BROADCAST

SEVERE THUNDERSTORM WARNING - SOUTHEAST QUEENSLAND for DAMAGING WIND, FLASH FLOODING and LARGE HAILSTONES For people in the BRISBANE CITY and parts of the LOGAN CITY, MORETON BAY, IPSWICH CITY, SOMERSET and REDLAND Council Areas.

Issued at $3: 40 \mathrm{pm}$ Tuesday, 18 January 2011.

The Bureau of Meteorology warns that, at $3: 45 \mathrm{pm}$, severe thunderstorms were detected on weather radar near Ipswich and Upper Brookfield.

These thunderstorms are moving towards the north.
They are forecast to affect Brisbane CBD, Albany Creek and the D'Aguilar Ranges by $4: 15 \mathrm{pm}$ and Strathpine, Redcliffe and Mount Mee by $4: 45 \mathrm{pm}$.

Damaging winds, very heavy rainfall, flash flooding and large hailstones are likely.

Wind gust of $95 \mathrm{~km} / \mathrm{hr}$ was observed at Amberley
Emergency Management Queensland advises that people should:

* Move your car under cover or away from trees.
* Secure loose outdoor items.
* Avoid driving, walking or riding through flood waters.
* Seek shelter, preferably indoors and never under trees.
* Avoid using the telephone during a thunderstorm.
* Beware of fallen trees and powerlines.
* For emergency assistance contact the SES on 132500.

The next warning is due to be issued by $4: 40 \mathrm{pm}$.

APPENDIX G - SEVERE WEATHER WARNINGS

Warnings are also available through TV and Radio broadcasts, the Bureau's website at www.bom.gov.au or call 1300659 219. The Bureau and Emergency Management Queensland would appreciate warnings being broadcast regularly.

APPENDIX G - SEVERE WEATHER WARNINGS

Thunderstorm Warning 10

Date: Tuesday 18 January 2011
Time: 15:48

From: Aifs Operational Manager
Sent: Tuesday, January 18, 2011 3:48:32 PM
To: weather
Subject: BOM: Severe Thunderstorm Warning - SE QId 1 [SEC=UNCLASSIFIED] Auto forwarded by a Rule

IDQ20038
Bureau of Meteorology
Queensland Regional Office

TOP PRIORITY FOR IMMEDIATE BROADCAST

SEVERE THUNDERSTORM WARNING - SOUTHEAST QUEENSLAND for DAMAGING WIND, FLASH FLOODING and LARGE HAILSTONES For people in the BRISBANE CITY and parts of the LOCKYER VALLEY, LOGAN CITY, MORETON BAY, IPSWICH CITY, SOMERSET, TOOWOOMBA and REDLAND Council Areas.

Issued at $3: 47 \mathrm{pm}$ Tuesday, 18 January 2011.
The Bureau of Meteorology warns that, at $3: 55 \mathrm{pm}$, severe thunderstorms were detected on weather radar near Toowoomba, Highfields and Sunnybank Hills.

These thunderstorms are moving towards the north to northeast.
They are forecast to affect Brisbane CBD, Logan City and the area north of Toowoomba by $4: 25 \mathrm{pm}$ and Cleveland, Albany Creek and Crows Nest by $4: 55 \mathrm{pm}$.

Damaging winds, very heavy rainfall, flash flooding and large hailstones are likely.

Wind gust of $95 \mathrm{~km} / \mathrm{hr}$ was observed at Amberley
Emergency Management Queensland advises that people should:

* Move your car under cover or away from trees.
* Secure loose outdoor items.
* Avoid driving, walking or riding through flood waters.
* Seek shelter, preferably indoors and never under trees.
* Avoid using the telephone during a thunderstorm.
* Beware of fallen trees and powerlines.
* For emergency assistance contact the SES on 132500.

The next warning is due to be issued by $4: 50 \mathrm{pm}$.
Warnings are also available through TV and Radio broadcasts, the Bureau's website at www.bom.gov.au or call 1300659 219. The Bureau and Emergency Management Queensland would appreciate warnings being broadcast regularly.

Thunderstorm Warning 11

Date: Tuesday 18 January 2011
Time: 16:17

From: Aifs Operational Manager
Sent: Tuesday, January 18, 2011 4:17:23 PM
To: weather
Subject: BOM: Severe Thunderstorm Warning - SE Qld 1 [SEC=UNCLASSIFIED] Auto forwarded by a Rule

IDQ20038
Bureau of Meteorology
Queensland Regional Office

TOP PRIORITY FOR IMMEDIATE BROADCAST

SEVERE THUNDERSTORM WARNING - SOUTHEAST QUEENSLAND for DAMAGING WIND, FLASH FLOODING and LARGE HAILSTONES For people in the MORETON BAY and parts of the BRISBANE CITY, LOCKYER VALLEY, IPSWICH CITY, SOMERSET and TOOWOOMBA Council Areas.

Issued at 4:16 pm Tuesday, 18 January 2011.
The Bureau of Meteorology warns that, at $4: 25 \mathrm{pm}$, severe thunderstorms were detected on weather radar near Brisbane CBD, the area south of Esk and Highvale.

These thunderstorms are moving towards the north to northeast.
They are forecast to affect Strathpine, Esk and Dayboro by $4: 55$ pm and Redcliffe, Caboolture and Wamuran by 5:25 pm.

Damaging winds, very heavy rainfall, flash flooding and large hailstones are likely.
Wind gust of $95 \mathrm{~km} / \mathrm{hr}$ was observed at Amberley at $3: 01 \mathrm{pm} 2 \mathrm{~cm}$ hail reported at Gatton at 3:42pm

Emergency Management Queensland advises that people should:

* Move your car under cover or away from trees.
* Secure loose outdoor items.
* Avoid driving, walking or riding through flood waters.
* Seek shelter, preferably indoors and never under trees.
* Avoid using the telephone during a thunderstorm.
* Beware of fallen trees and powerlines.
* For emergency assistance contact the SES on 132500.

The next warning is due to be issued by $5: 20 \mathrm{pm}$.
Warnings are also available through TV and Radio broadcasts, the Bureau's website at www.bom.gov.au or call 1300659 219. The Bureau and Emergency Management Queensland would appreciate warnings being broadcast regularly.

APPENDIX G - SEVERE WEATHER WARNINGS

Thunderstorm Warning 13

Date: Tuesday 18 January 2011
Time: 16:43

From: Aifs Operational Manager
Sent: Tuesday, January 18, 2011 4:43:06 PM
To: weather
Subject: BOM: Severe Thunderstorm Warning - SE Qld 1 [SEC=UNCLASSIFIED] Auto forwarded by a Rule

IDQ20038
Bureau of Meteorology
Queensland Regional Office
TOP PRIORITY FOR IMMEDIATE BROADCAST
SEVERE THUNDERSTORM WARNING - SOUTHEAST QUEENSLAND for DAMAGING WIND, FLASH FLOODING and LARGE HAILSTONES For people in the LOCKYER VALLEY, MORETON BAY, IPSWICH CITY, SOMERSET and parts of the BRISBANE CITY, LOGAN CITY, SUNSHINE COAST, SCENIC RIM, SOUTH BURNETT and TOOWOOMBA Council Areas.

Issued at 4:41 pm Tuesday, 18 January 2011.
The Bureau of Meteorology warns that, at $4: 40 \mathrm{pm}$, severe thunderstorms were detected on weather radar near Esk, the area south of Esk, Hampton and the area northwest of Cunninghams Gap. These thunderstorms are moving towards the north to northeast. They are forecast to affect the area southwest of Esk, the area west of Kilcoy and Lake Somerset by $5: 10 \mathrm{pm}$ and Ipswich, Kilcoy and the area northwest of Esk by $5: 40 \mathrm{pm}$.

Damaging winds, very heavy rainfall, flash flooding and large hailstones are likely.
Wind gust of $95 \mathrm{~km} / \mathrm{hr}$ was observed at Amberley at $3: 01 \mathrm{pm} 2 \mathrm{~cm}$ hail reported at Gatton at 3:42pm
$3-4 \mathrm{~cm}$ hail reported at Bridgeman Downs
Emergency Management Queensland advises that people should:

* Move your car under cover or away from trees.
* Secure loose outdoor items.
* Avoid driving, walking or riding through flood waters.
* Seek shelter, preferably indoors and never under trees.
* Avoid using the telephone during a thunderstorm.
* Beware of fallen trees and powerlines.
* For emergency assistance contact the SES on 132500.

The next warning is due to be issued by $5: 45 \mathrm{pm}$.

Warnings are also available through TV and Radio broadcasts, the Bureau's website at www.bom.gov.au or call 1300659 219. The Bureau and Emergency Management Queensland would appreciate warnings being broadcast regularly.

APPENDIX G - SEVERE WEATHER WARNINGS

Thunderstorm Warning 14

Date: Tuesday 18 January 2011
Time: 17:28

From: Aifs Operational Manager
Sent: Tuesday, January 18, 2011 5:28:43 PM
To: weather
Subject: BOM: Severe Thunderstorm Warning - SE QId 1 [SEC=UNCLASSIFIED] Auto forwarded by a Rule

IDQ20038
Bureau of Meteorology
Queensland Regional Office

TOP PRIORITY FOR IMMEDIATE BROADCAST

SEVERE THUNDERSTORM WARNING - SOUTHEAST QUEENSLAND for DAMAGING WIND, FLASH FLOODING and LARGE HAILSTONES For people in parts of the MORETON BAY, SUNSHINE COAST and SOMERSET Council Areas.

Issued at 5:28 pm Tuesday, 18 January 2011.

The Bureau of Meteorology warns that, at 5:35 pm, severe thunderstorms were detected on weather radar near Kilcoy.

These thunderstorms are moving towards the north.
They are forecast to affect the area west of Kilcoy and Mount Kilcoy by $6: 05$ pm and the ranges south of Jimna and the area west of Conondale by $6: 35 \mathrm{pm}$.

Damaging winds, very heavy rainfall, flash flooding and large hailstones are likely.

Wind gust of $95 \mathrm{~km} / \mathrm{hr}$ was observed at Amberley at $3: 01 \mathrm{pm} 2 \mathrm{~cm}$ hail reported at Gatton at $3: 42 \mathrm{pm}$
$3-4 \mathrm{~cm}$ hail reported at Bridgeman Downs
Emergency Management Queensland advises that people should:

* Move your car under cover or away from trees.
* Secure loose outdoor items.
* Avoid driving, walking or riding through flood waters.
* Seek shelter, preferably indoors and never under trees.
* Avoid using the telephone during a thunderstorm.
* Beware of fallen trees and powerlines.
* For emergency assistance contact the SES on 132500.

The next warning is due to be issued by $6: 30 \mathrm{pm}$.

APPENDIX G - SEVERE WEATHER WARNINGS

Warnings are also available through TV and Radio broadcasts, the Bureau's website at www.bom.gov.au or call 1300659 219. The Bureau and Emergency Management Queensland would appreciate warnings being broadcast regularly.

APPENDIX G - SEVERE WEATHER WARNINGS

Thunderstorm Warning 15

Date: Tuesday 18 January 2011
Time: 18:56

From: Aifs Operational Manager
Sent: Tuesday, January 18, 2011 6:56:49 PM
To: weather
Subject: BOM: Severe Thunderstorm Warning - SE Qld 1 [SEC=UNCLASSIFIED] Auto forwarded by a Rule

IDQ20038
Bureau of Meteorology
Queensland Regional Office

TOP PRIORITY FOR IMMEDIATE BROADCAST

CANCELLATION SEVERE THUNDERSTORM WARNING - SOUTHEAST
QUEENSLAND

Issued at 6:55 pm Tuesday, 18 January 2011.
Severe thunderstorms are no longer affecting the Southeast Queensland area [east of Dalby from Rainbow Beach to Stanthorpe].

The immediate threat of severe thunderstorms has passed, but the situation will continue to be monitored and further warnings will be issued if necessary.

Wind gust of $95 \mathrm{~km} / \mathrm{hr}$ was observed at Amberley at $3: 01 \mathrm{pm} 2 \mathrm{~cm}$ hail reported at Gatton at $3: 42 \mathrm{pm}$
$3-4 \mathrm{~cm}$ hail reported at Bridgeman Downs
Emergency Management Queensland advises that people should:

* Beware of fallen trees and powerlines.
* Avoid driving, walking or riding through flood waters.
* For emergency assistance contact the SES on 132500.

Warnings are also available through TV and Radio broadcasts, the Bureau's website at www.bom.gov.au or call 1300659 219. The Bureau and Emergency Management Queensland would appreciate warnings being broadcast regularly.

Thunderstorm Warning 18

Date: Wednesday 19 January 2011
Time: 15:28

From: Aifs Operational Manager
Sent: Wednesday, January 19, 2011 3:28:14 PM
To: weather
Subject: BOM: Severe Thunderstorm Warning - Qld 1 [SEC=UNCLASSIFIED] Auto forwarded by a Rule

IDQ20041
Bureau of Meteorology
Queensland Regional Office

TOP PRIORITY FOR IMMEDIATE BROADCAST

SEVERE THUNDERSTORM WARNING
for DAMAGING WIND and FLASH FLOODING
For people in the Wide Bay and Burnett and parts of the Central Highlands and Coalfields, Central West, Capricornia, Maranoa and Warrego, Darling Downs and Granite Belt and Southeast Coast Forecast Districts.

Issued at 3:27 pm Wednesday, 19 January 2011.
Severe thunderstorms are likely to produce damaging winds, very heavy rainfall and flash flooding in the warning area over the next several hours. Locations which may be affected include Roma, Goondiwindi, Warwick, Toowoomba, Dalby, Gympie, Bundaberg, Rockhampton, Kingaroy and Stanthorpe.

Emergency Management Queensland advises that people should:

* Move your car under cover or away from trees.
* Secure loose outdoor items.
* Avoid driving, walking or riding through flood waters.
* Seek shelter, preferably indoors and never under trees.
* Avoid using the telephone during a thunderstorm.
* Beware of fallen trees and powerlines.
* For emergency assistance contact the SES on 132500.

The next warning is due to be issued by $6: 30 \mathrm{pm}$.
If severe thunderstorms develop in the Southeast Queensland area [east of Dalby from Rainbow Beach to Stanthorpe], a more detailed Severe Thunderstorm Warning will be issued to people in this area.

Warnings are also available through TV and Radio broadcasts, the Bureau's website at www.bom.gov.au or call 1300659 219. The Bureau and Emergency Management Queensland would appreciate warnings being broadcast regularly.

APPENDIX G - SEVERE WEATHER WARNINGS

Thunderstorm Warning 19

Date: Wednesday 19 January 2011
Time: 15:39

From: Aifs Operational Manager
Sent: Wednesday, January 19, 2011 3:39:20 PM
To: weather
Subject: BOM: Severe Thunderstorm Warning - SE Qld 1 [SEC=UNCLASSIFIED] Auto forwarded by a Rule

IDQ20038
Bureau of Meteorology
Queensland Regional Office

TOP PRIORITY FOR IMMEDIATE BROADCAST

SEVERE THUNDERSTORM WARNING - SOUTHEAST QUEENSLAND for DAMAGING WIND, FLASH FLOODING and LARGE HAILSTONES For people in parts of the TOOWOOMBA Council Area.

Issued at 3:38 pm Wednesday, 19 January 2011.
Thunderstorms are moving towards the southeast. They are forecast to affect Oakey by 4:05 pm and the area northwest of Toowoomba by 4:35 pm.

Damaging winds, very heavy rainfall, flash flooding and large hailstones are likely.

Emergency Management Queensland advises that people should:

* Move your car under cover or away from trees.
* Secure loose outdoor items.
* Avoid driving, walking or riding through flood waters.
* Seek shelter, preferably indoors and never under trees.
* Avoid using the telephone during a thunderstorm.
* Beware of fallen trees and powerlines.
* For emergency assistance contact the SES on 132500.

The next warning is due to be issued by $4: 40 \mathrm{pm}$.
A more general severe thunderstorm warning is also current for the Wide Bay and Burnett and parts of the Central Highlands and Coalfields, Central West, Capricornia, Maranoa and Warrego, Darling Downs and Granite Belt and Southeast Coast districts.

Warnings are also available through TV and Radio broadcasts, the Bureau's website at www.bom.gov.au or call 1300659 219. The Bureau and Emergency Management Queensland would appreciate warnings being broadcast regularly.

APPENDIX G - SEVERE WEATHER WARNINGS

Thunderstorm Warning 20

Date: Wednesday 19 January 2011
Time: 15:49

From: Aifs Operational Manager
Sent: Wednesday, January 19, 2011 3:49:36 PM
To: weather
Subject: BOM: Severe Thunderstorm Warning - Qld 1 [SEC=UNCLASSIFIED] Auto forwarded by a Rule

IDQ20041
Bureau of Meteorology
Queensland Regional Office

TOP PRIORITY FOR IMMEDIATE BROADCAST

SEVERE THUNDERSTORM WARNING
for DAMAGING WIND and FLASH FLOODING
For people in the Wide Bay and Burnett and parts of the Northern Tropical Coast and Tablelands, Central Highlands and Coalfields, Central West, Capricornia, Maranoa and Warrego, Darling Downs and Granite Belt and Southeast Coast Forecast Districts.

Issued at $3: 48 \mathrm{pm}$ Wednesday, 19 January 2011.
Severe thunderstorms are likely to produce damaging winds, very heavy rainfall and flash flooding in the warning area over the next several hours. Locations which may be affected include Roma, Goondiwindi, Warwick, Toowoomba, Dalby, Gympie, Bundaberg, Rockhampton, Kingaroy, Stanthorpe, Cairns and Port Douglas.

Emergency Management Queensland advises that people should:

* Move your car under cover or away from trees.
* Secure loose outdoor items.
* Avoid driving, walking or riding through flood waters.
* Seek shelter, preferably indoors and never under trees.
* Avoid using the telephone during a thunderstorm.
* Beware of fallen trees and powerlines.
* For emergency assistance contact the SES on 132500.

The next warning is due to be issued by $6: 50 \mathrm{pm}$.
If severe thunderstorms develop in the Southeast Queensland area [east of Dalby from Rainbow Beach to Stanthorpe], a more detailed Severe Thunderstorm Warning will be issued to people in this area.

Warnings are also available through TV and Radio broadcasts, the Bureau's website at www.bom.gov.au or call 1300659 219. The Bureau and Emergency Management Queensland would appreciate warnings being broadcast regularly.

Thunderstorm Warning 21

Date: Wednesday 19 January 2011
Time: 16:28

From: Aifs Operational Manager
Sent: Wednesday, January 19, 2011 4:28:22 PM
To: weather
Subject: BOM: Severe Thunderstorm Warning - SE Qld 1 [SEC=UNCLASSIFIED] Auto forwarded by a Rule

IDQ20038
Bureau of Meteorology
Queensland Regional Office

TOP PRIORITY FOR IMMEDIATE BROADCAST

SEVERE THUNDERSTORM WARNING - SOUTHEAST QUEENSLAND for DAMAGING WIND, FLASH FLOODING and LARGE HAILSTONES For people in parts of the LOCKYER VALLEY, IPSWICH CITY, SOUTHERN DOWNS, SCENIC RIM and TOOWOOMBA Council Areas.

Issued at 4:27 pm Wednesday, 19 January 2011.
The Bureau of Meteorology warns that, at $4: 25 \mathrm{pm}$, severe thunderstorms were detected on weather radar near the area northwest of Toowoomba and Oakey.

They are forecast to affect Toowoomba and the area west of Toowoomba by $4: 55 \mathrm{pm}$ and the area south of Toowoomba, the area southwest of Toowoomba and Cambooya by 5:25 pm.

Damaging winds, very heavy rainfall, flash flooding and large hailstones are likely.
2 cm hail was observed at Oakey
Emergency Management Queensland advises that people should:

* Move your car under cover or away from trees.
* Secure loose outdoor items.
* Avoid driving, walking or riding through flood waters.
* Seek shelter, preferably indoors and never under trees.
* Avoid using the telephone during a thunderstorm.
* Beware of fallen trees and powerlines.
* For emergency assistance contact the SES on 132500.

The next warning is due to be issued by $5: 30 \mathrm{pm}$.
A more general severe thunderstorm warning is also current for the Wide Bay and Burnett, Southeast Coast and parts of the Northern Tropical Coast and Tablelands, Central Highlands and Coalfields, Central West, Capricornia, Maranoa and Warrego and Darling Downs and Granite Belt districts.

APPENDIX G - SEVERE WEATHER WARNINGS

Warnings are also available through TV and Radio broadcasts, the Bureau's website at www.bom.gov.au or call 1300659 219. The Bureau and Emergency Management Queensland would appreciate warnings being broadcast regularly.

APPENDIX G - SEVERE WEATHER WARNINGS

Thunderstorm Warning 22

Date: Wednesday 19 January 2011
Time: 16:36

From: Aifs Operational Manager
Sent: Wednesday, January 19, 2011 4:36:52 PM
To: weather
Subject: BOM: Severe Thunderstorm Warning - SE QId 1 [SEC=UNCLASSIFIED] Auto forwarded by a Rule

IDQ20038
Bureau of Meteorology
Queensland Regional Office

TOP PRIQRITY FOR IMMEDIATE BROADCAST

SEVERE THUNDERSTORM WARNING - SOUTHEAST QUEENSLAND for DAMAGING WIND, FLASH FLOODING and LARGE HAILSTONES For people in parts of the GOLD COAST CITY, LOCKYER VALLEY, IPSWICH CITY, SOUTHERN DOWNS, SCENIC RIM and TOOWOOMBA Council Areas.

Issued at 4:36 pm Wednesday, 19 January 2011.
The Bureau of Meteorology warns that, at $4: 35 \mathrm{pm}$, severe thunderstorms were detected on weather radar near Little Nerang Dam, Tallebudgera and Numinbah Valley.

They are forecast to affect Coolangatta, the area northwest of Toowoomba and Mudgeeraba by 5:05 pm and Toowoomba, Maroon Dam and Miami by 5:35 pm.

Damaging winds, very heavy rainfall, flash flooding and large hailstones are likely.
2 cm hail was observed at Oakey
Emergency Management Queensland advises that people should:

* Move your car under cover or away from trees.
* Secure loose outdoor items.
* Avoid driving, walking or riding through flood waters.
* Seek shelter, preferably indoors and never under trees.
* Avoid using the telephone during a thunderstorm.
* Beware of fallen trees and powerlines.
* For emergency assistance contact the SES on 132500.

The next warning is due to be issued by $5: 35 \mathrm{pm}$.
A more general severe thunderstorm warning is also current for the Wide Bay and Burnett, Southeast Coast and parts of the Northern Tropical Coast and Tablelands, Central Highlands and Coalfields, Central West, Capricornia, Maranoa and Warrego and Darling Downs and Granite Belt districts.

APPENDIX G - SEVERE WEATHER WARNINGS

Warnings are also available through TV and Radio broadcasts, the Bureau's website at wuw.bom.gov.au or call 1300659 219. The Bureau and Emergency Management Queensland would appreciate warnings being broadcast regularly.

APPENDIX G - SEVERE WEATHER WARNINGS

Thunderstorm Warning 23

Date: Wednesday 19 January 2011
Time: 16:48

From: Aifs Operational Manager
Sent: Wednesday, January 19, 2011 4:48:25 PM
To: weather
Subject: BOM: Severe Thunderstorm Warning - SE Qld 1 [SEC=UNCLASSIFIED] Auto forwarded by a Rule

IDQ20038
Bureau of Meteorology
Queensland Regional Office
TOP PRIORITY FOR IMMEDIATE BROADCAST
SEVERE THUNDERSTORM WARNING - SOUTHEAST QUEENSLAND for DAMAGING WIND, FLASH FLOODING and LARGE HAILSTONES For people in the SCENIC RIM and parts of the GOLD COAST CITY, LOCKYER VALLEY, IPSWICH CITY, SOUTHERN DOWNS and TOOWOOMBA Council Areas.

Issued at 4:47 pm Wednesday, 19 January 2011.
The Bureau of Meteorology warns that, at $4: 50 \mathrm{pm}$, severe thunderstorms were detected on weather radar near Coolangatta, the area southwest of Toowoomba, Border Ranges National Park and the NSW border.

These thunderstorms are moving towards the east to northeast.
They are forecast to affect the area northwest of Toowoomba, Laravale and Miami by 5:20 pm and Toowoomba, the area south of Toowoomba and Highfields by 5:50 pm.

Damaging winds, very heavy rainfall, flash flooding and large hailstones are likely.
2 cm hail was observed at Oakey
Emergency Management Queensland advises that people should:

* Move your car under cover or away from trees.
* Secure loose outdoor items.
* Avoid driving, walking or riding through flood waters.
* Seek shelter, preferably indoors and never under trees.
* Avoid using the telephone during a thunderstorm.
* Beware of fallen trees and powerlines.
* For emergency assistance contact the SES on 132500.

The next warning is due to be issued by $5: 50 \mathrm{pm}$.
A more general severe thunderstorm warning is also current for the Wide Bay and Burnett, Southeast Coast and parts of the Northern Tropical Coast and Tablelands, Central Highlands and Coalfields, Central West, Capricornia, Maranoa and Warrego and Darling Downs and Granite Belt districts.

APPENDIX G - SEVERE WEATHER WARNINGS

Warnings are also available through TV and Radio broadcasts, the Bureau's website at www.bom.gov.au or call 1300659 219. The Bureau and Emergency Management Queensland would appreciate warnings being broadcast regularly.

APPENDIX G - SEVERE WEATHER WARNINGS

Thunderstorm Warning 24

Date: Wednesday 19 January 2011
Time: 17:26

From: Aifs Operational Manager
Sent: Wednesday, January 19, 2011 5:26:17 PM
To: weather
Subject: BOM: Severe Thunderstorm Warning - SE Qld 1 [SEC=UNCLASSIFIED] Auto forwarded by a Rule

IDQ20038
Bureau of Meteorology
Queensland Regional Office

TOP PRIORITY FOR IMMEDIATE BROADCAST

SEVERE THUNDERSTORM WARNING - SOUTHEAST QUEENSLAND for DAMAGING WIND, FLASH FLOODING and LARGE HAILSTONES For people in the LOCKYER VALLEY and parts of the IPSWICH CITY, SCENIC RIM and SOMERSET Council Areas.

Issued at 5:25 pm Wednesday, 19 January 2011.
The Bureau of Meteorology warns that, at 5:30 pm, severe thunderstorms were detected on weather radar near the area northwest of Cunninghams Gap and the area south of Helidon. These thunderstorms are moving towards the northeast.
They are forecast to affect Gatton, Mulgowie and Helidon by 6:00 pm and Boonah, Laidley and Hatton Vale by 6:30 pm.

Damaging winds, very heavy rainfall, flash flooding and large hailstones are likely.
2 cm hail was observed at Oakey
Emergency Management Queensland advises that people should:

* Move your car under cover or away from trees.
* Secure loose outdoor items.
* Avoid driving, walking or riding through flood waters.
* Seek shelter, preferably indoors and never under trees.
* Avoid using the telephone during a thunderstorm.
* Beware of fallen trees and powerlines.
* For emergency assistance contact the SES on 132500.

The next warning is due to be issued by $6: 25 \mathrm{pm}$.
A more general severe thunderstorm warning is also current for the Wide Bay and Burnett, Southeast Coast and parts of the Northern Tropical Coast and Tablelands, Central Highlands and Coalfields, Central West, Capricornia, Maranoa and Warrego and Darling Downs and Granite Belt districts.

APPENDIX G - SEVERE WEATHER WARNINGS

Warnings are also available through TV and Radio broadcasts, the Bureau's website at www.bom.gov.au or call 1300659 219. The Bureau and Emergency Management Queensland would appreciate warnings being broadcast regularly.

APPENDIX G - SEVERE WEATHER WARNINGS

Thunderstorm Warning 25

Date: Wednesday 19 January 2011
Time: 17:32

From: Aifs Operational Manager
Sent: Wednesday, January 19, 2011 5:32:18 PM
To: weather
Subject: BOM: Severe Thunderstorm Warning - Qld 1 [SEC=UNCLASSIFIED] Auto forwarded by a Rule

IDQ20041
Bureau of Meteorology
Queensland Regional Office

TOP PRIORITY FOR IMMEDIATE BROADCAST

SEVERE THUNDERSTORM WARNING

for DAMAGING WIND and FLASH FLOODING
For people in the Wide Bay and Burnett, Southeast Coast and parts of the Central Highlands and Coalfields, Capricornia, Maranoa and Warrego and Darling Downs and Granite Belt Forecast Districts.

Issued at 5:31 pm Wednesday, 19 January 2011.
Severe thunderstorms are likely to produce damaging winds, very heavy rainfall and flash flooding in the warning area over the next several hours. Locations which may be affected include Roma, Goondiwindi, Warwick, Gold Coast, Toowoomba, Brisbane, Maroochydore, Gympie, Bundaberg, Rockhampton and Kingaroy.

2 cm hail was observed at Oakey
Emergency Management Queensland advises that people should:

* Move your car under cover or away from trees.
* Secure loose outdoor items.
* Avoid driving, walking or riding through flood waters.
* Seek shelter, preferably indoors and never under trees.
* Avoid using the telephone during a thunderstorm.
* Beware of fallen trees and powerlines.
* For emergency assistance contact the SES on 132500.

The next warning is due to be issued by $8: 35 \mathrm{pm}$.
If severe thunderstorms develop in the Southeast Queensland area [east of Daiby from Rainbow Beach to Stanthorpe], a more detailed Severe Thunderstorm Warning will be issued to people in this area.

Warnings are also available through TV and Radio broadcasts, the Bureau's website at www.bom. gov.au or call 1300659 219. The Bureau and Emergency Management Queensland would appreciate warnings being broadcast regularly.

APPENDIX G - SEVERE WEATHER WARNINGS

Thunderstorm Warning 26

Date: Wednesday 19 January 2011
Time: 17:55

From: Aifs Operational Manager
Sent: Wednesday, January 19, 2011 5:55:02 PM
To: weather
Subject: BOM: Severe Thunderstorm Warning - SE QId 1 [SEC=UNCLASSIFIED] Auto forwarded by a Rule

IDQ20038
Bureau of Meteorology
Queensland Regional Office

TOP PRIORITY FOR IMMEDIATE BROADCAST

SEVERE THUNDERSTORM WARNING - SOUTHEAST QUEENSLAND for DAMAGING WIND, FLASH FLOODING and LARGE HAILSTONES For people in the LOCKYER VALLEY, IPSWICH CITY, SCENIC RIM and parts of the LOGAN CITY, SOMERSET and TOOWOOMBA Council Areas.

Issued at $5: 54 \mathrm{pm}$ Wednesday, 19 January 2011.
The Bureau of Meteorology warns that, at $5: 55 \mathrm{pm}$, severe thunderstorms were detected on weather radar near Mulgowie, Helidon, Maroon Dam and Rosevale.

These thunderstorms are moving towards the northeast.
They are forecast to affect Boonah, Laidley and Gatton by $6: 25 \mathrm{pm}$ and Beaudesert, the area between Boonah and Beaudesert and Hampton by 6:55 pm.

Damaging winds, very heavy rainfall, flash flooding and large hailstones are likely.
2 cm hail was observed at Oakey
Emergency Management Queensland advises that people should:

* Move your car under cover or away from trees.
* Secure loose outdoor items.
* Avoid driving, walking or riding through flood waters.
* Seek shelter, preferably indoors and never under trees.
* Avoid using the telephone during a thunderstorm.
* Beware of fallen trees and powerlines.
* For emergency assistance contact the SES on 132500.

The next warning is due to be issued by 6:55 pm.
A more general severe thunderstorm warning is also current for the Wide Bay and Burnett, Southeast Coast and parts of the Central Highlands and Coalfields, Capricornia, Maranoa and Warrego and Darling Downs and Granite Belt districts.

APPENDIX G - SEVERE WEATHER WARNINGS

Warnings are also available through TV and Radio broadcasts, the Bureau's website at www.bom.gov.au or call 1300659 219. The Bureau and Emergency Management Queensland would appreciate warnings being broadcast regularly.

APPENDIX G - SEVERE WEATHER WARNINGS

Thunderstorm Warning 27

Date: Wednesday 19 January 2011
Time: 18:13

From: Aifs Operational Manager
Sent: Wednesday, January 19, 2011 6:13:13 PM
To: weather
Subject: BOM: Severe Thunderstorm Warning - SE QId 1 [SEC=UNCLASSIFIED] Auto forwarded by a Rule

IDQ20038
Bureau of Meteorology
Queensland Regional Office

TOP PRIORITY FOR IMMEDIATE BROADCAST

SEVERE THUNDERSTORM WARNING - SOUTHEAST QUEENSLAND for DAMAGING WIND, FLASH FLOODING and LARGE HAILSTONES For people in the LOCKYER VALLEY, IPSWICH CITY, SCENIC RIM and parts of the LOGAN CITY, SOUTHERN DOWNS, SOMERSET and TOOWOOMBA Council Areas.

Issued at 6:12 pm Wednesday, 19 January 2011.
The Bureau of Meteorology warns that, at $6: 15 \mathrm{pm}$, very dangerous thunderstorms were detected on weather radar near Laidley and Gatton.

These thunderstorms are moving towards the northeast.
Very dangerous thunderstorms are forecast to affect Rosewood, Hatton Vale and the area north of Gatton by 6:45 pm and Amberley, Marburg and Hampton by 7:15 pm.

Other severe thunderstorms were located near Boonah, the area between Boonah and Beaudesert and the area southwest of Stanthorpe.

They are forecast to affect Beaudesert and Aratula by $6: 45 \mathrm{pm}$ and Rathdowney, Cunninghams Gap and Canungra by 7:15 pm.

Damaging winds, very heavy rainfall, flash flooding and large hailstones are likely.
2 cm hail was observed at Oakey
Emergency Management Queensland advises that people should:

* Move your car under cover or away from trees.
* Secure loose outdoor items.
* Avoid driving, walking or riding through flood waters.
* Seek shelter, preferably indoors and never under trees.
* Avoid using the telephone during a thunderstorm.
* Beware of fallen trees and powerlines.
* For emergency assistance contact the SES on 132500.

The next warning is due to be issued by $7: 15 \mathrm{pm}$.

APPENDIX G - SEVERE WEATHER WARNINGS

A more general severe thunderstorm warning is also current for the Wide Bay and Burnett, Southeast Coast and parts of the Central Highlands and Coalfields, Capricornia, Maranoa and Warrego and Darling Downs and Granite Belt-districts.

Warnings are also available through TV and Radio broadcasts, the Bureau's website at www.bom.gov.au or call 1300659 219. The Bureau and Emergency Management Queensland would appreciate warnings being broadcast regularly.

APPENDIX G - SEVERE WEATHER WARNINGS

Thunderstorm Warning 28

Date: Wednesday 19 January 2011
Time: 18:16

From: Aifs Operational Manager
Sent: Wednesday, January 19, 2011 6:16:35 PM
To: weather
Subject: BOM: Severe Thunderstorm Warning - SE QId 1 [SEC=UNCLASSIFIED] Auto forwarded by a Rule

IDQ20038
Bureau of Meteorology
Queensland Regional Office
TOP PRIORITY FOR IMMEDIATE BROADCAST
SEVERE THUNDERSTORM WARNING - SOUTHEAST QUEENSLAND for DAMAGING WIND, FLASH FLOODING and LARGE HAILSTONES For people in the LOCKYER VALLEY, IPSWICH CITY, SCENIC RIM and parts of the LOGAN CITY, SOUTHERN DOWNS, SOMERSET and TOOWOOMBA Council Areas.

Issued at 6:15 pm Wednesday, 19 January 2011.
The Bureau of Meteorology warns that, at $6: 15 \mathrm{pm}$, very dangerous thunderstorms with intense rainfall were detected on weather radar near Laidley and Gatton.
These thunderstorms are moving towards the northeast. Very dangerous thunderstorms are forecast to affect Rosewood, Hatton Vale and the area north of Gatton by $6: 45 \mathrm{pm}$ and Amberley, Marburg and Hampton by 7:15 pm.

Other severe thunderstorms were located near Boonah, the area between Boonah and Beaudesert and the area southwest of Stanthorpe. They are forecast to affect Beaudesert and Aratula by $6: 45 \mathrm{pm}$ and Rathdowney and Canungra by $7: 15 \mathrm{pm}$.

Damaging winds, very heavy rainfall, flash flooding and large hailstones are likely.
2 cm hail was observed at Oakey
Emergency Management Queensland advises that people should:

* Move your car under cover or away from trees.
* Secure loose outdoor items.
* Avoid driving, walking or riding through flood waters.
* Seek shelter, preferably indoors and never under trees.
* Avoid using the telephone during a thunderstorm.
* Beware of fallen trees and powerlines.
* For emergency assistance contact the SES on 132500.

The next warning is due to be issued by $7: 15 \mathrm{pm}$.
A more general severe thunderstorm warning is also current for the Wide Bay and Burnett, Southeast Coast and parts of the Central Highlands and Coalfields, Capricornia, Maranoa and Warrego and Darling Downs and Granite Belt districts.

APPENDIX G - SEVERE WEATHER WARNINGS

Warnings are also available through TV and Radio broadcasts, the Bureau's website at www.bom.gov.au or call 1300659 219. The Bureau and Emergency Management Queensland would appreciate warnings being broadcast regularly.

APPENDIX G - SEVERE WEATHER WARNINGS

Thunderstorm Warning 29

Date: Wednesday 19 January 2011
Time: 18:21

From: Aifs Operational Manager
Sent: Wednesday, January 19, 2011 6:21:44 PM
To: weather
Subject: BOM: Severe Thunderstorm Warning - SE QId 1 [SEC=UNCLASSIFIED] Auto forwarded by a Rule

IDQ20038
Bureau of Meteorology
Queensland Regional Office
TOP PRIORITY FOR IMMEDIATE BROADCAST
SEVERE THUNDERSTORM WARNING - SOUTHEAST QUEENSLAND for DAMAGING WIND, FLASH FLOODING and LARGE HAILSTONES For people in the LOCKYER VALLEY, IPSWICH CITY, SCENIC RIM and parts of the LOGAN CITY, SOUTHERN DOWNS, SOMERSET and TOOWOOMBA Council Areas.

Issued at 6:20 pm Wednesday, 19 January 2011.
The Bureau of Meteorology warns that, at $6: 15 \mathrm{pm}$, a very dangerous thunderstorm with intense rainfall was detected on weather radar near Laidley and Gatton.
This thunderstorm is moving towards the northeast. This very dangerous thunderstorm is forecast to affect Rosewood, Hatton Vale and the area north of Gatton by $6: 45 \mathrm{pm}$ and Amberley, Marburg and Hampton by 7:15 pm.

Other severe thunderstorms were located near Boonah, the area between Boonah and Beaudesert and the area southwest of Stanthorpe. They are forecast to affect Beaudesert and Aratula by $6: 45 \mathrm{pm}$ and Rathdowney and Canungra by $7: 15 \mathrm{pm}$.

Damaging winds, very heavy rainfall, flash flooding and large hailstones are likely.
Rainfall rates of $60 \mathrm{~mm} / \mathrm{hr}$ and $40 \mathrm{~mm} / 30 \mathrm{~min}$ have been observed near Tenthill [southwest of Gatton]

Emergency Management Queensland advises that people should:

* Move your car under cover or away from trees.
* Secure loose outdoor items.
* Avoid driving, walking or riding through flood waters.
* Seek shelter, preferably indoors and never under trees.
* Avoid using the telephone during a thunderstorm.
* Beware of fallen trees and powerlines.
* For emergency assistance contact the SES on 132500.

The next warning is due to be issued by $7: 15 \mathrm{pm}$.

APPENDIX G - SEVERE WEATHER WARNINGS

A more general severe thunderstorm warning is also current for the Wide Bay and Burnett, Southeast Coast and parts of the Central Highlands and Coalfields, Capricornia, Maranoa and Warrego and Darling Downs and Granite Belt districts.

Warnings are also available through TV and Radio broadcasts, the Bureau's website at • www.bom.gov.au or call 1300659 219. The Bureau and Emergency Management Queensland would appreciate warnings being broadcast regularly.

APPENDIX G - SEVERE WEATHER WARNINGS

Thunderstorm Warning 30

Date: Wednesday 19 January 2011
Time: 19:08

From: Aifs Operational Manager
Sent: Wednesday, January 19, 2011 7:08:44 PM
To: weather
Subject: BOM: Severe Thunderstorm Warning - SE QId 1 [SEC=UNCLASSIFIED] Auto forwarded by a Rule

IDQ20038
Bureau of Meteorology
Queensland Regional Office

TOP PRIORITY FOR IMMEDIATE BROADCAST

SEVERE THUNDERSTORM WARNING - SOUTHEAST QUEENSLAND for DAMAGING WIND, FLASH FLOODING and LARGE HAILSTONES For people in the LOGAN CITY, IPSWICH CITY and parts of the BRISBANE CITY, GOLD COAST CITY, LOCKYER VALLEY, SCENIC RIM, SOMERSET and REDLAND Council Areas.

Issued at 7:07 pm Wednesday, 19 January 2011.
The Bureau of Meteorology warns that, at 7:05 pm, very dangerous thunderstorm with intense rainfall was detected on weather radar near Amberley, Rosewood, Hatton Vale, Marburg and Harrisville. This thunderstorm is moving towards the northeast. This thunderstorm is forecast to affect Ipswich, Redbank Plains, Lowood and Fernvale by 7:35 pm and Beenleigh, Logan City, Enoggera Reservoir and Mount Nebo by 8:05 pm.

Damaging winds, very heavy rainfall, flash flooding and large hailstones are likely.
Rainfall rates of 52 mm in 30 minutes has been observed at Romani, SSE of Ipswich.
Emergency Management Queensland advises that people should:

* Move your car under cover or away from trees.
* Secure loose outdoor items.
* Avoid driving, walking or riding through flood waters.
* Seek shelter, preferably indoors and never under trees.
* Avoid using the telephone during a thunderstorm.
* Beware of fallen trees and powerlines.
* For emergency assistance contact the SES on 132500.

The next warning is due to be issued by $8: 05 \mathrm{pm}$.
A more general severe thunderstorm warning is also current for the Wide Bay and Burnett, Southeast Coast and parts of the Central Highlands and Coalfields, Capricornia, Maranoa and Warrego and Darling Downs and Granite Belt districts.

APPENDIX G - SEVERE WEATHER WARNINGS

Warnings are also available through TV and Radio broadcasts, the Bureau's website at www.bom.gov.au or call 1300659 219. The Bureau and Emergency Management Queensland would appreciate warnings being broadcast regularly.

APPENDIX G - SEVERE WEATHER WARNINGS

Thunderstorm Warning 31

Date: Wednesday 19 January 2011
Time: 19:14

From: Aifs Operational Manager
Sent: Wednesday, January 19, 2011 7:14:44 PM
To: weather
Subject: BOM: Severe Thunderstorm Warning - Qid 1 [SEC=UNCLASSIFIED] Auto forwarded by a Rule

IDQ20041
Bureau of Meteorology
Queensland Regional Office

TOP PRIORITY FOR IMMEDIATE BROADCAST

SEVERE THUNDERSTORM WARNING
for DAMAGING WIND and FLASH FLOODING
For people in the Wide Bay and Burnett, Southeast Coast and parts of the Central Highlands and Coalfields, Maranoa and Warrego and Darling Downs and Granite Belt Forecast Districts.

Issued at 7:13 pm Wednesday, 19 January 2011.
Severe thunderstorms are likely to produce damaging winds, very heavy rainfall and flash flooding in the warning area over the next several hours. Locations which may be affected include Warwick, Gold Coast, Toowoomba, Brisbane, Maroochydore, Gympie, Bundaberg, Kingaroy and Roma.

Rainfall rates of 52 mm in 30 minutes has been observed at Romani, SSE of Ipswich.
Emergency Management Queensland advises that people should:

* Move your car under cover or away from trees.
* Secure loose outdoor items.
* Avoid driving, walking or riding through flood waters.
* Seek shelter, preferably indoors and never under trees.
* Avoid using the telephone during a thunderstorm.
* Beware of fallen trees and powerlines.
* For emergency assistance contact the SES on 132500.

The next warning is due to be issued by $10: 15 \mathrm{pm}$.
If severe thunderstorms develop in the Southeast Queensland area [east of Dalby from Rainbow Beach to Stanthorpe], a more detailed Severe Thunderstorm Warning will be issued to people in this area.

Warnings are also available through TV and Radio broadcasts, the Bureau's website at www.bom.gov.au or call 1300659 219. The Bureau and Emergency Management Queensland would appreciate warnings being broadcast regularly.

APPENDIX G - SEVERE WEATHER WARNINGS

Thunderstorm Warning 32

Date: Wednesday 19 January 2011
Time: 19:26

From: Aifs Operational Manager
Sent: Wednesday, January 19, 2011 7:26:20 PM
To: weather
Subject: BOM: Severe Thunderstorm Warning - SE QId 1 [SEC=UNCLASSIFIED] Auto forwarded by a Rule

IDQ20038
Bureau of Meteorology
Queensland Regional Office

TOP PRIORITY FOR IMMEDIATE BROADCAST

SEVERE THUNDERSTORM WARNING - SOUTHEAST QUEENSLAND for DAMAGING WIND, FLASH FLOODING and LARGE HAILSTONES For people in the LOGAN CITY, IPSWICH CITY and parts of the BRISBANE CITY, LOCKYER VALLEY, MORETON BAY, SCENIC RIM and SOMERSET Council Areas.

Issued at 7:25 pm Wednesday, 19 January 2011.
The Bureau of Meteorology warns that, at 7:05 pm, very dangerous thunderstorms were detected on weather radar near Ipswich, Amberley, Rosewood and Marburg.

These thunderstorms are moving towards the north.
Very dangerous thunderstorms are forecast to affect Wacol, Lake Manchester, Lowood and Fernvale by 7:35 pm and Logan City, the area south of Esk, southern Lake Wivenhoe and the D'Aguilar Ranges by 8:05 pm.

Damaging winds, very heavy rainfall, flash flooding and large hailstones are likely.
Rainfall rates of 52 mm in 30 minutes has been observed at Romani, SSE of Ipswich.
Emergency Management Queensland advises that people should:

* Move your car under cover or away from trees.
* Secure loose outdoor items.
* Avoid driving, walking or riding through flood waters.
* Seek shelter, preferably indoors and never under trees.
* Avoid using the telephone during a thunderstorm.
* Beware of fallen trees and powerlines.
* For emergency assistance contact the SES on 132500.

The next warning is due to be issued by $8: 25 \mathrm{pm}$.
A more general severe thunderstorm warning is also current for the Wide Bay and Burnett, Southeast Coast and parts of the Central Highlands and Coalfields, Maranoa and Warrego and Darling Downs and Granite Belt districts.

APPENDIX G - SEVERE WEATHER WARNINGS

Warnings are also available through TV and Radio broadcasts, the Bureau's website at www.bom.gov.au or call 1300659 219. The Bureau and Emergency Management Queensland would appreciate warnings being broadcast regularly.

APPENDIX G - SEVERE WEATHER WARNINGS

Thunderstorm Warning 33

Date: Wednesday 19 January 2011
Time: 20:02

From: Aifs Operational Manager
Sent: Wednesday, January 19, 2011 8:02:11 PM
To: weather
Subject: BOM: Severe Thunderstorm Warning - Qld 1 [SEC=UNCLASSIFIED] Auto forwarded by a Rule

IDQ20041
Bureau of Meteorology
Queensland Regional Office

TOP PRIORITY FOR IMMEDIATE BROADCAST

SEVERE THUNDERSTORM WARNING
for DAMAGING WIND and FLASH FLOODING
For people in the
Wide Bay and Burnett, Southeast Coast and parts of the Darling Downs and Granite Belt Forecast Districts.

Issued at 8:01 pm Wednesday, 19 January 2011.
Severe thunderstorms are likely to produce damaging winds, very heavy rainfall and flash flooding in the warning area over the next several hours. Locations which may be affected include Warwick, Gold Coast, Toowoomba, Brisbane, Maroochydore, Gympie, Bundaberg, Kingaroy and Hervey Bay waters.

Rainfall rates of 52 mm in 30 minutes has been observed at Romani, SSE of Ipswich.
Emergency Management Queensland advises that people should:

* Move your car under cover or away from trees.
* Secure loose outdoor items.
* Avoid driving, walking or riding through flood waters.
* Seek shelter, preferably indoors and never under trees.
* Avoid using the telephone during a thunderstorm.
* Beware of fallen trees and powerlines.
* For emergency assistance contact the SES on 132500.

The next warning is due to be issued by $11: 05 \mathrm{pm}$.
If severe thunderstorms develop in the Southeast Queensland area [east of Dalby from Rainbow Beach to Stanthorpe], a more detailed Severe Thunderstorm Warning will be issued to people in this area.

Warnings are also available through TV and Radio broadcasts, the Bureau's website at www.bom.gov.au or call 1300659 219. The Bureau and Emergency Management Queensland would appreciate warnings being broadcast regularly.

APPENDIX G - SEVERE WEATHER WARNINGS

Thunderstorm Warning 34

Date: Wednesday 19 January 2011
Time: 20:04

From: Aifs Operational Manager
Sent: Wednesday, January 19, 2011 8:04:45 PM
To: weather
Subject: BOM: Severe Thunderstorm Warning - SE Qld 1 [SEC=UNCLASSIFIED] Auto forwarded by a Rule

IDQ20038
Bureau of Meteorology
Queensland Regional Office

TOP PRIORITY FOR IMMEDIATE BROADCAST

SEVERE THUNDERSTORM WARNING - SOUTHEAST QUEENSLAND for DAMAGING WIND and FLASH FLOODING For people in the BRISBANE CITY, MORETON BAY and parts of the IPSWICH CITY and SOMERSET Council Areas.

Issued at 8:03 pm Wednesday, 19 January 2011.
The Bureau of Meteorology warns that, at $8: 05 \mathrm{pm}$, severe thunderstorms were detected on weather radar near Enoggera Reservoir, Mount Nebo, Highvale, Samford and Wacol.

These thunderstorms are moving towards the north to northeast.
They are forecast to affect Albany Creek, the D'Aguilar Ranges, Lake Samsonvale and Dayboro by $8: 35$ pm and Brisbane CBD, Strathpine, Burpengary and Mount Mee by 9:05 pm.

Damaging winds, very heavy rainfall and flash flooding are likely.
Rainfall rates of 52 mm in 30 minutes has been observed at Romani, SSE of Ipswich.
Emergency Management Queensland advises that people should:

* Move your car under cover or away from trees.
* Secure loose outdoor items.
* Avoid driving, walking or riding through flood waters.
* Seek shelter, preferably indoors and never under trees.
* Avoid using the telephone during a thunderstorm.
* Beware of fallen trees and powerlines.
* For emergency assistance contact the SES on 132500.

The next warning is due to be issued by 9:05 pm.
A more general severe thunderstorm warning is also current for the Wide Bay and Burnett, Southeast Coast and parts of the Darling Downs and Granite Belt districts.

APPENDIX G - SEVERE WEATHER WARNINGS

Warnings are also available through TV and Radio broadcasts, the Bureau's website at www.bom.gov.au or call 1300659 219. The Bureau and Emergency Management Queensland would appreciate warnings being broadcast regularly.

APPENDIX G - SEVERE WEATHER WARNINGS

Thunderstorm Warning 35

Date: Wednesday 19 January 2011
Time: 20:36

From: Aifs Operational Manager
Sent: Wednesday, January 19, 2011 8:36:25 PM
To: weather
Subject: BOM: Severe Thunderstorm Warning - SE Qld 1 [SEC=UNCLASSIFIED] Auto forwarded by a Rule

IDQ20038
Bureau of Meteorology
Queensland Regional Office

TOP PRIORITY FOR IMMEDIATE BROADCAST

SEVERE THUNDERSTORM WARNING - SOUTHEAST QUEENSLAND for DAMAGING WIND and FLASH FLOODING For people in the MORETON BAY and parts of the BRISBANE CITY, SUNSHINE COAST and SOMERSET Council Areas.

Issued at 8:35 pm Wednesday, 19 January 2011.
The Bureau of Meteorology warns that, at $8: 35 \mathrm{pm}$, a severe thunderstorm is detected on weather radar near Strathpine, Kallangur, Narangba and Dayboro. This thunderstorm is moving towards the northeast. This thunderstorm is forecast to affect Redcliffe, Caboolture, Mount Mee and Wamuran by 9:05 pm and Deception Bay waters, Bribie Island, Beerburrum and Woodford by 9:35 pm.

Damaging winds, very heavy rainfall and flash flooding are likely.
Emergency Management Queensland advises that people should:

* Move your car under cover or away from trees.
* Secure loose outdoor items.
* Avoid driving, walking or riding through flood waters.
* Seek shelter, preferably indoors and never under trees.
* Avoid using the telephone during a thunderstorm.
* Beware of fallen trees and powerlines.
* For emergency assistance contact the SES on 132500.

The next warning is due to be issued by 9:35 pm.
A more general severe thunderstorm warning is also current for the Wide Bay and Burnett, Southeast Coast and parts of the Darling Downs and Granite Belt districts.

Warnings are also available through TV and Radio broadcasts, the Bureau's website at www.bom.gov.au or call 1300659 219. The Bureau and Emergency Management Queensland would appreciate warnings being broadcast regularly.

APPENDIX G - SEVERE WEATHER WARNINGS

Thunderstorm Warning 36

Date: Wednesday 19 January 2011
Time: 20:38

From: Aifs Operational Manager
Sent: Wednesday, January 19, 2011 8:38:33 PM
To: weather
Subject: BOM: Severe Thunderstorm Warning - Qld 1 [SEC=UNCLASSIFIED] Auto forwarded by a Rule

IDQ20041
Bureau of Meteorology
Queensland Regional Office

TOP PRIORITY FOR IMMEDIATE BROADCAST

SEVERE THUNDERSTORM WARNING for DAMAGING WIND and FLASH FLOODING
For people in the
Wide Bay and Burnett, Southeast Coast and parts of the
Darling Downs and Granite Belt Forecast Districts.
Issued at 8:37 pm Wednesday, 19 January 2011.
Severe thunderstorms are likely to produce damaging winds, very heavy rainfall and flash flooding in the warning area over the next several hours. Locations which may be affected include Warwick, Gold Coast, Toowoomba, Brisbane, Maroochydore, Gympie, Bundaberg, Kingaroy and Fraser Island.

Emergency Management Queensland advises that people should:

* Move your car under cover or away from trees.
* Secure loose outdoor items.
* Avoid driving, walking or riding through flood waters.
* Seek shelter, preferably indoors and never under trees.
* Avoid using the telephone during a thunderstorm.
* Beware of fallen trees and powerlines.
* For emergency assistance contact the SES on 132500.

The next warning is due to be issued by $11: 40 \mathrm{pm}$.
If severe thunderstorms develop in the Southeast Queensland area [east of Dalby from Rainbow Beach to Stanthorpe], a more detailed Severe Thunderstorm Warning will be issued to people in this area.

Warnings are also available through TV and Radio broadcasts, the Bureau's website at www.bom.gov.au or call 1300659 219. The Bureau and Emergency Management Queensland would appreciate warnings being broadcast regularly.

APPENDIX G - SEVERE WEATHER WARNINGS

Thunderstorm Warning 37

Date: Wednesday 19 January 2011
Time: 21:12

From: Aifs Operational Manager
Sent: Wednesday, January 19, 2011 9:12:39 PM
To: weather
Subject: BOM: Severe Thunderstorm Warning - Qld 1 [SEC=UNCLASSIFIED] Auto forwarded by a Rule

IDQ20041
Bureau of Meteorology
Queensland Regional Office

TOP PRIORITY FOR IMMEDIATE BROADCAST
SEVERE THUNDERSTORM WARNING
for DAMAGING WIND and FLASH FLOODING
For people in the Wide Bay and Burnett, Southeast Coast and parts of the Central Highlands and Coalfields, Capricornia and Darling Downs and Granite Belt Forecast Districts.

Issued at 9:11 pm Wednesday, 19 January 2011.
Severe thunderstorms are likely to produce damaging winds, very heavy rainfall and flash flooding in the warning area over the next several hours. Locations which may be affected include Warwick, Toowoomba, Brisbane, Dalby, Maroochydore, Gympie, Bundaberg and Kingaroy.

Emergency Management Queensland advises that people should:

* Move your car under cover or away from trees.
* Secure loose outdoor items.
* Avoid driving, walking or riding through flood waters.
* Seek shelter, preferably indoors and never under trees.
* Avoid using the telephone during a thunderstorm.
* Beware of fallen trees and powerlines.
* For emergency assistance contact the SES on 132500.

The next warning is due to be issued by 12:15 am Thursday.
If severe thunderstorms develop in the Southeast Queensland area [east of Dalby from Rainbow Beach to Stanthorpe], a more detailed Severe Thunderstorm Warning will be issued to people in this area.

Warnings are also available through TV and Radio broadcasts, the Bureau's website at www.bom.gov.au or call 1300659 219. The Bureau and Emergency Management Queensland would appreciate warnings being broadcast regularly.

APPENDIX G - SEVERE WEATHER WARNINGS

Thunderstorm Warning 38

Date: Wednesday 19 January 2011
Time: 21:13

From: Aifs Operational Manager
Sent: Wednesday, January 19, 2011 9:13:49 PM
To: weather
Subject: BOM: Severe Thunderstorm Warning - SE QId 1 [SEC=UNCLASSIFIED] Auto forwarded by a Rule

IDQ20038
Bureau of Meteorology
Queensland Regional Office

TOP PRIORITY FOR IMMEDIATE BROADCAST
CANCELLATION SEVERE THUNDERSTORM WARNING - SOUTHEAST QUEENSLAND

Issued at 9:12 pm Wednesday, 19 January 2011.
Severe thunderstorms are no longer affecting the Southeast Queensland area [east of Dalby from Rainbow Beach to Stanthorpe].

The immediate threat of severe thunderstorms has passed, but the situation will continue to be monitored and further warnings will be issued if necessary.

Emergency Management Queensland advises that people should:

* Beware of fallen trees and powerlines.
* Avoid driving, walking or riding through flood waters.
* For emergency assistance contact the SES on 132500.

A more general severe thunderstorm warning remains current for the Wide Bay and Burnett, Southeast Coast and parts of the Central Highlands and Coalfields, Capricornia and Darling Downs and Granite Belt districts.

Warnings are also available through TV and Radio broadcasts, the Bureau's website at www.bom.gov.au or call 1300659 219. The Bureau and Emergency Management Queensland would appreciate warnings being broadcast regularly.

APPENDIX G - SEVERE WEATHER WARNINGS

WEATHER WARNINGS

Weather Warning 1

Date: Wednesday 5 January 2011
Time: 16:59

From: Aifs Operational Manager
Sent: Wednesday, January 05, 2011 4:59:15 PM
To: weather
Subject: BOM: Severe Weather Warning 1 [SEC=UNCLASSIFIED] Auto forwarded by a Rule

IDQ20032
Australian Government Bureau of Meteorology Queensland

TOP PRIORITY FOR IMMEDIATE BROADCAST

SEVERE WEATHER WARNING

for heavy rainfall leading to localised flash flooding and potentially worsening the existing river flood situation For people in the Darling Downs and Granite Belt, Southeast Coast, Wide Bay and Burnett, Capricornia and Central Highlands and Coalfields district.

Issued at 5:00 pm on Wednesday 5 January 2011
Synoptic Situation: At 4pm EST, a trough extended from northwestern Queensland into the Darling Downs. The trough is expected to intensify as it moves slowly east over the next 24 hours.

Thundery rain areas with some heavy falls are occurring over the Darling Downs and Granite Belt, Southeast Coast districts and southern parts of the Wide Bay and Burnett and Central Highlands and Coalfields districts. This heavy rain is expected to extend to the Capricornia and remaining parts of the Wide Bay and Burnett and eastern Central Highlands and Coalfields during Thursday. The rain will ease over the western Darling Downs and southwestern Central Highlands and Coalfields on Thursday.

Heavy rainfall may lead to localised flash flooding and/or worsen current river flooding.
Heavy rainfall has eased over the Maranoa District and a Severe Weather Warning for this area is no longer current.

Flood warnings are current for various rivers and streams in these districts; refer to these products [www.bom.gov.au/qld] for further information.

The State Emergency Service advises that people in the affected area should: avoid driving, walking or riding through flood waters take care on the roads, especially in heavy downpours avoid swimming in swollen rivers and creeks

Contact the SES on 132500 for emergency assistance if required.

APPENDIX G - SEVERE WEATHER WARNINGS

This warning is also available through TV and Radio broadcasts; the Bureau's website at www.bom.gov.au or call 1300659 219. The Bureau and State Emergency Service would appreciate this warning being broadcast regularly

APPENDIX G - SEVERE WEATHER WARNINGS

This warning is also available through TV and Radio broadcasts; the Bureau's website at www.bom.gov.au or call 1300659 219. The Bureau and State Emergency Service would appreciate this warning being broadcast regularly.

APPENDIX G - SEVERE WEATHER WARNINGS

Weather Warning 2

Date: Wednesday 5 January 2011
Time: 23:27

From: Aifs Operational Manager
Sent: Wednesday, January 05, 2011 11:27:31 PM
To: weather
Subject: BOM: Severe Weather Warning 1 [SEC=UNCLASSIFIED] Auto forwarded by a Rule

IDQ20032
Australian Government Bureau of Meteorology Queensland

TOP PRIORITY FOR IMMEDIATE BROADCAST

SEVERE WEATHER WARNING

for heavy rainfall leading to localised flash flooding, this may add to the existing river flood situation For people in the Eastern Darling Downs, Granite Belt, Southeast Coast, Wide Bay and Burnett and the Capricornia districts.

Issued at $11: 30 \mathrm{pm}$ on Wednesday 5 January 2011
Synoptic Situation: At 11 pm EST., a developing upper level low over southern Queensland and a surface trough will combine to concentrate heavier weather over the SE region during Thursday morning which will then contract towards the Capricorn and Wide Bay coasts later in the day.

Flood warnings are current for various rivers and streams in these districts; refer to these products [www.bom.gov.au/qid] for further information.

The State Emergency Service advises that people in the affected area should:
avoid driving, walking or riding through flood waters take care on the roads, especially in heavy downpours avoid swimming in swollen rivers and creeks

Contact the SES on 132500 for emergency assistance if required.
The next warning is due to be issued by 11:00 pm Wednesday
This warning is also available through TV and Radio broadcasts; the Bureau's website at www.bom.gov.au or call 1300659 219. The Bureau and State Emergency Service would appreciate this warning being broadcast regularly.

APPENDIX G - SEVERE WEATHER WARNINGS

Weather Warning 3

Date: Wednesday 5 January 2011
Time: 23:55

From: Aifs Operational Manager
Sent: Wednesday, January 05, 2011 11:55:13 PM
To: weather
Subject: BOM: Severe Weather Warning 1 [SEC=UNCLASSIFIED] Auto forwarded by a Rule

IDQ20032
Australian Government Bureau of Meteorology Queensland

TOP PRIORITY FOR IMMEDIATE BROADCAST

SEVERE WEATHER WARNING
for heavy rainfall leading to localised flash flooding, this may add to the existing river flood situation For people in the Eastern Darling Downs, Granite Belt, Southeast Coast, Wide Bay and Burnett and the Capricornia districts.

Issued at $11: 55 \mathrm{pm}$ on Wednesday 5 January 2011
Synoptic Situation: At 11pm EST, a developing upper level low over southern Queensland and a surface trough will combine to concentrate heavier weather over the SE region during Thursday morning which will then contract towards the Capricorn and Wide Bay coasts later in the day.

Flood warnings are current for various rivers and streams in these districts; refer to these products [www.bom.gov.au/qld] for further information.

The State Emergency Service advises that people in the affected area should:
avoid driving, walking or riding through flood waters take care on the roads, especially in heavy downpours avoid swimming in swollen rivers and creeks

Contact the SES on 132500 for emergency assistance if required.
The next warning is due to be issued by 5am Thursday
This warning is also available through TV and Radio broadcasts; the Bureau's website at www.bom.gov.au or call 1300659 219. The Bureau and State Emergency Service would appreciate this warning being broadcast regularly.

APPENDIX G - SEVERE WEATHER WARNINGS

Weather Warning 4

Date: Thursday 6 January 2011
Time: 03:38

From: Aifs Operational Manager
Sent: Thursday, January 06, 2011 3:38:41 AM
To: weather
Subject: BOM: Severe Weather Warning 1 [SEC=UNCLASSIFIED] Auto forwarded by a Rule

IDQ20032
Australian Government Bureau of Meteorology Queensland

TOP PRIORITY FOR IMMEDIATE BROADCAST
 SEVERE WEATHER WARNING
 for heavy rainfall leading to localised flash flooding, this may add to the existing river flood situation For people in the Southeast Coast, Wide Bay and Burnett and the Capricornia districts.

Issued at 3:40 am on Thursday 6 January 2011
Synoptic Situation: At 0330AM EST, a developing upper level low over southern Queensland and a surface trough will combine to concentrate heavier weather over the SE region during Thursday which will then contract towards the Capricorn, Wide Bay and Sunshine coasts later in the day.

Flood warnings are current for various rivers and streams in these districts; refer to these products [www.bom.gov.au/qld] for further information.

The State Emergency Service advises that people in the affected area should: avoid driving, walking or riding through flood waters take care on the roads, especially in heavy downpours avoid swimming in swollen rivers and creeks

Contact the SES on 132500 for emergency assistance if required.
The next warning is due to be issued by 5am Thursday
This warning is also available through TV and Radio broadcasts; the Bureau's website at www.bom.gov.au or call 1300659 219. The Bureau and State Emergency Service would appreciate this warning being broadcast regularly.

APPENDIX G - SEVERE WEATHER WARNINGS

Weather Warning 5

Date: Thursday 6 January 2011
Time: 08:33

From: Aifs Operational Manager
Sent: Thursday, January 06, 2011 8:33:11 AM
To: weather
Subject: BOM: Severe Weather Warning 1 [SEC=UNCLASSIFIED] Auto forwarded by a Rule

IDQ20032
Australian Government Bureau of Meteorology Queensland

TOP PRIORITY FOR IMMEDIATE BROADCAST

SEVERE WEATHER WARNING
for heavy rainfall leading to localised flash flooding and potentially worsening the existing river flood situation For people in the Southeast Coast district and eastern parts of the Wide Bay and Burnett District.

Issued at 8:30 am on Thursday 6 January 2011
Synoptic Situation: At 8am EST, an upper level low was developing over the southeastern interior of Queensland. A slow moving surface trough extended from northwestern Queensland into the Darling Downs.

Rain areas and thunderstorms are expected to increase through the Southeast Coast District and eastern parts of the Wide Bay and Burnett District this afternoon. Some heavy falls are expected which may lead to localised flash flooding and/or worsen existing river flooding.

Isolated thunderstorms are expected through the Capricornia and remaining parts of the Wide Bay and Burnett District. Locally heavy falls may occur with these thunderstorms and Severe Thunderstorm Warnings will be issued as necessary.

Flood warnings are current for various rivers and streams in these districts; refer to these products [www.bom.gov.au/qld] for further information.

The State Emergency Service advises that people in the affected area should: avoid driving, walking or riding through flood waters take care on the roads, especially in heavy downpours avoid swimming in swoilen rivers and creeks

Contact the SES on 132500 for emergency assistance if required.
The next warning is due to be issued by 11 am Thursday
This warning is also available through TV and Radio broadcasts; the Bureau's website at www.bom.gov.au or call 1300659 219. The Bureau and State Emergency Service would appreciate this warning being broadcast regularly.

APPENDIX G - SEVERE WEATHER WARNINGS

Weather Warning 6

Date: Thursday 6 January 2011
Time: 10:46

From: Aifs Operational Manager
Sent: Thursday, January 06, 2011 10:46:04 AM
To: weather
Subject: BOM: Severe Weather Warning 1 [SEC=UNCLASSIFIED] Auto forwarded by a Rule

IDQ20032
Australian Government Bureau of Meteorology Queensland

TOP PRIORITY FOR IMMEDIATE BROADCAST
 SEVERE WEATHER WARNING
 for heavy rainfall leading to localised flash flooding and potentially worsening the existing river flood situation For people in the Southeast Coast District and eastern parts of the Wide Bay and Burnett District.

Issued at 10:45 am on Thursday 6 January 2011
Synoptic Situation: At 10am EST, an upper level low was developing over the southeastern interior of Queensland. A slow moving surface trough extended from northwestern Queensland into eastern Darling Downs.

Rain areas and thunderstorms will increase further through the Southeast Coast District and eastern parts of the Wide Bay and Burnett District today. Some heavy falls are expected which may lead to localised flash flooding and/or worsen existing river flooding.

Rainfall is expected to ease about the Southeast Coast District during Friday.
Isolated thunderstorms are expected through the Capricornia and remaining parts of the Wide Bay and Burnett District. Locally heavy falls may occur today with these thunderstorms and Severe Thunderstorm Warnings will be issued as necessary.

Flood warnings are current for various rivers and streams in these districts; refer to these products [www.bom.gov.au/qld] for further information.

The State Emergency Service advises that people in the affected area should: avoid driving, walking or riding through flood waters take care on the roads, especially in heavy downpours avoid swimming in swollen rivers and creeks

Contact the SES on 132500 for emergency assistance if required.
The next warning is due to be issued by 5 pm Thursday
This warning is also available through TV and Radio broadcasts; the Bureau's website at www.bom.gov.au or call 1300659 219. The Bureau and State Emergency Service would appreciate this warning being broadcast regularly.

APPENDIX G - SEVERE WEATHER WARNINGS

Weather Warning 7

Date: Thursday 6 January 2011
Time: 16:50

From: Aifs Operational Manager
Sent: Thursday, January 06, 2011 4:50:02 PM
To: weather
Subject: BOM: Severe Weather Warning 1 [SEC=UNCLASSIFIED] Auto forwarded by a Rule

IDQ20032
Australian Government Bureau of Meteorology Queensland

TOP PRIORITY FOR IMMEDIATE BROADCAST

SEVERE WEATHER WARNING
for heavy rainfall leading to localised flash flooding and potentially worsening the existing river flood situation For people in the Southeast Coast and eastern parts of the Wide Bay and Burnett districts.

Issued at 4:50 pm on Thursday 6 January 2011
Synoptic Situation: At 4pm EST, an upper level low was developing over the southeastern interior of Queensland and is forecast to move in a north northeast direction overnight. A slow moving surface trough extended from northwestern parts of the state down into the southeast.

Rain areas and thunderstorms will continue through parts of the Southeast Coast district north of Brisbane and eastern parts of the Wide Bay and Burnett district this evening and overnight. Some heavy falls are expected which may lead to localised flash flooding and/or worsen existing river flooding.

Rain areas and thunderstorms have eased in parts of the Southeast Coast district south of Brisbane but may redevelop overnight. Heavy rain areas are forecast to contract into eastern parts of the Wide Bay and Burnett district on Friday.

Isolated thunderstorms are expected through the Capricornia and remaining parts of the Wide Bay and Burnett District. Locally heavy falls may occur today with these thunderstorms and Severe Thunderstorm Warnings will be issued as necessary.

Flood warnings are current for various rivers and streams in these districts; refer to these products [www.bom.gov.au/qld] for further information.

The State Emergency Service advises that people in the affected area should:
avoid driving, walking or riding through flood waters take care on the roads, especially in heavy downpours avoid swimming in swollen rivers and creeks

Contact the SES on 132500 for emergency assistance if required.
The next warning is due to be issued by 11 pm Thursday

APPENDIX G - SEVERE WEATHER WARNINGS

This warning is also available through TV and Radio broadcasts; the Bureau's website at www.bom.gov.au or call 1300659 219. The Bureau and State Emergency Service would appreciate this warning being broadcast regularly.

APPENDIX G - SEVERE WEATHER WARNINGS

Weather Warning 8

Date: Thursday 6 January 2011
Time: 22:54

From: Aifs Operational Manager
Sent: Thursday, January 06, 2011 10:54:22 PM
To: weather
Subject: BOM: Severe Weather Warning 1 [SEC=UNCLASSIFIED] Auto forwarded by a Rule

IDQ20032
Australian Government Bureau of Meteorology Queensland

TOP PRIORITY FOR IMMEDIATE BROADCAST

SEVERE WEATHER WARNING
for heavy rainfall leading to localised flash flooding and potentially worsening the existing river flood situation For people in the Southeast Coast and eastern parts of the Wide Bay and Burnett districts.

Issued at $10: 55 \mathrm{pm}$ on Thursday 6 January 2011
Synoptic Situation: At 1030pm EST, an upper level low over the southeastern interior will move north into the Capricorn district during Friday. Current rain areas near the coast will develop back inland over the SE region during Friday.

Some heavy falls may occur about the eastern Burnett, Wide Bay and northern parts of the Sunshine coast later on Friday with the potential for flash flooding and this may contribute to existing river flooding.

Flood warnings are current for various rivers and streams in these districts; refer to these products [www.bom.gov.au/qld] for further information.

The State Emergency Service advises that people in the affected area should:
avoid driving, walking or riding through flood waters take care on the roads, especially in heavy downpours avoid swimming in swollen rivers and creeks

Contact the SES on 132500 for emergency assistance if required.
The next warning is due to be issued by 11 pm Thursday
This warning is also available through TV and Radio broadcasts; the Bureau's website at www.bom.gov.au or call 1300659 219. The Bureau and State Emergency Service would appreciate this warning being broadcast regularly.

APPENDIX G - SEVERE WEATHER WARNINGS

Weather Warning 9

Date: Friday 7 January 2011
Time: 05:25

From: Aifs Operational Manager
Sent: Friday, January 07, 2011 5:25:51 AM
To: weather
Subject: BOM: Severe Weather Warning 1 [SEC=UNCLASSIFIED] Auto forwarded by a Rule

IDQ20032
Australian Government Bureau of Meteorology Queensland

TOP PRIORITY FOR IMMEDIATE BROADCAST

SEVERE WEATHER WARNING
for heavy rainfall leading to localised flash flooding and potentially worsening the existing river flood situation For people in the Southeast Coast and eastern parts of the Wide Bay and Burnett districts.

Issued at 5:25 am on Friday 7 January 2011
Synoptic Situation: At 0420am EST, an upper level low occurs over the Capricorn region at present and will contribute to further rain areas over southeastern region today.

Some heavy falls may occur about the eastern Burnett, Wide Bay and northern parts of the Sunshine coast later today with the potential for flash flooding and this may contribute to existing flooding situation.

Flood warnings are current for various rivers and streams in these districts; refer to these products [www.bom.gov.au/qld] for further information.

The State Emergency Service advises that people in the affected area should: avoid driving, walking or riding through flood waters take care on the roads, especially in heavy downpours avoid swimming in swollen rivers and creeks

Contact the SES on 132500 for emergency assistance if required.
The next warning is due to be issued by 11am Thursday
This warning is also available through TV and Radio broadcasts; the Bureau's website at www.bom.gov.au or call 1300659 219. The Bureau and State Emergency Service would appreciate this warning being broadcast regularly.

APPENDIX G - SEVERE WEATHER WARNINGS

Weather Warning 10

Date: Friday 7 January 2011
Time: 08:26

From: Aifs Operational Manager
Sent: Friday, January 07, 2011 8:26:56 AM
To: weather
Subject: BOM: Severe Weather Warning 1 [SEC=UNCLASSIFIED] Auto forwarded by a Rule

IDQ20032
Australian Government Bureau of Meteorology Queensland

TOP PRIORITY FOR IMMEDIATE BROADCAST

SEVERE WEATHER WARNING
for heavy rainfall leading to localised flash flooding and potentially worsening the existing river flood situation For people in the Southeast Coast and Wide.Bay and Burnett forecast districts.

Issued at 8:25 am on Friday 7 January 2011
Synoptic Situation: At 7am EST, an upper level low was located over the Capricornia district while a low level trough was located off the Capricorn coast. These systems will combine to produce further rain areas and thunderstorms over the Southeast Coast and Wide Bay and Burnett forecast districts.

Some heavy falls are currently occurring about southern parts of the Southeast Coast District. Heavy rainfall is also expected to develop further north about the Sunshine Coast and Wide Bay and Burnett district through today. Rainfalls should ease south of the Sunshine Coast later today.

Heavy rainfalls may lead to localised flash flooding and/or worsen existing river flooding.
Flood warnings are current for various rivers and streams in these districts; refer to these products [www.bom.gov.au/qld] for further information.

The State Emergency Service advises that people in the affected area should:
avoid driving, walking or riding through flood waters take care on the roads, especially in heavy downpours avoid swimming in swollen rivers and creeks

Contact the SES on 132500 for emergency assistance if required.
The next warning is due to be issued by 11am Thursday
This warning is also available through TV and Radio broadcasts; the Bureau's website at www.bom.gov.au or call 1300659 219. The Bureau and State Emergency Service would appreciate this warning being broadcast regularly.

APPENDIX G - SEVERE WEATHER WARNINGS

Weather Warning 11

Date: Friday 7 January 2011
Time: 11:25

From: Aifs Operational Manager
Sent: Friday, January 07, 2011 11:25:01 AM
To: weather
Subject: BOM: Severe Weather Warning 1 [SEC=UNCLASSIFIED] Auto forwarded by a Rule

IDQ20032
Australian Government Bureau of Meteorology Queensland

TOP PRIORITY FOR IMMEDIATE BROADCAST

SEVERE WEATHER WARNING
for heavy rainfall leading to localised flash flooding and potentially worsening the existing river flood situation For people in the Southeast Coast and Wide Bay and Burnett districts.

Issued at 11:25 am on Friday 7 January 2011
Synoptic Situation: At 10am EST, an upper level low was located over the Capricornia district while a low level trough was located near the Queensland east coast. These systems will combine to produce further rain areas and thunderstorms over the Southeast Coast and Wide Bay and Burnett districts.

Heavy rain and isolated thunderstorms are currently occurring about the Southeast Coast district. These conditions are expected to develop in the Wide Bay and Burnett district during this afternoon and evening. Rainfall is expected to ease south of the Sunshine Coast later today.

Heavy rainfall may lead to localised flash flooding and/or worsen existing river flooding.
Flood warnings are current for various rivers and streams in these districts; refer to these products [www.bom.gov.au/qld] for further information.

The State Emergency Service advises that people in the affected area should:
avoid driving, walking or riding through flood waters take care on the roads, especially in heavy downpours avoid swimming in swollen rivers and creeks

Contact the SES on 132500 for emergency assistance if required.
The next warning is due to be issued by 5 pm Thursday
This warning is also available through TV and Radio broadcasts; the Bureau's website at www.bom.gov.au or call 1300659 219. The Bureau and State Emergency Service would appreciate this warning being broadcast regularly.

APPENDIX G - SEVERE WEATHER WARNINGS

Weather Warning 12

Date: Friday 7 January 2011
Time: 15:32

From: Aifs Operational Manager
Sent: Friday, January 07, 2011 3:32:35 PM
To: weather
Subject: BOM: Severe Weather Warning 1 [SEC=UNCLASSIFIED] Auto forwarded by a Rule

IDQ20032
Australian Government Bureau of Meteorology Queensland

TOP PRIORITY FOR IMMEDIATE BROADCAST

SEVERE WEATHER WARNING
for heavy rainfall leading to localised flash flooding and potentially worsening the existing river flood situation For people in the Southeast Coast and Wide Bay and Burnett districts.

Issued at $3: 35$ pm on Friday 7 January 2011
Synoptic Situation: At 3pm EST, an upper level low was located over the Capricornia district while a low level trough was located near the Queensland east coast. The upper level low is forecast to move off the Capricornia coast on Saturday while the low level trough remains slow moving.

Heavy rain and isolated thunderstorms are currently occurring about the Wide Bay and Burnett and Southeast Coast districts north of Brisbane. Heavy rain may lead to localised flash flooding and/or worsen existing river flooding.

These conditions are expected to persist about the Wide Bay and Burnett district on Saturday while redeveloping throughout the Southeast Coast district during the afternoon and evening.

Flood warnings are current for various rivers and streams in these districts; refer to these products [www.bom.gov.au/qld] for further information.

The State Emergency Service advises that people in the affected area should:
avoid driving, walking or riding through flood waters take care on the roads, especially in heavy downpours avoid swimming in swollen rivers and creeks

Contact the SES on 132500 for emergency assistance if required.
The next warning is due to be issued by 11 pm Friday
This warning is also available through TV and Radio broadcasts; the Bureau's website at www.bom.gov.au or call 1300659 219. The Bureau and State Emergency Service would appreciate this warning being broadcast regularly.

APPENDIX G - SEVERE WEATHER WARNINGS

Weather Warning 13

Date: Friday 7 January 2011
Time: 15:37

From: Aifs Operational Manager
Sent: Friday, January 07, 2011 3:37:06 PM
To: weather
Subject: BOM: Severe Weather Warning 1 [SEC=UNCLASSIFIED] Auto forwarded by a Rule

IDQ20032
Australian Government Bureau of Meteorology Queensland

TOP PRIORITY FOR IMMEDIATE BROADCAST
 SEVERE WEATHER WARNING
 for heavy rainfall leading to localised flash flooding and potentially worsening the existing river flood situation For people in the Southeast Coast and Wide Bay and Burnett districts.

Issued at $3: 40$ pm on Friday 7 January 2011
Synoptic Situation: At 3pm EST, an upper level low was located over the Capricornia district while a low level trough was located near the Queensland east coast. The upper level low is forecast to move off the Capricornia coast on Saturday while the low level trough remains slow moving.

Heavy rain and isolated thunderstorms are currently occurring about the Wide Bay and Burnett and Southeast Coast districts north of Brisbane. Heavy rain may lead to localised flash flooding and/or worsen existing river flooding.

These conditions are expected to persist in these areas on Saturday while redeveloping throughout the Southeast Coast district during the afternoon and evening.

Flood warnings are current for various rivers and streams in these districts; refer to these products [www.bom.gov.au/qld] for further information.

The State Emergency Service advises that people in the affected area should:
avoid driving, walking or riding through flood waters take care on the roads, especially in heavy downpours avoid swimming in swollen rivers and creeks

Contact the SES on 132500 for emergency assistance if required.
The next warning is due to be issued by 11 pm Friday
This warning is also available through TV and Radio broadcasts; the Bureau's website at www.bom.gov.au or call 1300659 219. The Bureau and State Emergency Service would appreciate this warning being broadcast regularly.

APPENDIX G - SEVERE WEATHER WARNINGS

Weather Warning 14

Date: Friday 7 January 2011
Time: 22:50

From: Aifs Operational Manager
Sent: Friday, January 07, 2011 10:50:00 PM
To: weather
Subject: BOM: Severe Weather Warning 1 [SEC=UNCLASSIFIED] Auto forwarded by a Rule

IDQ20032
Australian Government Bureau of Meteorology Queensland

TOP PRIORITY FOR IMMEDIATE BROADCAST
 SEVERE WEATHER WARNING

for heavy rainfall leading to localised flash flooding and potentially worsening the existing river flood situation For people in the Southeast Coast and Wide Bay and Burnett districts.

Issued at $10: 50$ pm on Friday 7 January 2011
Synoptic Situation: At 10pm EST, an upper level low was located offshore from the Capricornia district while a low level trough was located near the Wide Bay coast.

Heavy rain and isolated thunderstorms are currently occurring about the southern Wide Bay and Burnett district and are forecast to develop about the Sunshine Coast during Saturday morning, and remaining parts of the Southeast Coast district on Saturday afternoon. Heavy rain may lead to localised flash flooding and/or worsen existing river flooding.

Flood warnings are current for various rivers and streams in these districts; refer to these products [www.bom.gov.au/qld] for further information.

The State Emergency Service advises that people in the affected area should:
avoid driving, walking or riding through flood waters take care on the roads, especially in heavy downpours avoid swimming in swollen rivers and creeks

Contact the SES on 132500 for emergency assistance if required.
The next warning is due to be issued by 5am Saturday
This warning is also available through TV and Radio broadcasts; the Bureau's website at www.bom.gov.au or call 1300659 219. The Bureau and State Emergency Service would appreciate this warning being broadcast regularly.

APPENDIX G - SEVERE WEATHER WARNINGS

Weather Warning 15

Date: Saturday 8 January 2011
Time: 04:52

From: Aifs Operational Manager
Sent: Saturday, January 08, 2011 4:52:00 AM
To: weather
Subject: BOM: Severe Weather Warning 1 [SEC=UNCLASSIFIED] Auto forwarded by a Rule

IDQ20032
Australian Government Bureau of Meteorology Queensiand

TOP PRIORITY FOR IMMEDIATE BROADCAST

SEVERE WEATHER WARNING
for heavy rainfall leading to localised flash flooding and potentially worsening the existing river flood situation For people in the Southeast Coast and Wide Bay and Burnett districts.

Issued at 4:55 am on Saturday 8 January 2011
Synoptic Situation: At 10pm EST, an upper level low was located offshore from the Capricornia district while a low level trough was located near the Wide Bay coast.

Heavy rain and isolated thunderstorms are currently occurring about the southern Wide Bay and Burnett district and are forecast to develop about the Sunshine Coast during Saturday morning, and remaining parts of the Southeast Coast district on Saturday afternoon. Heavy rain may lead to localised flash flooding and/or worsen existing river flooding.

Recent events: Rainfall of up to 220 mm over the Mary River catchment since 9am Friday has caused rapid river rises there, see separate Flood Warning for details.

Flood warnings are current for various rivers and streams in these districts; refer to these products [www.bom.gov.au/qld] for further information.

The State Emergency Service advises that people in the affected area should: avoid driving, walking or riding through flood waters take care on the roads, especially in heavy downpours avoid swimming in swollen rivers and creeks

Contact the SES on 132500 for emergency assistance if required.
The next warning is due to be issued by 5am Saturday
This warning is also available through TV and Radio broadcasts; the Bureau's website at www.bom.gov.au or call 1300659 219. The Bureau and State Emergency Service would appreciate this warning being broadcast regularly.

APPENDIX G - SEVERE WEATHER WARNINGS

Weather Warning 16

Date: Saturday 8 January 2011
Time: 11:00

From: Aifs Operational Manager
Sent: Saturday, January 08, 2011 11:00:01 AM
To: weather
Subject: BOM: Severe Weather Warning 1 [SEC=UNCLASSIFIED] Auto forwarded by a Rule

IDQ20032
Australian Government Bureau of Meteorology Queensland

TOP PRIORITY FOR IMMEDIATE BROADCAST

SEVERE WEATHER WARNING
for heavy rainfall leading to localised flash flooding and potentially worsening the existing river flood situation For people in the Southeast Coast and Wide Bay and Burnett districts.

Issued at 11:00 am on Saturday 8 January 2011
Synoptic Situation: At 10am EST, an upper level low was located offshore from the Capricornia district while a low level trough was located off the southern coast.

Heavy rain overnight has weakened recently to showers and isolated thunderstorms. Rain areas are expected to return to the Southeast Coast and Wide Bay and Burnett districts from this afternoon, and increase to moderate to heavy falls at times tonight and Sunday. Heavy rain may lead to localised flash flooding and/or worsen existing river flooding.

Recent events: Rainfall of up to 304 mm over the Mary River catchment in the 24 hours to 9am Saturday. A Flood Warning is current for this area.

Flood warnings are current for various rivers and streams in these districts; refer to these products [www.bom.gov.au/qld] for further information.

The State Emergency Service advises that people in the affected area should:
avoid driving, walking or riding through flood waters take care on the roads, especially in heavy downpours avoid swimming in swollen rivers and creeks

Contact the SES on 132500 for emergency assistance if required.
The next warning is due to be issued by 5 pm Saturday
This warning is also available through TV and Radio broadcasts; the Bureau's website at www.bom.gov.au or call 1300659 219. The Bureau and State Emergency Service would appreciate this warning being broadcast regularly.

APPENDIX G - SEVERE WEATHER WARNINGS

Weather Warning 17

Date: Saturday 8 January 2011
Time: 17:12

From: Aifs Operational Manager
Sent: Saturday, January 08, 2011 5:12:38 PM
To: weather
Subject: BOM: Severe Weather Warning 1 [SEC=UNCLASSIFIED] Auto forwarded by a Rule

IDQ20032
Australian Government Bureau of Meteorology Queensland

TOP PRIORITY FOR IMMEDIATE BROADCAST
SEVERE WEATHER WARNING
for heavy rainfall leading to localised flash flooding and potentially worsening the existing river flood situation For people in the Southeast Coast and Wide Bay and Burnett districts.

Issued at $5: 15$ pm on Saturday 8 January 2011
Synoptic Situation: At 4pm EST, an upper level low was located offshore from the Capricornia district while a low level trough was located off the southern coast.

Rain areas are expected to return to the Southeast Coast and Wide Bay and Burnett districts tonight, and are likely to increase to moderate to heavy falls at times during Sunday. Heavy rain may lead to localised flash flooding and/or worsen existing river flooding.

Recent events: Rainfall of up to 304 mm over the Mary River catchment in the 24 hours to 9 am Saturday. A Flood Warning is current for this area.

Flood warnings are current for various rivers and streams in these districts; refer to these products [www.bom.gov.au/qld] for further information.

The State Emergency Service advises that people in the affected area should: avoid driving, walking or riding through flood waters take care on the roads, especially in heavy downpours avoid swimming in swollen rivers and creeks

Contact the SES on 132500 for emergency assistance if required.
The next warning is due to be issued by 11 pm Saturday
This warning is also available through TV and Radio broadcasts; the Bureau's website at www.bom.gov.au or call 1300659 219. The Bureau and State Emergency Service would appreciate this warning being broadcast regularly.

APPENDIX G - SEVERE WEATHER WARNINGS

Weather Warning 18

Date: Saturday 8 January 2011
Time: 22:18

From: Aifs Operational Manager
Sent: Saturday, January 08, 2011 10:18:13 PM
To: weather
Subject: BOM: Severe Weather Warning 1 [SEC=UNCLASSIFIED] Auto forwarded by a Rule

IDQ20032
Australian Government Bureau of Meteorology Queensland

TOP PRIORITY FOR IMMEDIATE BROADCAST

SEVERE WEATHER WARNING
for heavy rainfall leading to localised flash flooding and potentially worsening the existing river flood situation For people in the Southeast Coast district and southern parts of the Wide Bay and Burnett.

Issued at 10:20 pm on Saturday 8 January 2011
Synoptic Situation: At 10pm EST, an upper level low was located offshore of the Capricorn coast. A surface trough was located well offshore of the Fraser coast.
Both of these systems are expected to move closer to the coast overnight and during Sunday.

Rain areas and thunderstorms are expected to increase through the Southeast Coast district and southern parts of the Wide Bay and Burnett district from early Sunday. Some heavy falls are likely which may lead to localised flash flooding and/or worsen existing river flooding.

Flood warnings are current for various rivers and streams in these districts; refer to these products [www.bom.gov.au/qld] for further information.

The State Emergency Service advises that people in the affected area should:
avoid driving, walking or riding through flood waters take care on the roads, especially in heavy downpours avoid swimming in swollen rivers and creeks

Contact the SES on 132500 for emergency assistance if required.
The next warning is due to be issued by 5 am Sunday
This warning is also available through TV and Radio broadcasts; the Bureau's website at www.bom.gov.au or call 1300659 219. The Bureau and State Emergency Service would appreciate this warning being broadcast regularly.

APPENDIX G - SEVERE WEATHER WARNINGS

Weather Warning 19

Date: Sunday 9 January 2011
Time: 04:40

From: Aifs Operational Manager
Sent: Sunday, January 09, 2011 4:40:04 AM
To: weather
Subject: BOM: Severe Weather Warning 1 [SEC=UNCLASSIFIED] Auto forwarded by a Rule

IDQ20032
Australian Government Bureau of Meteorology Queensland

TOP PRIORITY FOR IMMEDIATE BROADCAST

SEVERE WEATHER WARNING
for heavy rainfall leading to localised flash flooding and potentially worsening the existing river flood situation For people in the Southeast Coast district and southern parts of the Wide Bay and Burnett.

Issued at 4:40 am on Sunday 9 January 2011
Synoptic Situation: At 4am EST, an upper level low was located offshore of the Capricorn coast. A surface trough was located offshore of the southern Queensland coast. Both of these systems are expected to move closer to the coast today.

Rain areas and thunderstorms are expected to increase further through the Southeast Coast district and southern parts of the Wide Bay and Burnett district today. Some heavy falls are likely which may lead to localised flash flooding and/or worsen existing river flooding.

Flood warnings are current for various rivers and streams in these districts; refer to these products [www.bom.gov.au/qid] for further information.

The State Emergency Service advises that people in the affected area should:
avoid driving, walking or riding through flood waters take care on the roads, especially in heavy downpours avoid swimming in swollen rivers and creeks

Contact the SES on 132500 for emergency assistance if required.
The next warning is due to be issued by 11 am Sunday
This warning is also available through TV and Radio broadcasts; the Bureau's website at www.bom.gov.au or call 1300659 219. The Bureau and State Emergency Service would appreciate this warning being broadcast regularly.

APPENDIX G - SEVERE WEATHER WARNINGS

Weather Warning 20

Date: Sunday 9 January 2011
Time: 10:54

From: Aifs Operational Manager
Sent: Sunday, January 09, 2011 10:54:34 AM
To: weather
Subject: BOM: Severe Weather Warning 1 [SEC=UNCLASSIFIED] Auto forwarded by a Rule

IDQ20032
Australian Government Bureau of Meteorology Queensland

TOP PRIORITY FOR IMMEDIATE BROADCAST

SEVERE WEATHER WARNING

for heavy rainfall leading to localised flash flooding and potentially worsening the existing river flood situation For people in the Southeast Coast district, southern parts of the Wide Bay and Burnett, and eastern Darling Downs and Granite Belt District.

Issued at 10:55 am on Sunday 9 January 2011
Synoptic Situation: At 10am EST, an upper level low was located offshore of the Capricorn coast. A surface trough was located offshore of the southern Queensland coast. Both of these systems are expected to move closer to the coast today.

Rain areas and thunderstorms are expected to increase further through the Southeast Coast district and southern parts of the Wide Bay and Burnett district today. The heavy rain areas are expected to move into the eastern parts of the Darling Downs and Granite Belt District overnight. Some heavy falls are likely which may lead to localised flash flooding and/or worsen existing river flooding.

Recent events: Rainfall over 100 mm was recorded in the last 24 hours about parts of the Sunshine Coast and Hinterland.

Flood warnings are current for various rivers and streams in these districts; refer to these products [www.bom.gov.au/qld] for further information.

The State Emergency Service advises that people in the affected area should: avoid driving, walking or riding through flood waters take care on the roads, especially in heavy downpours avoid swimming in swollen rivers and creeks

Contact the SES on 132500 for emergency assistance if required.
The next warning is due to be issued by 5 pm Sunday
This warning is also available through TV and Radio broadcasts; the Bureau's website at www.bom.gov.au or call 1300659 219. The Bureau and State Emergency Service would appreciate this warning being broadcast regularly.

APPENDIX G - SEVERE WEATHER WARNINGS

Weather Warning 21

Date: Sunday 9 January 2011
Time: 16:55

From: Aifs Operational Manager
Sent: Sunday, January 09, 2011 4:55:08 PM
To: weather
Subject: BOM: Severe Weather Warning 1 [SEC=UNCLASSIFIED] Auto forwarded by a Rule

IDQ20032
Australian Government Bureau of Meteorology Queensland

TOP PRIORITY FOR IMMEDIATE BROADCAST

SEVERE WEATHER WARNING
for heavy rainfall leading to localised flash flooding and potentially worsening the existing river flood situation For people in the Southeast Coast district, southern parts of the Wide Bay and Burnett, and eastern Darling Downs and Granite Belt District.

Issued at 4:55 pm on Sunday 9 January 2011
Synoptic Situation: At 4pm EST, an upper level low was located near the Wide Bay coast. A surface trough was located near the southern Queensland coast. Both of these systems are moving towards the west and southwest.

Rain areas and thunderstorms are expected to continue about the northern and central parts of the Southeast Coast District, southern parts of the Wide Bay and Burnett District, and northeastern parts of the Darling Downs and Granite Belt district: The heavy rain areas are expected to move into the southern parts towards the border with New South Wales and west to the Granite Belt overnight.
Heavy falls are likely which may lead to localised flash flooding and/or worsen existing river flooding.

Recent events: In the past 24 hours, Maleny has recorded 239mm, West Bellthorpe 233 mm and Lindfield 226 mm .

Flood warnings are current for various rivers and streams in these districts; refer to these products [www.bom.gov.au/qId] for further information.

The State Emergency Service advises that people in the affected area should: avoid driving, walking or riding through flood waters take care on the roads, especially in heavy downpours avoid swimming in swollen rivers and creeks

Contact the SES on 132500 for emergency assistance if required.
The next warning is due to be issued by 11 pm Sunday
This warning is also available through TV and Radio broadcasts; the Bureau's website at www.bom.gov.au or call 1300659 219. The Bureau and State Emergency Service would appreciate this warning being broadcast regularly.

APPENDIX G - SEVERE WEATHER WARNINGS

Weather Warning 22

Date: Sunday 9 January 2011
Time: 22:58

From: Aifs Operational Manager
Sent: Sunday, January 09, 2011 10:58:25 PM
To: weather
Subject: BOM: Severe Weather Warning 1 [SEC=UNCLASSIFIED] Auto forwarded by a Rule

IDQ20032
Australian Government Bureau of Meteorology Queensland

TOP PRIORITY FOR IMMEDIATE BROADCAST

 SEVERE WEATHER WARNINGfor heavy rainfall leading to localised flash flooding and potentially worsening the existing river flood situation For people in the Southeast Coast district, southern parts of the Wide Bay and Burnett district and eastern parts of the Darling Downs and Granite Belt district.

Issued at $11: 00$ pm on Sunday 9 January 2011
Synoptic Situation: At 10pm EST, an upper level low was located over the southern Capricornia. A surface trough was located near the Fraser coast. Both of these systems are moving slowly west.

Heavy rain areas and thunderstorms are expected to continue about northern and central parts of the Southeast Coast District, southern parts of the Wide Bay and Burnett District, and northeastern parts of the Darling Downs and Granite Belt district. The heavy rain areas are expected to extend further south to the New South Wales border and west to the Granite Belt overnight. Heavy falls may lead to localised flash flooding and/or worsen existing river flooding.

Recent events: In the past 24 hours, Maleny has recorded 336 mm , West Bellthorpe 331 mm and Lindfield 301 mm .

Flood warnings are current for various rivers and streams in these districts; refer to these products [www.bom.gov.au/qId] for further information.

The State Emergency Service advises that people in the affected area should:
avoid driving, walking or riding through flood waters take care on the roads, especially in heavy downpours avoid swimming in swollen rivers and creeks

Contact the SES on 132500 for emergency assistance if required.
The next warning is due to be issued by 5 am Monday
This warning is also available through TV and Radio broadcasts; the Bureau's website at www.bom.gov.au or call 1300659 219. The Bureau and State Emergency Service would appreciate this warning being broadcast regularly.

APPENDIX G - SEVERE WEATHER WARNINGS

Weather Warning 23

Date: Monday 10 January 2011
Time: 16:58

From: Aifs Operational Manager
Sent: Monday, January 10, 2011 4:58:14 AM
To: weather
Subject: BOM: Severe Weather Warning 1 [SEC=UNCLASSIFIED] Auto forwarded by a Rule

IDQ20032
Australian Government Bureau of Meteorology Queensland

TOP PRIORITY FOR IMMEDIATE BROADCAST
 SEVERE WEATHER WARNING

for heavy rainfall leading to localised flash flooding and potentially worsening the existing river flood situation For people in the Southeast Coast district, southern parts of the Wide Bay and Burnett district and eastern parts of the Darling Downs and Granite Belt district.

Issued at 5:00 am on Monday 10 January 2011
Synoptic Situation: At 4am EST, an upper level low was located over the southern Capricornia. A surface trough was located near the Fraser coast. Both of these systems are moving slowly west.

Heavy rain areas and thunderstorms are expected to continue through the Southeast Coast district, far southern parts of the Wide Bay and Burnett District and eastern parts of the Darling Downs and Granite Belt district. Heavy falls may lead to localised flash flooding and/or worsen existing river flooding.

Recent events: In the past 24 hours, West Bellthorpe recorded 343mm, Maleny 337mm, and Lindfield 313 mm .

Flood warnings are current for various rivers and streams in these districts; refer to these products [www.bom.gov.au/qld] for further information.

The State Emergency Service advises that people in the affected area should: avoid driving, walking or riding through flood waters take care on the roads, especially in heavy downpours avoid swimming in swollen rivers and creeks

Contact the SES on 132500 for emergency assistance if required.
The next warning is due to be issued by 11am Monday
This warning is also available through TV and Radio broadcasts; the Bureau's website at www.bom.gov.au or call 1300659 219. The Bureau and State Emergency Service would appreciate this warning being broadcast regularly.

APPENDIX G - SEVERE WEATHER WARNINGS

Weather Warning 24

Date: Monday 10 January 2011
Time: 11:01

From: Aifs Operational Manager
Sent: Monday, January 10, 2011 11:01:52 AM
To: weather
Subject: BOM: Severe Weather Warning 1 [SEC=UNCLASSIFIED] Auto forwarded by a Rule

IDQ20032

Australian Government Bureau of Meteorology Queensland

TOP PRIORITY FOR IMMEDIATE BROADCAST

SEVERE WEATHER WARNING
for heavy rainfall leading to localised flash flooding and potentially worsening the existing river flood situation For people in the Southeast Coast district, southern parts of the Wide Bay and Burnett district and eastern parts of the Darling Downs and Granite Belt district.

Issued at 11:00 am on Monday 10 January 2011
Synoptic Situation: At 10am EST, an upper level low was located over the southwest of the Capricornia District. A surface trough was located off the southeast coast. Both of these systems are moving slowly west.

Heavy rain areas and thunderstorms are expected to continue through the Southeast Coast district, far southern parts of the Wide Bay and Burnett District and eastern parts of the Darling Downs and Granite Belt district. Heavy falls may lead to localised flash flooding and/or worsen existing river flooding.

The heavy rain areas and thunderstorms are expected to contract southwards into the Southeast Coast district and southeast parts of the Darling Downs and Granite Belt district during Tuesday.

Recent events: In the 24 hours to 9 am EST Monday morning, Maleny received 321 mm , West Bellthorpe 310 mm and Peachester 298 mm .

Flood warnings are current for various rivers and streams in these districts; refer to these products [www.bom.gov.au/qid] for further information.

The State Emergency Service advises that people in the affected area should:
avoid driving, walking or riding through flood waters take care on the roads, especially in heavy downpours avoid swimming in swollen rivers and creeks

Contact the SES on 132500 for emergency assistance if required.
The next warning is due to be issued by 11 am Monday

APPENDIX G - SEVERE WEATHER WARNINGS

This warning is also available through TV and Radio broadcasts; the Bureau's website at www.bom.gov.au or call 1300659 219. The Bureau and State Emergency Service would appreciate this warning being broadcast regularly.

APPENDIX G - SEVERE WEATHER WARNINGS

Weather Warning 25

Date: Monday 10 January 2011
Time: 11:04

From: Aifs Operational Manager

Sent: Monday, January 10, 2011 11:04:39 AM
To: weather
Subject: BOM: Severe Weather Warning 1 [SEC=UNCLASSIFIED] Auto forwarded by a Rule

IDQ20032
Australian Government Bureau of Meteorology Queensland

TOP PRIORITY FOR IMMEDIATE BROADCAST

SEVERE WEATHER WARNING
for heavy rainfall leading to localised flash flooding and potentially worsening the existing river flood situation For people in the Southeast Coast district, southern parts of the Wide Bay and Burnett district and eastern parts of the Darling Downs and Granite Belt district.

Issued at 11:05 am on Monday 10 January 2011
Synoptic Situation: At 10am EST, an upper level low was located over the southwest of the Capricornia District. A surface trough was located off the southeast coast. Both of these systems are moving slowly west.

Heavy rain areas and thunderstorms are expected to continue through the Southeast Coast district, far southern parts of the Wide Bay and Burnett District and eastern parts of the Darling Downs and Granite Belt district. Heavy falls may lead to localised flash flooding and/or worsen existing river flooding.

The heavy rain areas and thunderstorms are expected to contract southwards into the Southeast Coast district and southeast parts of the Darling Downs and Granite Belt district during Tuesday.

Recent events: In the 24 hours to 9am EST Monday morning, Maleny received 321 mm , West Bellthorpe 310 mm and Peachester 298 mm .

Flood warnings are current for various rivers and streams in these districts; refer to these products [www.bom.gov.au/qld] for further information.

The State Emergency Service advises that people in the affected area should:
avoid driving, walking or riding through flood waters take care on the roads, especially in heavy downpours avoid swimming in swollen rivers and creeks

Contact the SES on 132500 for emergency assistance if required.
The next warning is due to be issued by 5 pm Monday.

APPENDIX G - SEVERE WEATHER WARNINGS

This warning is also available through TV and Radio broadcasts; the Bureau's website at www.bom.gov.au or call 1300659 219. The Bureau and State Emergency Service would appreciate this warning being broadcast regularly.

APPENDIX G - SEVERE WEATHER WARNINGS

Weather Warning 26

Date: Monday 10 January 2011
Time: 17:06

From: Aifs Operational Manager
Sent: Monday, January 10, 2011 5:06:14 PM
To: weather
Subject: BOM: Severe Weather Warning 1 [SEC=UNCLASSIFIED] Auto forwarded by a Rule

IDQ20032
Australian Government Bureau of Meteorology Queensland

TOP PRIORITY FOR IMMEDIATE BROADCAST

SEVERE WEATHER WARNING
for heavy rainfall leading to localised flash flooding and potentially worsening the existing river flood situation For people in the Southeast Coast district, far southern parts of the Wide Bay and Burnett district and eastern parts of the Darling Downs and Granite Belt district.

Issued at 5:05 pm on Monday 10 January 2011
Synoptic Situation: At 4pm EST, an upper level low was located over the west of the Wide Bay and Burnett district. A surface trough was located off the east Queensland coast. The upper low is forecast to move southwest over the southern interior of Queensland while the surface trough remains slow moving.

Heavy rain areas and thunderstorms are expected to continue through the Southeast Coast district and eastern parts of the Darling Downs and Granite Belt district. Heavy falls may lead to localised flash flooding and/or worsen existing river flooding.

The heavy rain areas and thunderstorms are expected to contract southwards and gradually ease in the Southeast Coast district and eastern parts of the Darling Downs and Granite Belt district later on Tuesday.

Rainfall has eased in far southern parts of the Wide Bay and Burnett district and therefore the warning for this district is now CANCELLED.

Recent events: In the 24 hours to 9am EST Monday, Maleny received 321 mm , West Bellthorpe 310 mm and Peachester 298 mm .
In the 7 hours since 9am EST Monday, Redbank Creek received 126mm, Toowoomba Airport 88 mm and Mt Castle 80 mm .

Flood warnings are current for various rivers and streams in these districts; refer to these products [www.bom.gov.au/qld] for further information.

The State Emergency Service advises that people in the affected area should:
avoid driving, walking or riding through flood waters take care on the roads, especially in heavy downpours avoid swimming in swollen rivers and creeks

APPENDIX G - SEVERE WEATHER WARNINGS

Contact the SES on 132500 for emergency assistance if required.

The next warning is due to be issued by 11 pm Monday.
This warning is also available through TV and Radio broadcasts; the Bureau's website at www.bom.gov.au or call 1300659 219. The Bureau and State Emergency Service would appreciate this warning being broadcast regularly.

APPENDIX G - SEVERE WEATHER WARNINGS

Weather Warning 27

Date: Monday 10 January 2011
Time: 18:29

From: Aifs Operational Manager
Sent: Monday, January 10, 2011 6:29:54 PM
To: weather
Subject: BOM: Severe Weather Warning 1 [SEC=UNCLASSIFIED] Auto forwarded by a Rule

IDQ20032
Australian Government Bureau of Meteorology Queensland
TOP PRIORITY FOR IMMEDIATE BROADCAST
SEVERE WEATHER WARNING
for heavy rainfall leading to localised flash flooding and potentially worsening the existing river flood situation For people in the Southeast Coast, Darling Downs and Granite Belt and eastern parts of the Maranoa and Warrego districts.

Issued at $6: 30 \mathrm{pm}$ on Monday 10 January 2011
Synoptic Situation: At 6pm EST, an upper level low was located over the west of the Wide Bay and Burnett district. A surface trough was located off the east Queensland coast. The upper low is forecast to move southwest over the southern interior of Queensland while the surface trough remains slow moving.

Heavy rain areas and thunderstorms are expected to continue through the Southeast Coast, Darling Downs and Granite Belt and eastern parts of the Maranoa and Warrego districts this evening. Heavy falls may lead to localised flash flooding and/or worsen existing river flooding.

The heavy rain areas and thunderstorms are expected to contract into the Southeast Coast and eastern parts of the Darling Downs and Granite Belt districts during Tuesday. These conditions should gradually ease later in the day.

Recent events: In the 24 hours to 9am EST Monday, Maleny received 321mm, West Bellthorpe 310 mm and Peachester 298 mm .
In the 7 hours since 9am EST Monday, Redbank Creek received 126 mm , Toowoomba Airport 88 mm and Mt Castle 80 mm .

Flood warnings are current for various rivers and streams in these districts; refer to these products [www.bom.gov.au/qId] for further information.

The State Emergency Service advises that people in the affected area should:
avoid driving, walking or riding through flood waters take care on the roads, especially in heavy downpours avoid swimming in swollen rivers and creeks

Contact the SES on 132500 for emergency assistance if required.
The next warning is due to be issued by 11 pm Monday.

APPENDIX G - SEVERE WEATHER WARNINGS

This warning is also available through TV and Radio broadcasts; the Bureau's website at www.bom.gov.au or call 1300659 219. The Bureau and State Emergency Service would appreciate this warning being broadcast regularly.

APPENDIX G - SEVERE WEATHER WARNINGS

Weather Warning 28

Date: Monday 10 January 2011
Time: 19:51

From: Aifs Operational Manager
Sent: Monday, January 10, 2011 7:51:20 PM
To: weather
Subject: BOM: Severe Weather Warning 1 [SEC=UNCLASSIFIED] Auto forwarded by a Rule

IDQ20032
Australian Government Bureau of Meteorology Queensland
TOP PRIORITY FOR IMMEDIATE BROADCAST
SEVERE WEATHER WARNING
for heavy rainfall leading to localised flash flooding and potentially worsening the existing river flood situation For people in the Southeast Coast, Darling Downs and Granite Belt, far southern parts of the Wide Bay and Burnett and eastern parts of the Maranoa and Warrego districts.

Issued at 7:50 pm on Monday 10 January 2011
Synoptic Situation: At 7pm EST, an upper level low was located over the west of the Wide Bay and Burnett district. A surface trough was located off the east Queensland coast. The upper low is forecast to move southwest over the southern interior of Queensland while the surface trough remains slow moving.

Heavy rain areas and thunderstorms are expected to continue through the Southeast Coast, Darling Downs and Granite Belt, far southern parts of the Wide Bay and Burnett and eastern parts of the Maranoa and Warrego districts this evening and overnight. Heavy falls may lead to localised flash flooding and/or worsen existing river flooding.

The heavy rain areas and thunderstorms are expected to contract into the Southeast Coast and eastern parts of the Darling Downs and Granite Belt districts during Tuesday. These conditions should gradually ease later in the day.

Recent events: In the 24 hours to 9am EST Monday, Maleny received 321 mm , West Bellthorpe 310 mm and Peachester 298 mm .
In the 7 hours since 9am EST Monday, Redbank Creek received 126mm, Toowoomba Airport 88 mm and Mt Castle 80 mm .

Flood warnings are current for various rivers and streams in these districts; refer to these products [www.bom.gov.au/qld] for further information.

The State Emergency Service advises that people in the affected area should: avoid driving, walking or riding through flood waters take care on the roads, especially in heavy downpours avoid swimming in swollen rivers and creeks

Contact the SES on 132500 for emergency assistance if required.
The next warning is due to be issued by 11 pm Monday.

APPENDIX G - SEVERE WEATHER WARNINGS

This warning is also available through TV and Radio broadcasts; the Bureau's website at www.bom.gov.au or call 1300659 219. The Bureau and State Emergency Service would appreciate this warning being broadcast regularly.

Weather Warning 29

Date: Monday 10 January 2011
Time: 22:57

From: Aifs Operational Manager
Sent: Monday, January 10, 2011 10:57:26 PM
To: weather
Subject: BOM: Severe Weather Warning 1 [SEC=UNCLASSIFIED] Auto forwarded by a Rule

IDQ20032
Australian Government Bureau of Meteorology Queensland
TOP PRIORITY FOR IMMEDIATE BROADCAST SEVERE WEATHER WARNING
for heavy rainfall leading to localised flash flooding and potentially worsening the existing river flood situation For people in the Southeast Coast, Darling Downs and Granite Belt, far southern parts of the Wide Bay and Burnett and eastern parts of the Maranoa and Warrego districts.

Issued at 11:00 pm on Monday 10 January 2011
Synoptic Situation: At 10pm EST, an upper level low was located over the far southeast of the Central Highlands and Coalfields district. The upper low is forecast to move southwest over the southern interior of Queensland while weakening during Tuesday.

Heavy rain areas and thunderstorms are expected to continue through the Southeast Coast, Darling Downs and Granite Belt, far southern parts of the Wide Bay and Burnett and eastern parts of the Maranoa and Warrego districts tonight.
Heavy falls may lead to localised flash flooding and/or worsen existing river flooding.
The heavy rain areas and thunderstorms are expected to contract into the Southeast Coast and eastern parts of the Darling Downs and Granite Belt districts during Tuesday. These conditions should gradually ease later in the day.

Recent events: In the 1 hour to 11pm EST Monday, Monsildale and Mt Stanley [situated in northern parts of the Southeast Coast district] both received 58mm.
In the 13 hours since 9am EST Monday, Redbank Creek received 132mm, Ballon 124mm and Mt Castle 103 mm .

Flood warnings are current for various rivers and streams in these districts; refer to these products [www.bom.gov.au/qld] for further information.

The State Emergency Service advises that people in the affected area should:
avoid driving, walking or riding through flood waters take care on the roads, especially in heavy downpours avoid swimming in swollen rivers and creeks

Contact the SES on 132500 for emergency assistance if required.
The next warning is due to be issued by 5am Tuesday.

APPENDIX G - SEVERE WEATHER WARNINGS

This warning is also available through TV and Radio broadcasts; the Bureau's website at www.bom.gov.au or call 1300659 219. The Bureau and State Emergency Service would appreciate this warning being broadcast regularly.

APPENDIX G - SEVERE WEATHER WARNINGS

Weather Warning 30

Date: Tuesday 11 January 2011
Time: 05:04

From: Aifs Operational Manager
Sent: Tuesday, January 11, 2011 5:04:24 AM
To: weather
Subject: BOM: Severe Weather Warning 1 [SEC=UNCLASSIFIED] Auto forwarded by a Rule

IDQ20032
Australian Government Bureau of Meteorology Queensland

TOP PRIORITY FOR IMMEDIATE BROADCAST

SEVERE WEATHER WARNING

for heavy rainfall leading to localised flash flooding and potentially worsening the existing river flood situation For people in the Southeast Coast, Darling Downs and Granite Belt, far southern parts of the Wide Bay and Burnett and eastern parts of the Maranoa and Warrego districts.

Issued at 5:05 am on Tuesday 11 January 2011
Synoptic Situation: At 4am EST, an upper level low was located over the Darling Downs and Granite Belt district. The upper low is forecast to move southwest over the southern interior of Queensland while weakening during the day.

Heavy rain areas and thunderstorms are expected to continue through the Southeast Coast, Darling Downs and Granite Belt, far southern parts of the Wide Bay and Burnett and eastern parts of the Maranoa and Warrego districts today. Heavy falls may lead to localised flash flooding and/or worsen existing river flooding.

The heavy rain areas and thunderstorms are expected to contract to the south by late today, before gradually easing.

Recent events: Rainfall since 9 am Monday Monsildale 160 mm , Mt Stanley 135 mm , and Redbank Creek 134 mm .

Flood warnings are current for various rivers and streams in these districts; refer to these products [www.bom.gov.au/qld] for further information.

The State Emergency Service advises that people in the affected area should: avoid driving, walking or riding through flood waters take care on the roads, especially in heavy downpours avoid swimming in swollen rivers and creeks

Contact the SES on 132500 for emergency assistance if required.
The next warning is due to be issued by 11 am Tuesday.

APPENDIX G - SEVERE WEATHER WARNINGS

This warning is also available through TV and Radio broadcasts; the Bureau's website at www.bom.gov.au or call 1300659 219. The Bureau and State Emergency Service would appreciate this warning being broadcast regularly.

APPENDIX G - SEVERE WEATHER WARNINGS

Weather Warning 31

Date: Tuesday 11 January 2011
Time: 07:59

From: Aifs Operational Manager
Sent: Tuesday, January 11, 2011 7:59:22 AM
To: weather
Subject: BOM: Severe Weather Warning 1 [SEC=UNCLASSIFIED] Auto forwarded by a Rule

IDQ20032
Australian Government Bureau of Meteorology Queensland
Transmitters in the areas of the Southeast Coast District and the Darling Downs and Granite Belt District southeast of Dalby to Goondiwindi are REQUESTED TO USE THE STANDARD EMERGENCY WARNING SIGNAL BEFORE BROADCASTING.

TOP PRIORITY FOR IMMEDIATE BROADCAST
 SEVERE WEATHER WARNING
 for heavy rainfall leading to localised flash flooding and worsening the existing river flood situation For people in the Southeast Coast District and the Darling Downs and Granite Belt District southeast of Dalby to Goondiwindi.

Issued at 8:00 am on Tuesday 11 January 2011
Synoptic Situation: At 8am AEST, an upper level low was located over the Darling Downs and Granite Belt district and is forecast to move to the southwest and slowly weaken.

Heavy rain areas and thunderstorms are expected to continue through the Southeast Coast and Darling Downs and Granite Belt today. Heavy falls will lead to localised flash flooding and will worsen existing river flooding.

Currently, an intense slow moving band of rainfall extends from about Maroochydore to Warwick. Rainfall rates in this band are reaching 80 to 100 mm per hour.

Flood warnings are current for various rivers and streams in these districts.
Please refer to these products [www.bom.gov.au/qld] for further information.
The Severe Weather Warning for the southern parts of Wide Bay and Burnett and eastern Maranoa and Warrego and northwestern parts of Darling Downs and Granite Belt districts has been cancelled. However showers and thunderstorms will persist through the area and may produce heavy rainfall in these parts.

The State Emergency Service advises that people in the affected area should: avoid driving, walking or riding through flood waters take care on the roads, especially in heavy downpours avoid swimming in swollen rivers and creeks

Contact the SES on 132500 for emergency assistance if required.
The next warning is due to be issued by 11 am Tuesday.

APPENDIX G - SEVERE WEATHER WARNINGS

This warning is also available through TV and Radio broadcasts; the Bureau's website at www.bom.gov.au or call 1300659 219. The Bureau and State Emergency Service would appreciate this warning being broadcast regularly.

APPENDIX G - SEVERE WEATHER WARNINGS

Weather Warning 32

Date: Tuesday 11 January 2011
Time: 10:59

From: Aifs Operational Manager
Sent: Tuesday, January 11, 2011 10:59:37 AM
To: weather
Subject: BOM: Severe Weather Warning 1 [SEC=UNCLASSIFIED] Auto forwarded by a Rule

IDQ20032
Australian Government Bureau of Meteorology Queensland
Transmitters in the areas of the Southeast Coast District and the Darling Downs and Granite Belt District southeast of Dalby to Goondiwindi are REQUESTED TO USE THE STANDARD EMERGENCY WARNING SIGNAL BEFORE BROADCASTING.

TOP PRIORITY FOR IMMEDIATE BROADCAST
SEVERE WEATHER WARNING
for heavy rainfall leading to flash flooding and worsening the existing river flood situation For people in the Southeast Coast District and the Darling Downs and Granite Belt District southeast of Dalby to Goondiwindi.

Issued at 11:00 am on Tuesday 11 January 2011
Synoptic Situation: At 10am AEST, an upper level low was located over the southern Queensland interior and is forecast to move to the southwest and continue weakening. A surface trough lying over the Southeast Queensland Coast is expected to weaken overnight.

Heavy rain areas and local thunderstorms are expected to continue through the Southeast Coast and Darling Downs and Granite Belt today. Heavy falls will lead to flash flooding and will worsen existing river flooding.

Currently, an intense band of rainfall extends from about Tewantin to Warwick. Recent rainfall rates in this band have reached 80 to 100 mm per hour, particularly about the Brisbane and Lockyer Valleys. This rainfall band is expected to remain slow moving during the remainder of today.

Flood warnings are current for various rivers and streams in these districts. Please refer to these products [$\mathbf{w w w}$.bom.gov.au/qId] for further information.

The State Emergency Service advises that people in the affected area should: avoid driving, walking or riding through flood waters take care on the roads, especially in heavy downpours avoid swimming in swollen rivers and creeks

Contact the SES on 132500 for emergency assistance if required.

The next warning is due to be issued by 2 pm AEST Tuesday.

APPENDIX G - SEVERE WEATHER WARNINGS

This warning is also available through TV and Radio broadcasts; the Bureau's website at www.bom.gov.au or call 1300659 219. The Bureau and State Emergency Service would appreciate this warning being broadcast regularly.

APPENDIX G - SEVERE WEATHER WARNINGS

Weather Warning 33

Date: Tuesday 11 January 2011
Time: 13:59

From: Aifs Operational Manager
Sent: Tuesday, January 11, 2011 1:59:04 PM
To: weather
Subject: BOM: Severe Weather Warning 1 [SEC=UNCLASSIFIED] Auto forwarded by a Rule

IDQ20032
Australian Government Bureau of Meteorology Queensland
Transmitters in the areas of the Southeast Coast District and the Darling Downs and Granite Belt District southeast of Dalby to Goondiwindi are REQUESTED TO USE THE STANDARD EMERGENCY WARNING SIGNAL BEFORE BROADCASTING.

TOP PRIORITY FOR IMMEDIATE BROADCAST

SEVERE WEATHER WARNING
for heavy rainfall leading to flash flooding and worsening the existing river flood situation For people in the Southeast Coast District and the Darling Downs and Granite Belt District southeast of Dalby to Goondiwindi.

Issued at 2:00 pm on Tuesday 11 January 2011
Synoptic Situation: At 2 pm AEST, a surface trough was lying over the Southeast Queensland Coast and is expected to weaken overnight.

Heavy rain areas and local thunderstorms are expected to continue through the Southeast Coast and the Darling Downs and Granite Belt District southeast of Dalby to Goondiwindi. Heavy falls will lead to flash flooding and will worsen existing river flooding.

Currently the focus of the heaviest rainfall extends from about Maroochydore to Warwick, including the Brisbane and Lockyer Valleys and Ipswich area. Recent rainfall rates in this band have reached 60 to 80 mm per hour. This rainfall band is expected to remain slow moving during the remainder of today and gradually weaken overnight and during Wednesday morning.

Flood warnings are current for various rivers and streams in these districts.
Please refer to these products [www.bom.gov.au/qld] for further information.
The State Emergency Service advises that people in the affected area should: avoid driving, walking or riding through flood waters take care on the roads, especially in heavy downpours avoid swimming in swollen rivers and creeks

Contact the SES on 132500 for emergency assistance if required.
The next warning is due to be issued by 5 pm AEST Tuesday.

APPENDIX G - SEVERE WEATHER WARNINGS

This warning is also available through TV and Radio broadcasts; the Bureau's website at www.bom.gov.au or call 1300659 219. The Bureau and State Emergency Service would appreciate this warning being broadcast regularly.

APPENDIX G - SEVERE WEATHER WARNINGS

Weather Warning 34

Date: Tuesday 11 January 2011
Time: 17:00

From: Aifs Operational Manager
Sent: Tuesday, January 11, 2011 5:00:33 PM
To: weather
Subject: BOM: Severe Weather Warning 1 [SEC=UNCLASSIFIED] Auto forwarded by a Rule

IDQ20032
Australian Government Bureau of Meteorology Queensland
Transmitters in areas of the Southeast Coast district and the Darling Downs and Granite Belt district southeast of Dalby to Goondiwindi are REQUESTED TO USE THE STANDARD EMERGENCY WARNING SIGNAL BEFORE BROADCASTING.

TOP PRIORITY FOR IMMEDIATE BROADCAST SEVERE WEATHER WARNING
for heavy rainfall leading to flash flooding and worsening the existing river flood situation For people in the Southeast Coast District and the Darling Downs and Granite Belt District southeast of Dalby to Goondiwindi.

Issued at 5:00 pm on Tuesday 11 January 2011
Synoptic Situation: At 4 pm AEST, southeast Queensland was under the influence of a deep moist easterly airstream, with an upper trough located over the Darling Downs.

Heavy rain areas and local thunderstorms are expected to continue tonight through the Southeast Coast and the Darling Downs and Granite Belt District southeast of Dalby to Goondiwindi. Heavy falls will lead to further localised flash flooding and will worsen existing river flooding.

The heavy rain areas are expected to gradually weaken overnight and during Wednesday morning.

Flood warnings are current for various rivers and streams in these districts.
Please refer to these products [www.bom.gov.au/qld] for further information.
The State Emergency Service advises that people in the affected area should: avoid driving, walking or riding through flood waters take care on the roads, especially in heavy downpours avoid swimming in swollen rivers and creeks

Contact the SES on 132500 for emergency assistance if required.
The next warning is due to be issued by 11 pm AEST Tuesday.
This warning is also available through TV and Radio broadcasts; the Bureau's website at www.bom.gov.au or call 1300659 219. The Bureau and State Emergency Service would appreciate this warning being broadcast regularly.

APPENDIX G - SEVERE WEATHER WARNINGS

Weather Warning 35

Date: Tuesday 11 January 2011
Time: 21:59

From: Aifs Operational Manager
Sent: Tuesday, January 11, 2011 9:59:57 PM
To: weather
Subject: BOM: Severe Weather.Warning 1 [SEC=UNCLASSIFIED] Auto forwarded by a Rule

IDQ20032
Australian Government Bureau of Meteorology Queensland
Note: The Standard Emergency Warning Signal is no longer required.
TOP PRIORITY FOR IMMEDIATE BROADCAST
CANCELLATION - SEVERE WEATHER WARNING
For people in the Southeast Coast District and the Darling Downs and Granite Belt District southeast of Dalby to Goondiwindi.

Issued at $10: 00 \mathrm{pm}$ on Tuesday 11 January 2011
Synoptic Situation: At 10 pm AEST, southeast Queensland was under the influence of a deep moist east to northeast airstream. A weakening upper trough was moving south.

Heavy rain areas have eased during the past few hours and further flash flooding due to rainfall is no longer expected.

Note that an extremely serious river and stream flood situation still exists.
Refer to flood warnings [www.bom.gov.au/qld] for further information.
The State Emergency Service advises that people in the affected area should: avoid driving, walking or riding through flood waters avoid swimming in swollen rivers and creeks

Contact the SES on 132500 for emergency assistance if required.
No further warnings are expected to be issued for this event
This warning is also available through TV and Radio broadcasts; the Bureau's website at www.bom.gov.au or call 1300659 219. The Bureau and State Emergency Service would appreciate this warning being broadcast regularly.

APPENDIX H - FLOOD EVENT NOTIFICATION EMAIL

Date: Thursday 6 January 2011
Time: 07:42

From: Duty Engineer
Sent: Thursday, 6 January 2011 7:42 AM
To: Distribution List
Cc: Distribution List
Subject: Mobilisation 06/01/2011
With Wednesday nights rainfall and further totals up to 150 mm expected during the next 2 days, please mobilise staff for gate operations at North Pine, Somerset and Wivenhoe Dams.

First operations are expected later today and will continue at least until Saturday morning.

Engineer 2

Duty Engineer
Flood Operations Centre

Important information: This email and any attached information is intended only for the addressee and may contain confidential and/or privileged information. If you are not the addressee, you are notified that any transmission, distribution, or other use of this information is strictly prohibited. The confidentiality attached to this email is not waived, lost or destroyed by reasons of mistaken delivery to you. If you have received this email in error please contact the sender immediately and delete the material from your email system. QLD Bulk Water Supply Authority ABN75450239876 (Trading as Seqwater).

APPENDIXI - FLOOD READINESS CHECKLIST

WIVENHOE DAM FLOOD READINESS CHECKLIST

Date: \qquad Time: \qquad
Duty Officer in Charge: \qquad
Rainfall (mm): \qquad
Lake Level: ___ Gauge Board
Lake Level: \qquad Auto dialler

Tail Level: \qquad Gauge Board
Tail Level: \qquad Recorde

Security Alarm code on key ring - Rain gauge adjacent to office - Lake Gauge board on western end of wall (RB) - Tail gauge board down Spillway Common road at Atkinson Crossing.

Outlet Works

Sump Pumps operational: No. 1 口

High Level Alarm operations:
V-Notch weirs clean:
\square
\square

Dam Underground Complex
Standby Generator operation $\$$
Mode Selector switch to A (i) Omatic:
Monitor Telemetry:

Winch Room

Electrichyydraulic Units operational:
Dies
Electric Hydraulic Unit Pumps mode:
Oil Return Valve Position:

Separated \square Connected
Electric Vertical \square Diesel Horizontal \square

Note: Check all valves are in position for mode selected. Key No. 5 is required for opening hydraulic cabinets as well as the Radial Gate local control panel on Pier.

APPENDIXI - FLOOD READINESS CHECKLIST

SOMERSET DAM FLOOD READINESS CHECKLIST

Date: \qquad Time: \qquad
Duty Officer in Charge: \qquad
Rainfall (mm): \qquad
Lake Level Somerset: \qquad Gauge Board
Lake Level Somerset: \qquad Recorder
Lake Level Wivenhoe: \qquad Gauge Boards at bridge
Lake Level Wivenhoe: \qquad Phone Recorder
Communications Phone: \qquad
Local Phones: \qquad
Fax Lines: \qquad Mobiles: \qquad Hand held Radios: \qquad
Satellite Phone: \qquad

GENERATORS

1. Fixed Standby Diesel above office (TQR G'eck)

Check:

Oil
$\square \quad$ Water $\square \quad$ Fuel

Battery

Test run by following the Manual Operation Instruction Sheet in the Generator Control Panel, run for at leas 15 min .
2. MobiêStand-by Diesel in shed at far end of Top Deck

Test run by following the Manual Operation Instruction Sheet in the Generator Control Panel, run for at least 15 min .

APPENDIX I - FLOOD READINESS CHECKLIST

3. Portable 5.5 Honda
Check:
Petrol \square Oil
Moved to Cone Valve Control Room

SUMP PUMPS are located in the Regulator Cone Valve chambers on both left and right banks. Test by turning auto/manual switch (on wall) to "ON" position or by flooding shaft Follow the operation procedures on the attached form.

Tested Manual \square Tested Auto

DOORS: all external doors are to remain closed at all times.

- CHECK all lower galleries for any excessive leaksor irregular colour. \square Follow the instructions in the Flood Manual for inspection intervals.
- Clean all drains that may become blocked.
- Cyclonic conditions secure orane to tie down points.

Signed: \qquad

APPENDIX J - FORECAST RAINFALL COMPARISON

Seqwater commenced development of a new flood modelling system, FEWS, in March 2010. A prototype was delivered in early November 2010 at which time forecast rainfall from the Bureau's ACCESS Numerical Weather Prediction models was ingested into the system several times per day. These models cover different coverage at varying resolutions and are generated at different times of the day. The results of the models are merged, downscaled to the Brisbane area and gridded to produce forecast the images below. The grid of the actual rainfall is based upon all available ALERT stations in the Enviromon data collection system and is generated by FEWS using surface fitting techniques.

CI				
Model	Domain	Resolution (km)	Duration (hours)	Runs (UTC)
ACCESS-G	Global	~ 80	$+240$	00,12
ACCESS-R	Regional	~37.5	+72	00,12
ACCESS-T	Tropical	-37.5	+72	00,12
ACCESS-A	7tustralia	~ 12	+48	00,06,12,18
ACCESS-BR	Brisbane	~ 5	+36	00,12

A full description of the AGSESS Numerical Weather Prediction models can be found on BoM's web site.
While FEWS outputs here not available during the Event, the forecast rainfalls used (QPF, Silo and Interactive Weather and Wave Maps) are based upon the ACCESS model outputs.

The scale stand below has been adopted in all of the maps below and indicates the rainfall depth in millimetre\&

	$>=0$
	$y=5$
	$3=10$
	$y=25$
	$>=50$
	$y=75$
	$p=100$
	$>=200$
	$y=300$
	$>=400$
2	$y=500$

APPENDIX J - FORECAST RAINFALL COMPARISON
The table below shows a comparison of the forecast and recorded rainfall fields for 24 hour periods. The first row shows the forecast rainfalfor the 24 hours at the start of the forecast period while the row below shows the rainfall that was actually recorded by the end of period.
Table of 24 Hours Forecast and Actual Rainfalls

APPENDIX J - FORECAST RAINFALL COMPARISON
The table below shows a comparison of the forecast and recorded rainfall fields for 48 hour periods. The first row shows the forecast rainfalifor the 48 hours at the start of the forecast period while the row below shows the rainfall that was actually recorded by the end of period.
Table of 48 Hours Forecast and Actual Rainfalls

x^{6}

APPENDIX J - FORECAST RAINFALL COMPARISON
The table below shows a comparison of the forecast and recorded rainfall fields for 72 hour periods. The first row shows the forecast rainfalfor the 72 hours at the start of the forecast period while the row below shows the rainfall that was actually recorded by the end of period.
Table of 72 Hours Forecast and Actual Rainfalls

APPENDIX K - 3-DAY ASSESSMENTS AND MODEL RESULTS

Date: Sunday 9 January 2011

Time: 11:02

From: Duty Engineer
Sent: Sunday, 9 January 2011 11:02 AM
To: Distribution List
Cc: Distribution List
Subject: Forecast Rainfall and Possible Runoff

Forecast Rainfall

The forecast for the next few days is for heavy rainfall, particularly for period 10pm Sund ayy 0 10pm Monday with totals between $200-300 \mathrm{~mm}$. The areas mostly heavily impacted will be the North Pine, Somerset and Leslie Harrison catchments with less rain in the upper Brisbane http://www.bom.gov.au/isp/wat//rainfall/pme.jsp

The rain contracts to the area around North Pine for the period 10pm Monday to 10pm Tuesday with totals in the order of 100 to 150 mm .

The interactive model at http://www.bom.gov.au/australia/charts/viewerfindex.shtml shows the heaviest falls during the next 48 hours are likely to be overnight Sunday/Monday and overnight Monday/Tuesday.

The QPF for the period 24 hours to 9 am show totals betw 6 en $40-60 \mathrm{~mm}$ for both North Pine and Somerset/Wivenhoe catchments. Note that this is only - alf the period of the above forecast durations.

Recorded Runoff

To date recorded inflows to the dams since 02)(1/2011 have been
North Pine $\quad 23,000 \mathrm{ML}$
Somerset $\quad 120,000 \mathrm{ML}$
Wivenhoe $\quad 380,000 \mathrm{ML}$ (including $\$$ ómerset outflow)
Presently, the conversion rate between rainfall and runoff is about 0.45 for Wivenhoe, 0.60 for North
Pine and 0.75 for Somerset.
Expected Runoff
Based on the approximate runoff conversion rates and the forecast rainfall, estimated runoff volumes (ML) generatedoould be of the order of:

Catchment	Monday	Tuesday	Wednesday	Three Day Total
North Pinhe	$10,000-20,000$	$35,000-55,000$	$25,000-35,000$	$70,000-110,000$
Somerset	$50,000-100,000$	$200,000-300,000$	$75,000-150,000$	$325,000-550,000$
Wienhoe	$125,000-250,000$	$250,000-500,00$	$125,000-250,000$	$500,000-1,000,000$

The lower limit of the inflow to Somerset and Wivenhoe will be similar to the October 2010 flood while the upper limit is similar to the February 1999 floods. However, the starting level of the dams is much higher than in these historical events.

This points to continued flood operations for Somerset and Wivenhoe until at least the weekend of 15/16 Jan and maybe a shorter time for North Pine.

APPENDIX K - 3-DAY ASSESSMENTS AND MODEL RESULTS

It should be noted that these estimates are based upon forecast rainfall which may or may not eventuate.

Engineer 2
Duty Engineer
Flood Operations Centre
APPENDIX K - 3-DAY ASSESSMENTS AND MODEL RESULTS
Run Efs - Sillo-Forecast Rain
Date: Friday 7 January 2011
Time: 22:00
Location

Location	Recorded Peak Flow $\left(\mathrm{m}^{3 / \mathrm{s}}\right)$	Recorded Flood Volume (ML)	Modelled Peak Flow ($\mathrm{m}^{3} / \mathrm{s}$)	Modelled Flood Volume (ML)	Percent Difference (\%) Peak Flow	Percent Difference (\%) Flood Volume	Difference Peak Flow $\left(\mathrm{m}^{3} / \mathrm{s}\right)$	Difference Flood Volume (ML)
To run date and time								
Brisbane River at Gregors Creek	986	91,006	1,767	146,965	79.2	61.5	781	55,959
Stanley River at Woodford	79	4,920	134	5,066	68.7	3.0	55	146
Lockyer Creek at Lyons Bridge	44	12,257	485	< 46,210	1013.9	277.0	441	33,953
Bremer R at Walloon	412	23,755	181	20,719	-56.1	-12.8	-231	-3,036
Warrill Creek at Amberley	144	16,993	21.	19,265	46.3	13.4	67	2,272
Somerset Dam Inflow			1,120	67,297				
Wivenhoe Dam Inflow			$\Delta N_{2,010}$	129,498				
			Combined	196,795				
To end of event simulation								
Somerset Dam Inflow			1,120	225,591				
Wivenhoe Dam Inflow		8	2,010	481,807				

APPENDIX L - FLOOD OPERATIONS DIRECTIVES

Wivenhoe Directive 2

Date: Friday, 7 January 2011
Time: 21:45

SEQWATER FLOOD OPERATIONS CENTRE

FACSIMILE MESSAGE

Senior Flood Operations
Engineer 3

Senior Flood Operations Engineer 1

Flood Operations
Engineer 4

1.1.2 Flood Event - Operations Directive

TO: Wivenhoe Dam Operators	Date:	$07 / 01 / 2011$
	Time:	$21: 45$
	Directive No: 02	

This transmission comprises of this page and 0 other pages.

Message:

The following gate operations should be undertaken commencing at 22:00 07/01/2011

$07 / 01 / 2011$	$22: 00$	Open Gate	2	from	0.0	metres	to	0.5
metres								
$07 / 01 / 2011$	$23: 00$	Open Gate	4	from	0.0	metres	to	0.5
metres								
$08 / 01 / 2011$	$00: 00$	Open Gate	2	from	0.5	metres	to	1.0
0etres								
$08 / 01 / 201101: 00$	Open Gate	4	from	0.5	metres	to	1.0	metres
$08 / 01 / 2011$	$02: 00$	Open Gate	1	from	0.0	metres	to	0.5
0etres								
$08 / 01 / 201103: 00$	Open Gate	5	from	0.0	metres	to	0.5	metres
$08 / 01 / 201104: 00$	Open Gate	2	from	1.0	metres	to	1.5	metres

It is noted that the hydro will continuing releasing $13 \mathrm{~m}^{3} / \mathrm{s}$.
Please advise the Flood Operations Centre by fax once you have opened the radial gate to each of the required opening.

Engineer 3

APPENDIX L - FLOOD OPERATIONS DIRECTIVES

Duty Engineer

APPENDIX L - FLOOD OPERATIONS DIRECTIVES

Wivenhoe Directive 3

Date: Saturday 8 January 2011
Time: 04:50

SEQWATER FLOOD OPERATIONS CENTRE

FACSIMILE MESSAGE

Senior Flood Operations
Engineer 3

Sentor Flood Operations
Engineer 1

Flood Operations
Engineer 2

Flood Operations Engineer 4

1.1.3 Flood Event - Operations Directive

TO: Wivenhoe Dam Operators	Date:	$08 / 01 / 2011$
	Time:	$04: 50$
	Directive No: 03	

This transmission comprises of this page and 0 other pages.

Message:

The following gate operations should be undertaken commencing at 05:00 07/01/2011

08/01/2011 05:00	Open Gate	4	from	1.0	metres	to	1.5	metres
08/01/2011 06:00	Open Gate	1	from	0.5	metres	to	1.0	metres
08/01/2011 07:00	Open Gate	5	from	0.5	metres	to	1.0	metres
$08 / 01 / 201.108: 00$	Open Gate	3	from	3.5	metres	to	4.0	metres

It is noted that the hydro will continuing releasing $13 \mathrm{~m}^{3} / \mathrm{s}$.

Please advise the Flood Operations Centre by fax once you have opened the radial gate to each of the required opening.

Engineer 3
Duty Engineer
Appendix L

APPENDIX L - FLOOD OPERATIONS DIRECTIVES

Wivenhoe Directive 4

Date: Saturday 8 January 2011
Time: 08:15

SEQWATER FLOOD OPERATIONS CENTRE

FACSIMILE MESSAGE

Senior Flood Operations Engineer 3

Senior Flood Operations Engineer 1

Flood Operations Engineer 2

Flood Operations Engineer 4

1.1.4 Flood Event - Operations Directive

TO: Wivenhoe Dam Operators	Date: 08/01/2011 Time: 08:15 Directive No: 04

This transmission comprises of this page and 0 other pages.

Message:

The following gate operations should be undertaken commencing at 09:00 08/01/2011

$08 / 01 / 2011$	$09: 00$	Open Gate	2	from	1.5	metres	to	2.0
metres								
$08 / 01 / 2011$	$10: 00$	Open Gate	4	from	1.5	metres	to	2.0
metres								
$08 / 01 / 2011$	$11: 00$	Open Gate	1	from	1.0	metres	to	1.5
metres								
$08 / 01 / 2011$	$12: 00$	Open Gate	5	from	1.0	metres	to	1.5
metres								
$08 / 01 / 2011$	$13: 00$	Open Gate	2	from	2.0	metres	to	2.5
metres								

It is noted that the hydro will continuing releasing $13 \mathrm{~m}^{3} / \mathrm{s}$. At the completion of these gate operations the dam will be releasing $1,247 \mathrm{~m}^{3} / \mathrm{s}$.

Please advise the Flood Operations Centre by fax once you have opened the radial gate to each of the required opening.

APPENDIX L - FLOOD OPERATIONS DIRECTIVES

Duty Engineer

APPENDIX L - FLOOD OPERATIONS DIRECTIVES

Wivenhoe Directive 5

Date: Sunday 9 January 2011
Time: 01:00

SEQWATER FLOOD OPERATIONS CENTRE

FACSIMILE MESSAGE

Senior Flood Operations Engineer 3

Senior Flood Operations
Engineer 1

Flood Operations
Engineer 2

Flood Operations
Engineer 4

1.1.5 Flood Event - Operations Directive

TO: Wivenhoe Dam Operators	Date:	$09 / 01 / 2011$
	Time:	$01: 00$
	Directive	No: 05

This transmission comprises of this page and 0 other pages.

Message:

Please undertake the following gate operation at 01:30 on 09/01/2011

Open Gate 3 from 4.0 metres to 4.5 metres

It is noted that the hydro will continuing releasing $13 \mathrm{~m}^{3} / \mathrm{s}$. Please advise the Flood Operations Centre by fax once you have opened the radial gate to each of the required opening.

Engineer 4
Duty Engineer

APPENDIX L - FLOOD OPERATIONS DIRECTIVES

Wivenhoe Directive 6

Date: Sunday 9 January 2011
Time: 04:30

SEQWATER FLOOD OPERATIONS CENTRE

FACSIMILE MESSAGE

Senior Flood Operations
Engineer 3

Senior Flood Operations
Engineer 1

Flood Operations
Engineer 2

Flood Operations
Engineer 4

1.1.6 Flood Event - Operations Directive

TO: Wivenhoe Dam Operators	Date:	$09 / 01 / 2011$
	Time:	$04: 30$
	Directive	No: 06

This transmission comprises of this page and 0 other pages.
Message:

Please undertake the following gate operation at 05:00 on 09/01/2011

Open Gate 1 from 1.5 metres to 2.0 metres

It is noted that the hydro will continuing releasing $13 \mathrm{~m}^{3} / \mathrm{s}$. Please advise the Flood Operations Centre by fax once you have opened the radial gate to each of the required opening.

Engineer 4
Duty Engineer

APPENDIX L - FLOOD OPERATIONS DIRECTIVES

Wivenhoe Directive 7

Date: Sunday 9 January 2011
Time: 10:30

SEQWATER FLOOD OPERATIONS CENTRE

FACSIMILE MESSAGE

Senior Flood Operations Engineer 3.

Senior Flood Operations Engineer 1

Flood Operations
Engineer 2

Flood Operations
Engineer 4

1.1.7 Flood Event - Operations Directive

TO: Wivenhoe Dam Operators	Date:	09/01/2011
	Time:	$10: 30$
	Directive	No: 07

This transmission comprises of this page and 0 other pages.

Message:

Please undertake the following gate operation at 11:00 on 09/01/2011

Open Gate 5 from 1.5 metres to 2.0 metres

It is noted that the hydro will continuing releasing $13 \mathrm{~m}^{3} / \mathrm{s}$.

Please advise the Flood Operations Centre by fax once you have opened the radial gate to each of the required opening.

Engineer 2
 Duty Engineer

APPENDIX L - FLOOD OPERATIONS DIRECTIVES

Wivenhoe Directive 8

Date: Monday 10 January 2011
Time: 02:00

SEQWATER FLOOD OPERATIONS CENTRE

FACSIMILE MESSAGE

Senior Flood Operations
Engineer 3

Senior Flood Operations Engineer 1

Flood Operations
Engineer 2

Flood Operations
Engineer 4

1.1.8 Flood Event - Operations Directive

| TO: Wivenhoe Dam Operators | Date: | 10/01/2011 |
| :--- | :--- | :--- | :--- |
| | Time: | $02: 00$ |
| | Directive | No: 08 |${ }^{\text {This transmission comprises of this page and }} \quad 0$ other pages.

Message:

Please undertake the following gate operations at 02:00 on 10/01/2011

Open Gate	1	from	2.0	metres	To	2.5	metres	At 02:00
Open Gate	5	from	2.0	metres	To	2.5	metres	At 03:00
Open Gate	2	from	2.5	metres	To	3.0	metres	At 04:00
Open Gate	4	from	2.5	metres	To	3.0	metres	At 05:00
Open Gate	2	from	3.0	metres	To	3.5	metres	At 06:00

It is noted that the hydro will continuing releasing $13 \mathrm{~m}^{3} / \mathrm{s}$.

Please advise the Flood Operations Centre by fax once you have opened the radial gate to each of the required opening.

Engineer 3

APPENDIX L - FLOOD OPERATIONS DIRECTIVES

Duty Engineer

APPENDIX L - FLOOD OPERATIONS DIRECTIVES

Wivenhoe Directive 9

Date: Monday 10 January 2011
Time: 06:30

SEQWATER FLOOD OPERATIONS CENTRE

FACSIMILE MESSAGE

Senior Flood Operations
Engineer 3

Senior Flood Operations Engineer 1

Flood Operations Engineer 2

Flood Operations
Engineer 4

1.1.9 Flood Event - Operations Directive

| TO: Wivenhoe Dam Operators | Date: $10 / 01 / 2011$
 Time:
 Directive
 No: 09 |
| :--- | :--- | :--- |

This transmission comprises of this page and 0 other pages.

Message:

Please undertake the following gate operations at 07:00 on 10/01/2011

Open Gate	4	from	3.0	metres	To	3.5	metres	At 07:00
Open Gate	1	from	2.5	metres	To	3.0	metres	At 08:00
Open Gate	5	from	2.5	metres	To	3.0	metres	At 09:00
Open Gate	2	from	3.5	metres	To	4.0	metres	At 10:00
Open Gate	4	from	3.5	metres	To	4.0	metres	At 11:00

It is noted that the hydro will continuing releasing $13 \mathrm{~m}^{3} / \mathrm{s}$. At the end of these operations the dam will be releasing around $2,180 \mathrm{~m}^{3} / \mathrm{s}$.

Please advise the Flood Operations Centre by fax once you have opened the radial gate to each of the required opening.

Engineer 2

APPENDIX L - FLOOD OPERATIONS DIRECTIVES

Duty Engineer

APPENDIX L - FLOOD OPERATIONS DIRECTIVES

Wivenhoe Directive 10

Date: Monday 10 January 2011
Time: 08:30

SEQWATER FLOOD OPERATIONS CENTRE

FACSIMILE MESSAGE

Senior Flood Operations Engineer 3

Senior Flood Operations

 Engineer 1Engineer 2
1.1.10 Flood Event - Operations Directive

TO: Wivenhoe Dam Operators	Date:	10/01/2011
	Time:	$08: 30$
	Directive	No: 10

This transmission comprises of this page and 0 other pages.

Message:

This directive replaces Directive \#9

Please undertake the following gate operations at 07:00 on 10/01/2011

Open Gate	4	from	3.0	metres	To	3.5	metres	at 07:00
Open Gate	1	from	2.5	metres	To	3.0	metres	at 08:00
Open Gate	5	from	2.5	metres	To	3.0	metres	at 09:00

Following the gate movement at 09:00 10/01/2011 gate will be held at the levels below until further advised.

Gate 1	Gate 2	Gate 3	Gate 4	Gate 5
3.0	3.5	4.5	3.5	3.0

It is noted that the hydro will continuing releasing $13 \mathrm{~m}^{3} / \mathrm{s}$.
Please advise the Flood Operations Centre by fax once you have opened the radial gate to each of the required opening.

APPENDIX L - FLOOD OPERATIONS DIRECTIVES

Duty Engineer

APPENDIX L - FLOOD OPERATIONS DIRECTIVES

Wivenhoe Directive 11

Date: Monday 10 January 2011
Time: 15:00

SEQWATER FLOOD OPERATIONS CENTRE

FACSIMILE MESSAGE

Senior Flood Operations
Engineer 3

Senior Flood Operations Engineer 1

Flood Operations Engineer 2

Flood Operations
Engineer 4
1.1.11 Flood Event - Operations Directive

TO: Wivenhoe Dam Operators	Date:	10/01/2011
	Time:	$15: 00$
	Directive	No: 11

This transmission comprises of this page and 0 other pages.

Message:

Please undertake the following gate operations at 15:00 on 10/01/2011

- Open Gate 2 to 4.0 m at $15: 00$
- Open Gate 4 to 4.0 m at 15:30
- Open Gate 3 to 5.0 m at 16:00
- Open Gate 1 to 3.5 m at 16:30
- Open Gate 5 to 3.5 m at $17: 00$
- Open Gate 2 to 4.5 m at 17:30
- Open Gate 4 to 4.5 m at 18:00
- Open Gate 1 to 4.0 m at $18: 30$
- Open Gate 5 to 4.0 m at 19:00
- Open Gate 1 to 4.5 m at 19:30

It is noted that the hydro will continuing releasing $13 \mathrm{~m}^{3} / \mathrm{s}$.
Please advise the Flood Operations Centre by fax once you have opened the radial gate to each of the required opening.

Engineer 2

APPENDIX L - FLOOD OPERATIONS DIRECTIVES

Duty Engineer

APPENDIX L - FLOOD OPERATIONS DIRECTIVES

Wivenhoe Directive 12

Date: Tuesday 11 January 2011
Time: 08:00

SEQWATER FLOOD OPERATIONS CENTRE

FACSIMILE MESSAGE

Senior Fiood Operations
Engineer 3

Senior Flood Operations Engineer 1

Flood Operations
Engineer 2

Flood Operations
Engineer 4

1.1.12 Flood Event - Operations Directive

TO: Wivenhoe Dam Operators	Date:	$1.1 / 01 / 2011$
	Time:	$08: 00$
	Directive	No: 12

This transmission comprises of this page and 0 other pages.
Message:

Please undertake the following gate operations at 08:00 on 11/01/2011

- Open Gate 5 to 4.5 m at 08:00
- Open Gates 2 and 4 to 5.0 m at $08: 30$
- Open Gate 3 to 5.5 m at 09:00

It is noted that the hydro will continuing releasing $13 \mathrm{~m}^{3} / \mathrm{s}$.

Please advise the Flood Operations Centre by fax once you have opened the radial gate to each of the required opening.

Engineer 4
Duty Engineer

APPENDIX L - FLOOD OPERATIONS DIRECTIVES

Wivenhoe Directive 14

Date: Tuesday 11 January 2011
Time: 12:00

SEQWATER FLOOD OPERATIONS CENTRE

FACSIMILE MESSAGE

Senior Flood Operations
Engineer 3

Senior Flood Operations Engineer 1

Flood Operations

Engineer 2

Flood Operations
Engineer 4
1.1.14 Flood Event - Operations Directive

TO: Wivenhoe Dam Operators	Date:	$11 / 01 / 2011$
	Time:	$12: 00$
	Directive	No: 14

This transmission comprises of this page and 0 other pages.

Message:

Please undertake the following gate operations commencing at 12:00 on 11/01/2011

- Open Gates 2, 3 and 4 to 6.5 m at 12:00
- Open Gates 1 and 5 to 6.5 m at 12:30
- Open Gate 3 to 7.0 m at 13:00

Please advise the Flood Operations Centre by fax once you have opened the radial gate to each of the required opening.

Engineer 4
Duty Engineer

APPENDIX L - FLOOD OPERATIONS DIRECTIVES

Wivenhoe Directive 15

Date: Tuesday 11 January 2011
Time: 13:00

SEQWATER FLOOD OPERATIONS CENTRE

FACSIMILE MESSAGE

Senior Flood Operations
Engineer 3

Senior Flood Operations Engineer 1

Flood Operations
Engineer 2

Fiood Operations
Engineer 4
1.1.15 Flood Event - Operations Directive

TO: Wivenhoe Dam Operators	Date:	$11 / 01 / 2011$
	Time:	$13: 00$
	Directive	No: 15

This transmission comprises of this page and 0 other pages.
Message:

Please open all gates to undertake the following gate operations commencing at 13:15 on 11/01/2011

- Open Gates $1,2,4$ and 5 to 7.0 m at $13: 15$

Please advise the Flood Operations Centre by fax once you have opened the radial gate to each of the required opening.

Engineer 2
Duty Engineer

APPENDIX L - FLOOD OPERATIONS DIRECTIVES

Wivenhoe Directive 16

Date: Tuesday 11 January 2011
Time: 13:00
SEQWATER FLOOD OPERATIONS CENTRE

FACSIMILE MESSAGE

Senior Flood Operations
Engineer 3

Senior Flood Operations Engineer 1

Flood Operations
Engineer 2

Flood Operations
Engineer 4
1.1.16 Flood Event - Operations Directive

TO: Wivenhoe Dam Operators	Date:	$11 / 01 / 2011$
	Time:	$13: 00$
	Directive	No: 16

This transmission comprises of this page and 0 other pages.

Message:

Please open all gates to undertake the following gate operations commencing at 14:00 on 11/01/2011

- Open Gates 1,2, 3, 4 and 5 to 7.5 m

Please advise the Flood Operations Centre by fax once you have opened the radial gate to each of the required opening.

Engineer 2
Duty Engineer

APPENDIX L - FLOOD OPERATIONS DIRECTIVES

Wivenhoe Directive 17

Date: Tuesday 11 January 2011
Time: 14:00

SEQWATER FLOOD OPERATIONS CENTRE

FACSIMILE MESSAGE

Senior Flood Operations
Engineer 3

Senior Flood Operations Engineer 1

Flood Operations
Engineer 2

Flood Operations
Engineer 4

> 1.1.17 Flood Event - Operations Directive

TO: Wivenhoe Dam Operators	Date:	11/01/2011
	Time:	$14: 00$
	Directive	No: 17

This transmission comprises of this page and 0 other pages.

Message:

Please open all gates to undertake the following gate operations commencing at 14:15 on 11/01/2011

- Open Gates 1,2, 3, 4 and 5 to 8.0 m

Please advise the Flood Operations Centre by fax once you have opened the radial gate to each of the required opening.

Engineer 2
Duty Engineer

APPENDIX L - FLOOD OPERATIONS DIRECTIVES

Wivenhoe Directive 18

Date: Tuesday 11 January 2011
Time: 14:15

SEQWATER FLOOD OPERATIONS CENTRE

FACSIMILE MESSAGE

Senior Flood Operations
Engineer 3

Senlor Flood Operations Engineer 1

Flood Operations

Engineer 2

Flood Operations
Engineer 4

1.1.18 Flood Event - Operations Directive

TO: Wivenhoe Dam Operators	Date:	$11 / 01 / 2011$
	Time:	$14: 15$
	Directive	No: 18

This transmission comprises of this page and 0 other pages.

Message:

Please open all gates to undertake the following gate operations commencing at 15:00 on 11/01/2011

- Open Gates $1,2,3,4$ and 5 to 8.5 m

Please advise the Flood Operations Centre by fax once you have opened the radial gate to each of the required opening.

Engineer 2
Duty Engineer

APPENDIX L - FLOOD OPERATIONS DIRECTIVES

Wivenhoe Directive 19

Date: Tuesday 11 January 2011
Time: 15:15

SEQWATER FLOOD OPERATIONS CENTRE

FACSIMILE MESSAGE

Senior Flood Operations Engineer 3

Senior Flood Operations Engineer 1

Flood Operations Engineer 2

Flood Operations
Engineer 4

1.1.19 Flood Event - Operations Directive

TO: Wivenhoe Dam Operators	Date:	11/01/2011
	Time:	$15: 15$
	Directive	No: 19

This transmission comprises of this page and 0 other pages.
Message:

Please open all gates to undertake the following gate operations commencing at 15:30 on 11/01/2011

- Open Gates $1,2,3,4$ and 5 to 9.0 m

Please advise the Flood Operations Centre by fax once you have opened the radial gate to each of the required opening.

Engineer 2
Duty Engineer

APPENDIX L - FLOOD OPERATIONS DIRECTIVES

Wivenhoe Directive 20

Date: Tuesday 11 January 2011
Time: 15:30

SEQWATER FLOOD OPERATIONS CENTRE

FACSIMILE MESSAGE

Senior Fiood Operations
Engineer 3

Senior Flood Óperations
Engineer 1

Flood Operations

Engineer 2

Flood Operations
Engineer 4
1.1.20 Flood Event - Operations Directive

TO: Wivenhoe Dam Operators	Date:	$11 / 01 / 2011$
	Time:	$15: 30$
	Directive	No: 20

This transmission comprises of this page and 0 other pages.

Message:

Please open all gates to undertake the following gate operations commencing at 16:00 on 11/01/2011

- Open Gates 1,2, 3,4 and 5 to 9.5 m

Please advise the Flood Operations Centre by fax once you have opened the radial gate to each of the required opening.

Engineer 2
Duty Engineer

APPENDIX L - FLOOD OPERATIONS DIRECTIVES

Wivenhoe Directive 21

Date: Tuesday 11 January 2011
Time: 16:15

SEQWATER FLOOD OPERATIONS CENTRE

FACSIMILE MESSAGE

Senior Flood Operations
Engineer 3

Senlor Flood Operations Engineer 1

Flood Operations
Engineer 2

Flood Operations
Engineer 4
1.1.21 Flood Event - Operations Directive

TO: Wivenhoe Dam Operators	Date:	$11 / 01 / 2011$
	Time:	$16: 15$
	Directive	No: 21

This transmission comprises of this page and 0 other pages.
Message:

Please open all gates to undertake the following gate operations commencing at 16:30 on 11/01/2011

- Open Gates 1,2, 3, 4 and 5 to 10.0 m

Please advise the Flood Operations Centre by fax once you have completed this operation.

Engineer 2
Duty Engineer

APPENDIX L - FLOOD OPERATIONS DIRECTIVES

Wivenhoe Directive 22

Date: Tuesday 11 January 2011
Time: 16:45

SEQWATER FLOOD OPERATIONS CENTRE

FACSIMILE MESSAGE

Senior Flood Operations
Englneer 3

Senior Flood Operations Engineer 1

Flood Operations
Engineer 2

Flood Operations
Engineer 4
1.1.22 Flood Event - Operations Directive

TO: Wivenhoe Dam Operators	Date:	$11 / 01 / 2011$
	Time:	$16: 45$
	Directive	No: 22

This transmission comprises of this page and 0 other pages.

Message:

Please open all gates to undertake the following gate operations commencing at 17:00 on 11/01/2011

- Open Gates 1,2, 3, 4 and 5 to 10.5 m

Please advise the Flood Operations Centre by fax once you have completed this operation.

Engineer 2
Duty Engineer

APPENDIX L - FLOOD OPERATIONS DIRECTIVES

Wivenhoe Directive 23

Date: Tuesday 11 January 2011
Time: 17:15

SEQWATER FLOOD OPERATIONS CENTRE

FACSIMILE MESSAGE

Senior Flood Operations
Engineer 3

Senior Flood Operations Engineer 1

Flood Operations

Engineer 2

Fiood Operations
Engineer 4
1.1.23 Flood Event - Operations Directive

TO: Wivenhoe Dam Operators	Date:	11/01/2011	
		Time:	$17: 15$
	Directive	No: 23	
Message:			

Please open all gates to undertake the following gate operations commencing at 17:30 on 11/01/2011

- Open Gates 1,2, 3, 4 and 5 to 11.0 m

Please advise the Flood Operations Centre by fax once you have completed this operation.

Engineer 4
Duty Engineer

APPENDIX L - FLOOD OPERATIONS DIRECTIVES

Wivenhoe Directive 24

Date: Tuesday 11 January 2011
Time: 18:00

SEQWATER FLOOD OPERATIONS CENTRE

FACSIMILE MESSAGE

Senior Flood Operations
Engineer 3

Senior Flood Operations
Engineer 1

Flood Operations
Engineer 2

Flood Operations
Engineer 4

1.1.24 Flood Event - Operations Directive

TO: Wivenhoe Dam Operators	Date:	$11 / 01 / 2011$
	Time:	$18: 00$
	Directive	No: 24

This transmission comprises of this page and 0 other pages.

Message:

Please open all gates to undertake the following gate operations commencing at 18:15 on 11/01/2011

- Open Gates 1,2, 3, 4 and 5 to 12.0 m

Please advise the Flood Operations Centre by fax once you have completed this operation.

Engineer 4

Duty Engineer

APPENDIX L - FLOOD OPERATIONS DIRECTIVES

Wivenhoe Directive 25

Date: Tuesday 11 January 2011
Time: 21:00

SEQWATER FLOOD OPERATIONS CENTRE

FACSIMILE MESSAGE

Senior Flood Operations
Engineer 3

Senior Flood Operations
Engineer 1

Flood Operations
Engỉneer 2

Flood Operations
Engineer 4
1.1.25 Flood Event - Operations Directive

TO: Wivenhoe Dam Operators	Date:	$11 / 01 / 2011$
	Time:	$21: 00$
	Directive	No: 25

This transmission comprises of this page and 0 other pages.

Message:

Please open all gates to undertake the following gate operations commencing at 21:15 on 11/01/2011

- Close Gates 1,2, 3, 4 and 5 to 11.0 m

Please advise the Flood Operations Centre by fax once you have completed this operation.

Engineer 4

Duty Engineer

APPENDIX L - FLOOD OPERATIONS DIRECTIVES

Wivenhoe Directive 26

Date: Tuesday 11 January 2011
Time: 21:30

SEQWATER FLOOD OPERATIONS CENTRE

FACSIMILE MESSAGE

Senior Flood Operations Engineer 3

Sentor Flood Operations
Engineer 1

Flood Operations
Engineer 2

Flood Operations
Engineer 4
1.1.26 Flood Event - Operations Dircetive

TO: Wivenhoe Dam Operators	Date:	$11 / 01 / 2011$
	Time:	$21: 30$
	Directive	No: 26

This transmission comprises of this page and 0 other pages.

Message:

Please undertake the following gate operations commencing at 21:45 on 11/01/2011

- Open Gates $1,2,3,4$ and 5 to 11.5 m

Please use a time interval

Please advise the Flood Operations Centre by fax once you have completed this operation.

Engineer 1
Duty Engineer

APPENDIX L - FLOOD OPERATIONS DIRECTIVES

Wivenhoe Directive 27

Date: Tuesday 11 January 2011
Time: 23:00
SEQWATER FLOOD OPERATIONS CENTRE

FACSIMILE MESSAGE

Senior Flood Operations
Engineer 3

Senior Flood Operations Engineer 1

Flood Operations
Engineer 2

Flood Operations
Engineer 4
1.1.27 Flood Event - Operations Directive

TO: Wivenhoe Dam Operators	Date:	$11 / 01 / 2011$
	Time:	$23: 00$
	Directive	No: 27

This transmission comprises of this page and 0 other pages.

Message:

Please undertake the following gate operations commencing at 11:30 on 11/01/2011

- Close Gates $5,1,4,2$ and 3 to 10.0 m

Please advise the Flood Operations Centre by fax once you have completed this operation.

Engineer 1
Duty Engineer

APPENDIX L - FLOOD OPERATIONS DIRECTIVES

Wivenhoe Directive 28
(DIRECTIVE NOT SENT)

Date: Tuesday 11 January 2011
Time: 23:00

SEQWATER FLOOD OPERATIONS CENTRE

FACSIMILE MESSAGE

Senior Fiood Operations
Engineer 3

Senior Flood Operations
Engineer 1

Engineer 2

Flood Operations
Engineer 4
1.1.28 Flood Event - Operations Directive

TO: Wivenhoe Dam Operators	Date:	11/01/2011
	Time:	$23: 00$
	Directive	No: 28

This transmission comprises of this page and 0 other pages.

Message:

Please undertake the following gate operations commencing at 11:30 on 11/01/2011

- Close Gates $5,1,4,2$ and 3 to 10.0 m

Please advise the Flood Operations Centre by fax once you have completed this operation.

Engineer 1
Duty Engineer

APPENDIX L - FLOOD OPERATIONS DIRECTIVES

Wivenhoe Directive 29

Date: Wednesday 12 January 2011
Time: 01:15

SEQWATER FLOOD OPERATIONS CENTRE

FACSIMILE MESSAGE

Senior Flood Operations
Engineer 3

Senior Flood Operations Engineer 1

Flood Operations
Engineer 2

Flood Operations
Engineer 4
1.1.29 Flood Event - Operations Directive

TO: Wivenhoe Dam Operators	Date:	12/01/2011
	Time:	$01: 15$
	Directive	No: 29

This transmission comprises of this page and 0 other pages.

Message:

Please undertake the following gate operations commencing at 01:30 on 12/01/2011

- Close Gates 5, 1,4,2 and 3 to 9.0 m

Please advise the Flood Operations Centre by fax once you have completed this operation.

Engineer 1
Duty Engineer

APPENDIX L - FLOOD OPERATIONS DIRECTIVES

Wivenhoe Directive 30

Date: Wednesday 12 January 2011
Time: 03:15

SEQWATER FLOOD OPERATIONS CENTRE

FACSIMILE MESSAGE

Sentor Flood Operations Engineer 3

Senior Flood Operations Engineer 1

Flood Operations Engineer 2

Flood Operations Engineer 4
1.1.30 Flood Event - Operations Directive

TO: Wivenhoe Dam Operators	Date:	12/01/2011
	Time:	$03: 15$
	Directive	No: 30

This transmission comprises of this page and 0 other pages.

Message:

Please undertake the following gate operations commencing at 03:30 on 12/01/2011

- Close Gates $5,1,4,2$ and 3 to 8.0 m

Please advise the Flood Operations Centre by fax once you have completed this operation.

Engineer 1
Duty Engineer

APPENDIX L - FLOOD OPERATIONS DIRECTIVES

Wivenhoe Directive 31

Date: Wednesday 12 January 2011
Time: 04:30

SEQWATER FLOOD OPERATIONS CENTRE

FACSIMILE MESSAGE

Senior Flood Operations
Engineer 3

Senior Flood Operations Engineer 1

Flood Operations Engineer 2

Flood Operations
Engineer 4
1.1.31 Flood Event - Operations Directive

TO: Wivenhoe Dam Operators	Date:	$12 / 01 / 2011$
	Directive No:	31
	Time:	$04: 30$

This transmission comprises of this page and 0 other pages.

Message:

Please undertake the following gate operations commencing at 04:45 on 12/01/2011

- Close Gates 5,1,4,2 and 3 to 7.0 m

Please advise the Flood Operations Centre by fax once you have completed this operation.

Engineer 1
Duty Engineer

APPENDIX L - FLOOD OPERATIONS DIRECTIVES

Wivenhoe Directive 32

Date: Wednesday 12 January 2011
Time: 05:30

SEQWATER FLOOD OPERATIONS CENTRE

FACSIMILE MESSAGE

Senior Flood Operations
Englneer 3

Senior Flood Operations
Engineer 1

Flood Operations
Engineer 2

Flood Operations
Engineer 4
1.1.32 Flood Event - Operations Directive

TO: Wivenhoe Dam Operators	Date:	12/01/201
	Directive No:	32
	Time:	$05: 30$

This transmission comprises of this page and 0 other pages.
Message:

Please undertake the following gate operations commencing at 05:45 on 12/01/2011

- Close Gates 5,1,4,2 and 3 to 6.0 m

Please advise the Flood Operations Centre by fax once you have completed this operation.

Engineer 4
Duty Engineer

APPENDIX L - FLOOD OPERATIONS DIRECTIVES

Wivenhoe Directive 33

Date: Wednesday 12 January 2011
Time: 05:30

SEQWATER FLOOD OPERATIONS CENTRE

FACSIMILE MESSAGE

Senior Flood Operations
 Engineer 3

Senior Flood Operations Engineer 1

Flood Operations
Engineer 2

Flood Operations
Engineer 4
1.1.33 Flood Event - Operations Directive

TO: Wivenhoe Dam Operators	Date:	$12 / 01 / 201$
	Directive No:	33
	Time:	$05: 30$

This transmission comprises of this page and 0 other pages.

Message:

Please undertake the following gate operations commencing at 06:45 on 12/01/2011

- Close Gates 5, 1,4,2 and 3 to 5.0 m

Please advise the Flood Operations Centre by fax once you have completed this operation.

Engineer 4

Duty Engineer

APPENDIX L - FLOOD OPERATIONS DIRECTIVES

Wivenhoe Directive 34

Date: Wednesday 12 January 2011
Time: 07:15
SEQWATER FLOOD OPERATIONS CENTRE

FACSIMILE MESSAGE

Senior Flood Operations Engineer 3

Senior Flood Operations Engineer 1

Flood Operations
Engineer 2

Flood Operations
Engineer 4

1.1.34 Flood Event - Operations Directive

TO: Wivenhoe Dam Operators	Date:	$12 / 01 / 201$
	Directive No:	34
	Time:	$07: 15$

This transmission comprises of this page and 0 other pages.

Message:

Please undertake the following gate operations commencing at 07:30 on 12/01/2011

- Close Gates 1 and 5 to 3.5 m
- Close Gates 2 and 4 to 4.0 m

Please advise the Flood Operations Centre by fax once you have completed this operation.

Engineer 4
Duty Engineer

APPENDIX L - FLOOD OPERATIONS DIRECTIVES

Wivenhoe Directive 35

Date: Thursday 13 January 2011
Time: 12:30

SEQWATER FLOOD OPERATIONS CENTRE

FACSIMILE MESSAGE

Senior Flood Operations
Engineer 3

Senlor Flood Operations
Engineer 1

Flood Operations
Engineer 2

Flood Operations
Engineer 4

1.1.35 Flood Event - Operations Directive

TO: Wivenhoe Dam Operators	Date:	$13 / 01 / 201$
	Directive No:	35
	Time:	$12: 30$

This transmission comprises of this page and 0 other pages.

Message:

Please undertake the following gate operations commencing at $13: 00$ on 13/01/2011

- Open Gate 2 from 4.0 metres to 4.5 metres at 1300.
- Open Gate 4 from 4.0 metres to 4.5 metres at 1400 .

Please advise the Flood Operations Centre by fax once you have completed this operation.

Engineer 4

Duty Engineer

APPENDIX L - FLOOD OPERATIONS DIRECTIVES

Wivenhoe Directive 36

Date: Thursday 13 January 2011
Time: 14:30

SEQWATER FLOOD OPERATIONS CENTRE

FACSIMILE MESSAGE

Senior Flood Operations	Senior Flood Operations	Flood Operations	Flood Operations
Engineer 3	Engineer 1	Engineer 2	Engineer 4

1.1.36 Flood Event - Operations Directive

| TO: Wivenhoe Dam Operators | Date: | $13 / 01 / 201$ |
| :--- | :--- | :--- | :--- |
| | Directive No: | 36 |
| | Time: | $14: 30$ |
| This transmission comprises of this page and 0 other pages. | | |
| Message: | | |

Please undertake the following gate operations commencing at 1500 on 13/01/2011

- Open Gate 1 from 3.5 metres to 4.0 metres at 1500.
- Open Gate 5 from 3.5 metres to 4.0 metres at 1600 .
- Open Gate 1 from 4.0 metres to 4.5 metres at 1700 .
- Open Gate 5 from 4.0 metres to 4.5 metres at 1800 .

Please advise the Flood Operations Centre by fax once you have completed these operations.

Engineer 4
Duty Engineer

APPENDIX L - FLOOD OPERATIONS DIRECTIVES

Wivenhoe Directive 37

Date: Thursday 13 January 2011
Time: 18:00

SEQWATER FLOOD OPERATIONS CENTRE

FACSIMILE MESSAGE

Senior Flood Operations
Engineer 3

Senior Flood Operations
Engineer 1

Flood Operations Engineer 2

Flood Operations
Engineer 4
1.1.37 Flood Event - Operations Directive

TO: Wivenhoe Dam Operators	Date:	$13 / 01 / 201$
	Directive No:	37
	Time:	$18: 00$

This transmission comprises of this page and 0 other pages.

Message:

Please undertake the following gate operations commencing at 1830 on $13 / 01 / 2011$

- Open Gate 2 from 4.5 metres to 5.0 metres at 1830 .
- Open Gate 4 from 4.5 metres to 5.0 metres at 1900.
- Open Gate 1 from 4.5 metres to 5.0 metres at 1930.
- Open Gate 5 from 4.5 metres to 5.0 metres at 2000.
- Open Gate 3 from 5.0 metres to 5.5 metres at 2030.

Please advise the Flood Operations Centre by fax once you have completed these operations.

APPENDIX L - FLOOD OPERATIONS DIRECTIVES

Duty Engineer

APPENDIX L - FLOOD OPERATIONS DIRECTIVES

Wivenhoe Directive 38

Date: Thursday 13 January 2011
Time: 20:30

SEQWATER FLOOD OPERATIONS CENTRE

FACSIMILE MESSAGE

Senior Flood Operations	Senior Flood Operations	Flood Operations	Flood Operations
Engineer 3	Engineer 1	Engineer 2	Engineer 4

1.1.38 Flood Bvent - Operations Directive

TO: Wivenhoe Dam Operators	Date:	$13 / 01 / 201$
	Directive No:	38
	Time:	$20: 30$

This transmission comprises of this page and 0 other pages.

Message:

Please undertake the following gate operations commencing at 2030 on 13/01/2011

- Open Gate 2 from 5.0 metres to 5.5 metres at 2100 .
- Open Gate 4 from 5.0 metres to 5.5 metres at 2200 .
- Open Gate 1 from 5.0 metres to 5.5 metres at 2300 .
- Open Gate 5 from 5.0 metres to 5.5 metres at 0000 on 14/01/2011
- Open Gate 3 from 5.5 metres to 6.0 metres at 0100 on 14/01/2011
- Open Gate 2 from 5.5 metres to 6.0 metres at 0200.
- Open Gate 4 from 5.5 metres to 6.0 metres at 0300 .

Please advise the Flood Operations Centre by fax once you have completed these operations.

Engineer 1
Duty Engineer

APPENDIX L - FLOOD OPERATIONS DIRECTIVES

Wivenhoe Directive 39

Date: Friday 14 January 2011
Time: 19:15

SEQWATER FLOOD OPERATIONS CENTRE

FACSIMILE MESSAGE

Senior Flood Operations	Senior Flood Operations	Flood Operations	Flood Operations
Engineer 3	Engineer 1	Engineer 2	Engineer 4

1.1.39 Flood Event - Operations Directive

TO: Wivenhoe Dam Operators	Date:	$14 / 01 / 201$
	Directive No:	39
	Time:	$19: 15$

This transmission comprises of this page and 0 other pages.

Message:

Please undertake the following gate operations commencing at 1930 on 14/01/2011

- Open Gate 1 from 5.5 metres to 6.0 metres at 1930 .

Please advise the Flood Operations Centre by fax once you have completed these operations.

Engineer 4
 Duty Engineer

APPENDIX L - FLOOD OPERATIONS DIRECTIVES

Wivenhoe Directive 40

Date: Saturday 15 January 2011
Time: 02:15

SEQWATER FLOOD OPERATIONS CENTRE

FACSIMILE MESSAGE

Senior Flood Operations
Engineer 3

Senior Flood Operations
Engineer 1

Flood Operations
Engineer 2

Flood Operations
Engineer 4

TO: Wivenhoe Dam Operators	Date:	$15 / 01 / 201$
	Directive No:	40
	Time:	$02: 15$

This transmission comprises of this page and 0 other pages.
Message:

Please undertake the following gate operations commencing at 02:30 on 15/01/2011

- Open Gate 5 from 5.5 metres to 6.0 metres at 0230 .

Please advise the Flood Operations Centre by fax once you have completed these operations.

Engineer 4
Duty Engineer

APPENDIX L - FLOOD OPERATIONS DIRECTIVES

Wivenhoe Directive 41

Date: Saturday 15 January 2011
Time: 10:30

SEQWATER FLOOD OPERATIONS CENTRE

FACSIMILE MESSAGE

Senior Flood Operations
Engineer 3

Senior Flood Operations Engineer 1

Flood Operations
Engineer 2

Flood Operations
Engineer 4
1.1.41 Flood Event - Operations Directive

TO: Wivenhoe Dam Operators	Date:	$15 / 01 / 201$
	Directive No:	41
	Time:	$10: 30$

This transmission comprises of this page and 0 other pages.
Message:

Please undertake the following gate operations commencing at 10:30 on 15/01/2011

- Open Gate 3 from 6.0 metres to 6.5 metres at 1030 .

Please advise the Flood Operations Centre by fax once you have completed these operations.

Engineer 2
Duty Engineer

APPENDIX L - FLOOD OPERATIONS DIRECTIVES

Wivenhoe Directive 42

Date: Saturday 15 January 2011
Time: 15:30

SEQWATER FLOOD OPERATIONS CENTRE

FACSIMILE MESSAGE

Senior Flood Operations
Engineer 3

Senior Flood Operations Engineer 1

Flood Operations
Engineer 2

Flood Operations
Engineer 4
1.1.42 Flood Event - Operations Directive

TO: Wivenhoe Dam Operators	Date:	15/01/201
	Directive No:	42
	Time:	$15: 30$

This transmission comprises of this page and 0 other pages.

Message:

Please undertake the following gate operations commencing at 17:00 on 15/01/201.

- Open Gate 2 from 6.0 metres to 6.5 metres at 17:00.

Please advise the Flood Operations Centre by fax once you have completed these operations.

Engineer 3
Duty Engineer

APPENDIX L - FLOOD OPERATIONS DIRECTIVES

Wivenhoe Directive 43

Date: Saturday 15 January 2011
Time: 22:00

SEQWATER FLOOD OPERATIONS CENTRE

FACSIMILE MESSAGE

Senior Flood Operations
Engineer 3

Senior Flood Operations
Engineer 1

Flood Operations
Engineer 2

Flood Operations
Engineer 4

1.1.43 Flood Event - Operations Dircetive

TO: Wivenhoe Dam Operators	Date:	$15 / 01 / 201$
	Directive No:	43
	Time:	$22: 00$

This transmission comprises of this page and 0 other pages.

Message:

Please undertake the following gate operations commencing at 22:00 on 15/01/2011

- Open Gate 4 from 6.0 metres to 6.5 metres at 22:00.

Please advise the Flood Operations Centre by fax once you have completed these operations.

Engineer 3
Duty Engineer

APPENDIX L - FLOOD OPERATIONS DIRECTIVES

Wivenhoe Directive 44

Date: Sunday 16 January 2011
Time: 02:45

SEQWATER FLOOD OPERATIONS CENTRE

FACSIMILE MESSAGE

Senior Flood Operations
Engineer 3

Senior Flood Operations Engineer 1

Flood Operations
Engineer 2

Flood Operations
Engineer 4
1.1.44 Flood Event - Operations Directive

TO: Wivenhoe Dam Operators	Date:	$16 / 01 / 201$
	Directive No:	44
	Time:	$02: 45$

This transmission comprises of this page and 0 other pages.

Message:

Please undertake the following gate operations commencing at 04:00 on 16/01/2011

- Open Gate 1 from 6.0 metres to 6.5 metres at $04: 00$ on $16 / 01 / 2011$.

Please advise the Flood Operations Centre by fax once you have completed these operations.

Engineer 3
Duty Engineer

APPENDIX L - FLOOD OPERATIONS DIRECTIVES

Wivenhoe Directive 45

Date: Sunday 16 January 2011
Time: 08:30

SEQWATER FLOOD OPERATIONS CENTRE

FACSIMILE MESSAGE

Senior Flood Operations
Engineer 3

Senior Flood Operations
Engineer 1

Flood Operations
Engineer 2

Flood Operations
Engineer 4
1.1.45 Flood Event - Operations Directive

TO: Wivenhoe Dam Operators	Date:	$16 / 01 / 201$
	Directive No:	45
	Time:	$08: 30$

This transmission comprises of this page and 0 other pages.

Message:

Please undertake the following gate operations commencing at 09:00 on 16/01/2011

- Open Gate 5 from 6.0 metres to 6.5 metres at 09:00 on 16/01/2011.

Please advise the Flood Operations Centre by fax once you have completed these operations.

Engineer 1
Duty Engineer

APPENDIX L - FLOOD OPERATIONS DIRECTIVES

Wivenhoe Directive 46

Date: Sunday 16 January 2011
Time: 12:15

SEQWATER FLOOD OPERATIONS CENTRE

FACSIMILE MESSAGE

Senior Flood Operations Engineer 3

Senior Flood Operations Engineer 1

Flood Operations
Engineer 2

Flood Operations Engineer 4

1.1.46 Flood Event - Operations Directive

TO: Wivenhoe Dam Operators	Date:	$16 / 01 / 201$
	Directive No:	46
	Time:	$12: 15$

This transmission comprises of this page and 0 other pages.

Message:

Please undertake the following gate operations commencing at 13:00 on 16/01/2011

- Open Gate 3 from 6.5 metres to 7.0 metres at $13: 00$ on $16 / 01 / 2011$.

Please advise the Flood Operations Centre by fax once you have completed these operations.

Engineer 1
Duty Engineer

APPENDIX L - FLOOD OPERATIONS DIRECTIVES

Wivenhoe Directive 47

Date: Sunday 16 January 2011
Time: 15:15

SEQWATER FLOOD OPERATIONS CENTRE

FACSIMILE MESSAGE

Senior Flood Operations	Senior Flood Operations	Flood Operations	Flood Operations
Engineer 3	Engineer 1	Engineer 2	Engineer 4

1.1.47 Flood Event - Operations Directive

TO: Wivenhoe Dam Operators	Date:	$16 / 01 / 201$
	Directive No:	47
	Time:	$15: 15$

This transmission comprises of this page and 0 other pages.

Message:

Please undertake the following gate operations commencing at 16:00 on 16/01/2011

- Open Gate 2 from 6.5 metres to 7.0 metres at $16: 00$ on $16 / 01 / 2011$.

Please advise the Flood Operations Centre by fax once you have completed these operations.

Engineer 1
Duty Engineer

APPENDIX L - FLOOD OPERATIONS DIRECTIVES

Wivenhoe Directive 48

Date: Sunday 16 January 2011
Time: 18:45

SEQWATER FLOOD OPERATIONS CENTRE

FACSIMILE MESSAGE

Senior Flood Operations	Senior Flood Operations	Flood Operations	Flood Operations
Engineer 3	Engineer 1	Engineer 2	Engineer 4

1.1.48 Flood Event - Operations Directive

TO: Wivenhoe Dam Operators	Date:	$16 / 01 / 201$
	Directive No:	48
	Time:	$18: 45$

This transmission comprises of this page and 0 other pages.
Message:

Please undertake the following gate operations commencing at 20:00 on 16/01/2011

- Open Gate 4 from 6.5 metres to 7.0 metres at 20:00 on 16/01/2011.

Please advise the Flood Operations Centre by fax once you have completed these operations.

Engineer 1
Duty Engineer

APPENDIX L - FLOOD OPERATIONS DIRECTIVES

Wivenhoe Directive 49

Date: Monday 17 January 2011
Time: 13:45

SEQWATER FLOOD OPERATIONS CENTRE

FACSIMILE MESSAGE

Senior Fiood Operations	Senior Fiood Operations	Flood Operations	Flood Operations
Engineer 3	Engineer 1	Engineer 2	Engineer 4

1.1.49 Flood Event - Operations Directive

TO: Wivenhoe Dam Operators	Date:	$17 / 01 / 201$
	Directive No:	49
	Time:	$13: 45$

This transmission comprises of this page and 0 other pages.

Message:

Please undertake the following gate operations commencing at 14:00 on 17/01/2011

- Close Gate 4 from 7.0 metres to 6.5 metres at $14: 00$ on 17/01/2011.
- Close Gate 2 from 7.0 metres to 6.5 metres at 14:20 on 17/01/2011
- Close Gate 3 from 7.0 metres to 6.5 metres at 14:40 on 17/01/2011
- Close Gate 5 from 6.5 metres to 6.0 metres at 15:00 on 17/01/2011

Please advise the Flood Operations Centre by fax once you have completed these operations.

Engineer 3
Duty Engineer

APPENDIX L - FLOOD OPERATIONS DIRECTIVES

Wivenhoe Directive 50

Date: Monday 17 January 2011
Time: 14:45

SEQWATER FLOOD OPERATIONS CENTRE

FACSIMILE MESSAGE

Senior Flood Operations Engineer 3	Senior Flood Operations Engineer 1	Flood Operations Engineer 2	Flood Operations Engineer 4
		1.1 .50 Flood Event - Operations Dircetive	

TO: Wivenhoe Dam Operators	Date:	$17 / 01 / 201$
	Directive No:	50
	Time:	14
		$14: 45$

This transmission comprises of this page and 0 other pages.

Message:

Please undertake the following gate operations commencing at 15:15 on 17/01/2011

- Close Gate 4 from 6.5 metres to 6.0 metres at $15: 20$ on 17/01/2011.
- Close Gate 2 from 6.5 metres to 6.0 metres at 15:40 on 17/01/2011

Please advise the Flood Operations Centre by fax once you have completed these operations.

Engineer 3
Duty Engineer

APPENDIX L - FLOOD OPERATIONS DIRECTIVES

Wivenhoe Directive 51

Date: Monday 17 January 2011
Time: 15:50

SEQWATER FLOOD OPERATIONS CENTRE

FACSIMILE MESSAGE

Senior Flood Operations
Engineer 3

Senior Flood Operations
Engineer 1

Flood Operations
Engineer 2

Flood Operations
Engineer 4
1.1.51 Flood Event - Operations Directive

TO: Wivenhoe Dam Operators	Date:	$17 / 01 / 201$
	Directive No:	51
	Time:	
		$15: 50$

This transmission comprises of this page and 0 other pages.

Message:

Please undertake the following gate operations commencing at 16:00 on 17/01/2011

- Close Gate 1 from 6.5 metres to 6.0 metres at $16: 00$ on 17/01/2011
- Close Gate 3 from 6.5 metres to 6.0 metres at 16:20 on 17/01/2011.
- Close Gate 5 from 6.0 metres to 5.5 metres at 16:40 on 17/01/2011
- Close Gate 1 from 6.0 metres to 5.5 metres at 17:00 on 17/01/2011
- Close Gate 4 from 6.0 metres to 5.5 metres at 17:20 on 17/01/2011
- Close Gate 2 from 6.0 metres to 5.5 metres at 17:40 on 17/01/2011
- Close Gate 3 from 6.0 metres to 5.5 metres at 18:00 on 17/01/2011

Please advise the Flood Operations Centre by fax once you have completed these operations.

APPENDIX L - FLOOD OPERATIONS DIRECTIVES

Duty Engineer

APPENDIX L - FLOOD OPERATIONS DIRECTIVES

Wivenhoe Directive 52

Date: Monday 17 January 2011
Time: 17:50

SEQWATER FLOOD OPERATIONS CENTRE

FACSIMILE MESSAGE

Sentor Flood Operations
Engineer 3

Senior Flood Operations
Engineer 1

Flood Operations
Engineer 2

Flood Operations
Engineer 4

1.1.52 Flood Event - Operations Directive

TO: Wivenhoe Dam Operators	Date: Directive No:	52
	Time:	$17 / 01 / 201$
		$17: 50$

This transmission comprises of this page and 0 other pages.

Message:

Please undertake the following gate operations commencing at 18:30 on 17/01/2011

- Close Gate 5 from 5.5 metres to 5.0 metres at 18:30 on 17/01/2011
- Close Gate 1 from 5.5 metres to 5.0 metres at 19:00 on 17/01/2011.
- Close Gate 4 from 5.5 metres to 5.0 metres at 19:30 on 17/01/2011
- Close Gate 2 from 5.5 metres to 5.0 metres at 20:00 on 17/01/2011
- Close Gate 3 from 5.5 metres to 5.0 metres at 20:30 on 17/01/2011
- Close Gate 5 from 5.0 metres to 4.5 metres at 21:00 on 17/01/2011
- Close Gate 1 from 5.0 metres to 4.5 metres at 21:30 on 17/01/2011
- Close Gate 2 from 5.0 metres to 4.5 metres at 22:00 on 17/01/2011
- Close Gate 4 from 5.0 metres to 4.5 metres at 22:30 on 17/01/2011
- Close Gate 5 from 4.5 metres to 4.0 metres at 22:00 on 17/01/2011

Please advise the Flood Operations Centre by fax once you have completed these operations.

APPENDIX L - FLOOD OPERATIONS DIRECTIVES

Engineer 3
Duty Engineer

APPENDIX L - FLOOD OPERATIONS DIRECTIVES

Wivenhoe Directive 53

Date: Monday 17 January 2011
Time: 21:30

SEQWATER FLOOD OPERATIONS CENTRE

FACSIMILE MESSAGE

Senior Flood Operations
Engineer 3

Senior Flood Operations
Engineer 1

Flood Operations
Engineer 2

Flood Operations
Engineer 4

1.1.53 Flood Event - Operations Directive

TO: Wivenhoe Dam Operators	Date:	$17 / 01 / 201$
	Directive No:	53
	Time:	$21: 30$

This transmission comprises of this page and 0 other pages.

Message:

Please undertake the following gate operations commencing at $23: 00$ on 17/01/2011

- Close Gate 5 from 4.5 metres to 4.0 metres at 23:00 on 17/01/2011
- Close Gate 1 from 4.5 metres to 4.0 metres at 23:30 on 17/01/2011
- Close Gate 5 from 4.0 metres to 3.5 metres at 00:00 on 18/01/2011
- Close Gate 1 from 4.0 metres to 3.5 metres at 00:30 on 18/01/2011
- Close Gate 4 from 4.5 metres to 4.0 metres at 01:00 on 18/01/2011
- Close Gate 2 from 4.5 metres to 4.0 metres at 01:30 on 18/01/2011
- Close Gate 5 from 3.5 metres to 3.0 metres at 02:00 on 18/01/2011
- Close Gate 1 from 3.5 metres to 3.0 metres at 03:00 on 18/01/2011
- Close Gate 3 from 5.0 metres to 4.5 metres at 04:00 on 18/01/2011
- Close Gate 4 from 4.0 metres to 3.5 metres at 05:00 on 18/01/2011
- Close Gate 2 from 4.0 metres to 3.5 metres at 06:00 on 18/01/2011
- Close Gate 5 from 3.0 metres to 2.5 metres at 07:00 on 18/01/2011
- Close Gate 1 from 3.0 metres to 2.5 metres at 08:00 on 18/01/2011

Please advise the Flood Operations Centre by fax once you have completed these operations.

APPENDIX L - FLOOD OPERATIONS DIRECTIVES

Engineer 2
Duty Engineer

APPENDIX L - FLOOD OPERATIONS DIRECTIVES

Wivenhoe Directive 54

Date: Tuesday 18 January 2011
Time: 00:45

SEQWATER FLOOD OPERATIONS CENTRE

FACSIMILE MESSAGE

Senior Flood Operations	Senior Flood Operations	Flood Operations	Flood Operations
Engineer 3	Engineer 1	Engineer 2	Engineer 4

1.1.54 Flood Event - Operations Directive

TO: Wivenhoe Dam Operators	Date: Directive No: Time:	18/01/2011 54 00:45
This transmission comprises of this page and 0 other pages.		

Please cease all gate operations as at 00:45 on 18/01/2011 until further notice.

The last gate operation undertaken from the previous directive (\#53) should be as follows:

- Close Gate 1 from 4.0 metres to 3.5 metres at $00: 30$ on $18 / 01 / 2011$

This directive supersedes all previous directives.

Please advise the Flood Operations Centre by fax once you have completed these operations.

Engineer 2
Duty Engineer

APPENDIX L - FLOOD OPERATIONS DIRECTIVES

Wivenhoe Directive 55

Date: Tuesday 18 January 2011
Time: 08:45

SEQWATER FLOOD OPERATIONS CENTRE

FACSIMILE MESSAGE

Senior Flood Operations
Engineer 3

Senior Flood Operations
Engineer 1

Flood Operations
Engineer 2

Flood Operations
Engineer 4

TO: Wivenhoe Dam Operators	Date:	$18 / 01 / 2011$
	Directive No:	55
Time:		
		$08: 45$

This transmission comprises of this page and 0 other pages.

Message:

Please re-commence gate operations as at 09:00 on 18/01/2011.

- Close Gate 4 from 4.5 metres to 4.0 metres at 09:00 on 18/01/2011
- Close Gate 2 from 4.5 metres to 4.0 metres at 09:30 on 18/01/2011
- Close Gate 5 from 3.5 metres to 3.0 metres at 10:00 on 18/01/2011
- Close Gate 1 from 3.5 metres to 3.0 metres at 10:30 on 18/01/2011
- Close Gate 3 from 5.0 metres to 4.5 metres at 11:00 on 18/01/2011
- Close Gate 4 from 4.0 metres to 3.5 metres at 11:30 on 18/01/2011
- Close Gate 2 from 4.0 metres to 3.5 metres at 12:00 on 18/01/2011

Please advise the Flood Operations Centre by fax/email once you have completed these operations.

Please continue to report levels at hourly intervals.

Engineer 1

Duty Engineer

APPENDIX L - FLOOD OPERATIONS DIRECTIVES

Wivenhoe Directive 56

Date: Tuesday 18 January 2011
Time: 12:15

SEQWATER FLOOD OPERATIONS CENTRE

FACSIMILE MESSAGE
Senior Flood Operations
Engineer 3

Senior Flood Operations Engineer 1

Flood Operations
Engineer 2

Flood Operations
Engineer 4

1.1.56 Flood Event - Operations Directive

TO: Wivenhoe Dam Operators	Date:	$18 / 01 / 2011$
	Directive No:	56
	Time:	$12: 15$

This transmission comprises of this page and 0 other pages.

Message:

Please re-commence gate operations as at 12:30 on 18/01/2011.

- Close Gate 5 from 3.0 metres to 2.5 metres at 12:30 on 18/01/2011
- Close Gate 1 from 3.0 metres to 2.5 metres at 13:00 on 18/01/2011
- Close Gate 4 from 3.5 metres to 3.0 metres at 14:00 on 18/01/2011
- Close Gate 2 from 3.5 metres to 3.0 metres at 14:30 on 18/01/2011
- Close Gate 4 from 3.0 metres to 2.5 metres at 15:00 on 18/01/2011
- Close Gate 2 from 3.0 metres to 2.5 metres at 15:30 on 18/01/2011

Please advise the Flood Operations Centre by fax/email once you have completed these operations.

Please continue to report levels at hourly intervals.

Engineer 1
Duty Engineer

APPENDIX L - FLOOD OPERATIONS DIRECTIVES

APPENDIX L - FLOOD OPERATIONS DIRECTIVES

Wivenhoe Directive 57

Date: Tuesday 18 January 2011
Time: 15:15

SEQWATER FLOOD OPERATIONS CENTRE

FACSIMILE MESSAGE

Senior Flood Operations
Engineer 3

Senior Flood Operations
Engineer 1

Flood Operations
Engineer 2

Flood Operations
Engineer 4

1.1.57 Flood Event - Operations Directive

TO: Wivenhoe Dam Operators	Date:	$18 / 01 / 2011$
	Directive No:	57
	Time:	$15: 15$

This transmission comprises of this page and 0 other pages.

Message:

Please cease gate operations as at 15:00 on 18/01/2011 so as to accommodate the repairs at Lowood pump station.

Current gate settings of :-
Gate 1 - Open 2.5 metres
Gate 2 - Open 3.0 metres
Gate 3 - Open 4.5 metres
Gate 4 - Open $3: 0$ metres
Gate 5 - Open 2.5 metres
Please confirm these current settings. It is expected these settings will be maintained for up to 12 hours.

Please continue to report levels at hourly intervals.

Engineer 1

APPENDIX L - FLOOD OPERATIONS DIRECTIVES

Wivenhoe Directive 58

Date: Tuesday 18 January 2011
Time: 20:30

SEQWATER FLOOD OPERATIONS CENTRE

FACSIMILE MESSAGE

Senior Flood Operations
Engineer 3

Engineer 3

Sentor Flood Operations
Engineer 1

Flood Operations Engineer 2

Flood Operations
Engineer 4
1.1.58 Flood Event - Operations Directive

TO: Wivenhoe Dam Operators	Date:	$18 / 01 / 2011$
	Directive No:	58
	Time:	$20: 30$

This transmission comprises of this page and 0 other pages.

Message:

Please undertake the following gate operations commencing at 20:45 on 18/01/2011.

- Close Gate 4 from 3.0 metres to 2.5 metres at 20:45 on 18/01/2011
- Close Gate 2 from 3.5 metres to 2.5 metres at 21:15 on 18/01/2011

Please advise the Flood Operations Centre by fax/email once you have completed these operations.

Engineer 4
Duty Engineer

APPENDIX L - FLOOD OPERATIONS DIRECTIVES

Wivenhoe Directive 59

Date: Tuesday 18 January 2011
Time: 21:30

SEQWATER FLOOD OPERATIONS CENTRE

FACSIMILE MESSAGE

Senior Flood Operations
Engineer 3

Sentor Flood Operations
Engineer 1

Flood Operations
Engineer 2

Flood Operations
Engineer 4

1.1.59 Flood Event - Operations Directive

TO: Wivenhoe Dam Operators	Date:	18/01/2011
	Directive No:	59
	Time:	$21: 30$

This transmission comprises of this page and 0 other pages.

Message:

Please undertake the following gate operations commencing at 21:30 on 18/01/2011.

- Close Gate 5 from 2.5 metres to 2.0 metres at 22:00 on 18/01/2011
- Close Gate 1 from 2.5 metres to 2.0 metres at 22:30 on 18/01/2011

Please advise the Flood Operations Centre by fax/email once you have completed these operations.

Engineer 4
Duty Engineer

APPENDIX L - FLOOD OPERATIONS DIRECTIVES

Wivenhoe Directive 60

Date: Tuesday 18 January 2011
Time: 22:30

SEQWATER FLOOD OPERATIONS CENTRE

FACSIMILE MESSAGE

Senior Flood Operations Engineer 3

Senior Flood Operations Engineer 1

Flood Operations
Engineer 2

Flood Operations Engineer 4
1.1.60 Flood Event - Operations Directive

TO: Wivenhoe Dam Operators	Date:	18/01/2011
	Directive No:	60
	Time:	$22: 30$

This transmission comprises of this page and 0 other pages.

Message:

Please undertake the following gate operations commencing at 23:00 on 18/01/2011.

- Close Gate 5 from 2.0 metres to 1.5 metres at 23:00 on 18/01/2011
- Close Gate 1 from 2.0 metres to 1.5 metres at 23:30 on 18/01/2011
- Close Gate 3 from 4.5 metres to 4.0 metres at 00:00 on 19/01/2011
- Close Gate 4 from 2.5 metres to 2.0 metres at 00:30 on 19/01/2011
- Close Gate 2 from 2.5 metres to 2.0 metres at 01:00 on 19/01/2011
- Close Gate 5 from 1.5 metres to 1.0 metres at 01:30 on 19/01/2011
- Close Gate 1 from 1.5 metres to 1.0 metres at 02:00 on 19/01/2011
- Close Gate 4 from 2.0 metres to 1.5 metres at 02:30 on 19/01/2011
- Close Gate 2 from 2.0 metres to 1.5 metres at 03:00 on 19/01/2011
- Close Gate 5 from 1.0 metres to 0.5 metres at 03:30 on 19/01/2011
- Close Gate 1 from 1.0 metres to 0.5 metres at 04:00 on 19/01/2011
- Close Gate 4 from 1.5 metres to 1.0 metres at 04:30 on 19/01/2011
- Close Gate 2 from 1.5 metres to 1.0 metres at 05:00 on 19/01/2011

Please advise the Flood Operations Centre by fax/email once you have completed these operations.

APPENDIX L - FLOOD OPERATIONS DIRECTIVES

Duty Engineer

APPENDIX L - FLOOD OPERATIONS DIRECTIVES

Wivenhoe Directive 61

Date: Wednesday 19 January 2011
Time: 05:15

SEQWATER FLOOD OPERATIONS CENTRE

FACSIMILE MESSAGE

Senior Flood Operations
Engineer 3

Senior Flood Operations
Engineer 1

Flood Operations
Engineer 2

Flood Operations
Engineer 4
1.1.61 Flood Event - Operations Directive

TO: Wivenhoe Dam Operators	Date:	$19 / 01 / 2011$
	Directive No:	61
	Time:	$05: 15$

This transmission comprises of this page and 0 other pages.

Message:

Please undertake the following gate operations commencing at 05:30 on 19/01/2011.

- Close Gate 5 from 0.5 metres to fully closed at 05:30 on 19/01/2011
- Close Gate 1 from 0.5 metres to fully closed at 06:00 on 19/01/2011
- Close Gate 4 from 1.0 metres to 0.5 metres at 06:30 on 19/01/2011
- Close Gate 2 from 1.0 metres to 0.5 metres at 07:00 on 19/01/2011
- Close Gate 3 from 4.0 metres to 3.5 metres at 07:30 on 19/01/2011
- Close Gate 4 from 0.5 metres to fully closed at 08:00 on 19/01/2011
- Close Gate 2 from 0.5 metres to fully closed at 08:30 on 19/01/2011

Please advise the Flood Operations Centre by fax/email once you have completed these operations.

Engineer 4

Duty Engineer

APPENDIX L - FLOOD OPERATIONS DIRECTIVES

Wivenhoe Directive 62

Date: Wednesday 19 January 2011
Time: 08:15

SEQWATER FLOOD OPERATIONS CENTRE

FACSIMILE MESSAGE

Senior Flood Operations
Engineer 3

Senlor Flood Operations
Engineer 1

Flood Operations
Engineer 2

Flood Operations
Engineer 4

1.1.62 Flood Event - Operations Directive

TO: Wivenhoe Dam Operators	Date:	$19 / 01 / 2011$
	Directive No:	62
	Time:	$08: 15$

This transmission comprises of this page and 0 other pages.

Message:

Please undertake the following gate operations commencing at 09:00 on 19/01/2011:

Time between successive gate movements is 30 minutes.

- Close Gate 3 from 3.5 metres to 3.0 metres at 09:00 on 19/01/2011
- Close Gate 3 from 3.0 metres to 2.5 metres at 09:30 on 19/01/2011
- Close Gate 3 from 2.5 metres to 2.0 metres at 10:00 on 19/01/2011
- Close Gate 3 from 2.0 metres to 1.5 metres at 10:30 on 19/01/2011
- Close Gate 3 from 1.5 metres to 1.0 metres at 11:00 on 19/01/2011
- Close Gate 3 from 1.0 metres to 0.5 metres at 11:30 on 19/01/2011
- Close Gate 3 from 0.5 metres to fully closed at 12:00 on 19/01/2011

Please advise the Flood Operations Centre by fax/email once you have completed these operations.

Engineer 2

APPENDIX L - FLOOD OPERATIONS DIRECTIVES

Duty Engineer

APPENDIX L - FLOOD OPERATIONS DIRECTIVES

SOMERSET DAM

Somerset Directive 1

Date: Friday 7 January 2011
Time: 17:00

SEQWATER FLOOD OPERATIONS CENTRE

FACSIMILE MESSAGE

Senior Flood Operations
Engineer 3

Senior Flood Operations Engineer 1

Flood Operations

Engineer 2

Flood Operations
Engineer 4
1.1.63 Flood Event - Operations Directive

TO: Somerset Dam Operators	Date: $07 / 01 / 2011$ Time: $17: 00$ Directive No: 01

Message:

Please open a regulator 100%

Engineer 2
 Duty Engineer

APPENDIX L - FLOOD OPERATIONS DIRECTIVES

Somerset Directive 2

Date: Friday 7 January 2011
Time: 18:00

SEQWATER FLOOD OPERATIONS CENTRE

FACSIMILE MESSAGE

Sentor Flood Operations
Engineer 3

Senior Flood Operations Engineer 1

Flood Operations
Engineer 2

Flood Operations Engineer 4
1.1.64 Flood Event - Operations Directive

TO: Somerset Dam Operators	Date: $07 / 01 / 2011$ Time: $18: 00$ Directive No: 2

Message:

Given the headwater level in Wivenhoe is still rising and may impact upon the open regulator at Somerset in the next 12 hours, it is preferable to close the regulator and open a sluice.

At 19:00, close Regulator \#3 and open Sluice L.

Regards

Engineer 2
Duty Engineer

APPENDIX L - FLOOD OPERATIONS DIRECTIVES

Somerset Directive 3

Date: Saturday 8 January 2011
Time: 11:30

SEQWATER FLOOD OPERATIONS CENTRE

FACSIMILE MESSAGE

Senior Flood Operations
Engineer 3

Senior Flood Operations
Engineer 1

Flood Operations
Engineer 2

Flood Operations
Engineer 4

1.1.65 Flood Event - Operations Directive

TO: Somerset Dam Operators
 Date: 08/01/2011
 Time: 11:30

Directive No: 3
This transmission comprises of this page and 0 other pages.

Message:

Somerset Dam is expected to peak at around mid-day at about EL 100.48 m . As we have exceeded EL 100.45 m (fixed crest level), but Wivenhoe Dam is still rising we will need to implement Strategy S2.

This strategy is aimed at maximising the benefits of the mitigation storage in both Somerset and Wivenhoe dams. Consequently we will endeavour to follow the target line as defined in the manual.

- Please open Sluice M to 100% at 12:00.

Please confirm this gate operation by fax once you have completed the opening.
Regards
Engineer 1

APPENDIX L - FLOOD OPERATIONS DIRECTIVES

Duty Engineer

APPENDIX L - FLOOD OPERATIONS DIRECTIVES

Somerset Directive 4

Date: Sunday 9 January 2011
Time: 08:15

SEQWATER FLOOD OPERATIONS CENTRE

FACSIMILE MESSAGE

Senior Flood Operations
Engineer 3

Senior Flood Operations
Engineer 1

Flood Operations
Engineer 4

1.1.66 Flood Event - Operations Directive

TO: Somerset Dam Operators	Date:	$09 / 01 / 2011$
	Time:	$08: 15$

Directive No: 4

This transmission comprises of this page and 0 other pages.

Message:

Inflows to Somerset Dam are expected to increase in the next few hours due to rain in the last 6 hours with falls up to 75 mm

- Please open Sluice K to 100% at $09: 00$.

Please confirm this gate operation by fax once you have completed the opening.

Regards

Engineer 2
Duty Engineer

APPENDIX L - FLOOD OPERATIONS DIRECTIVES

Somerset Directive 5

Date: Sunday 9 January 2011
Time: 12:30

SEQWATER FLOOD OPERATIONS CENTRE

FACSIMILE MESSAGE
Senior Flood Operations
Engineer 3

Senior Flood Operations
Engineer 1

Flood Operations
Engineer 2

Flood Operations
Engineer 4

1.1.67 Flood Event - Operations Dircetive

TO: Somerset Dam Operators	Date:	$09 / 01 / 2011$
	Time:	$12: 30$

Directive No: 5
This transmission comprises of this page and 0 other pages.

Message:

Inflows to Somerset Dam are expected to increase in the next few hours due to rain in the last 6 hours with falls up to 75 mm

- Please open Sluice N to 100% at $13: 00$
- Please open Sluice J to 100% at $14: 00$

Please confirm this gate operation by fax once you have completed the opening.

Regards

Engineer 2
Duty Engineer

APPENDIX L - FLOOD OPERATIONS DIRECTIVES

Somerset Directive 6

Date: Tuesday 11 January 2011
Time: 04:30

SEQWATER FLOOD OPERATIONS CENTRE

FACSIMILE MESSAGE

Senior Flood Operations	Senior Flood Operations	Flood Operations	Flood Operations
Engineer 3	Engineer 1	Engineer 2	Engineer 4

1.1.68 Flood Event - Operations Directive

TO: Somerset Dam Operators	Date:	11/01/2011
	Time:	$04: 30$
	Directive No: 6	

This transmission comprises of this page and 0 other pages.

Message:

Significant rainfall has fallen in the Upper Brisbane River in the last 12 hours. This has resulted in further inflows into Wivenhoe Dam. To prevent Wivenhoe Dam exceeding the trigger level for implementation of strategy W4 (EL74.00 m AHD) we will need to store floodwater in Somerset Dam.

Therefore we need to reduce releases from Somerset Dam so as to equalise the relative volumes in flood storage.

Please undertake the following operations:-

- Please close Sluice J at 05:00
- Please close Sluice N at 06:00
- Please close Sluice K at 07:00

Please confirm this gate operation by fax once you have completed the requested operations.

Regards

APPENDIX L - FLOOD OPERATIONS DIRECTIVES

Engineer 1
Duty Engineer

APPENDIX L - FLOOD OPERATIONS DIRECTIVES

Somerset Directive 7

Date: Tuesday 11 January 2011
Time: 10:15

SEQWATER FLOOD OPERATIONS CENTRE

FACSIMILE MESSAGE

Senior Flood Operations
Engineer 3

Senior Flood Operations
Engineer 1

Flood Operations
Engineer 2

Flood Operations
Engineer 4
1.1.69 Flood Event - Operations Directive

TO: Somerset Dam Operators	Date:	12/01/2011
	Directive No:	7
	Time:	$10: 15$

This transmission comprises of this page and 0 other pages:
Message:

Please undertake the following operations:-

- Fully Open Sluice L at 10:30.

Please confirm this gate operation by fax once you have completed the requested operations.

Regards

Engineer 4
Duty Engineer

APPENDIX L - FLOOD OPERATIONS DIRECTIVES

Somerset Directive 8

Date: Wednesday 12 January 2011
Time: 10:15

SEQWATER FLOOD OPERATIONS CENTRE

FACSIMILE MESSAGE

Senior Flood Operations
Engineer 3

Senior Fiood Operations
Engineer 1

Flood Operations
Engineer 2

Flood Operations
Engineer 4
1.1.70 Flood Event - Operations Directive

TO: Somerset Dam Operators	Date:	$12 / 01 / 2011$
	Directive No:	8
	Time:	$10: 15$

This transmission comprises of this page and 0 other pages.

Message:

Please undertake the following operations:-

- Fully Open Sluice L at 10:30.

Please confirm this gate operation by fax once you have completed the requested operations.

Regards

Engineer 4
Duty Engineer

APPENDIX L - FLOOD OPERATIONS DIRECTIVES

Somerset Directive 9

Date: Thursday 13 January 2011
Time: 08:15

SEQWATER FLOOD OPERATIONS CENTRE

FACSIMILE MESSAGE

Senior Flood Operations
Engineer 3

Senior Flood Operations
Engineer 1

Flood Operations
Engineer 2

Flood Operations
Engineer 4

1.1.71 Flood Event - Operations Directive

TO: Somerset Dam Operators	Date:	$13 / 01 / 2011$
	Directive No:	9
	Time:	$8: 15$

This transmission comprises of this page and 0 other pages.

Message:

Please undertake the following operations:-

- Fully Open Sluice M at 08:30.

Please confirm this gate operation by fax once you have completed the requested operations.

Regards

Engineer 4
Duty Engineer

APPENDIX L - FLOOD OPERATIONS DIRECTIVES

Somerset Directive 10

Date: Thursday 13 January 2011
Time: 12:30

SEQWATER FLOOD OPERATIONS CENTRE

FACSIMILE MESSAGE

Senior Flood Operations
Engineer 3

Senior Flood Operations
Engineer 1

Flood Operations
Engineer 2

Flood Operations
Engineer 4

1.1.72 Flood Event - Operations Directive

TO: Somerset Dam Operators	Date:	$13 / 01 / 2011$
	Directive No:	10
	Time:	$12: 30$
This transmission comprises of this page and		0 other pages.

Message:

Please undertake the following operations:-

- Fully Open Sluice K at 13:00.

Please confirm this gate operation by fax once you have completed the requested operations.

Regards

Engineer 4
Duty Engineer

APPENDIX L - FLOOD OPERATIONS DIRECTIVES

Somerset Directive 11

Date: Thursday 13 January 2011
Time: 20:45

SEQWATER FLOOD OPERATIONS CENTRE

FACSIMILE MESSAGE

Senior Flood Operations
Engineer 3

Senior Flood Operations Engineer 1

Flood Operations

Engineer 2

Flood Operations
Engineer 4

1.1.73 Flood Event - Operations Directive

TO: Somerset Dam Operators	Date:	$13 / 01 / 2011$
	Directive No:	11
	Time:	$20: 45$

This transmission comprises of this page and 0 other pages.

Message:

Please undertake the following operations:-

- Fully Open Sluice N at 21:00.

Please confirm this gate operation by fax once you have completed the requested operations.

Regards

Engineer 1
Duty Engineer

APPENDIX L - FLOOD OPERATIONS DIRECTIVES

Somerset Directive 12

Date: Sunday 16 January 2011
Time: 21:30

SEQWATER FLOOD OPERATIONS CENTRE

FACSIMILE MESSAGE

Senior Flood Operations
Engineer 3

Senior Flood Operations Engineer 1

Flood Operations

Engineer 2

Flood Operations
Engineer 4

1.1.74 Flood Event - Operations Dircetive

TO: Somerset Dam Operators	Date:	$16 / 01 / 2011$	
		Directive No:	
	Time:	13	
	This transmission comprises of this page and 0 other pages.		

Message:

Please undertake the following operations:-

- Fully Close Sluice K at $22: 00$ on 16/01/2011
- Fully Close Sluice M at 03:00 on 17/01/2011
- Fully Close Sluice L at 07:00 on 17/01/2011
- Fully Open Regulator

Please confirm this gate operation by fax once you have completed the requested operations.

Regards

Engineer 4
Duty Engineer

APPENDIX L - FLOOD OPERATIONS DIRECTIVES

Somerset Directive 13

Date: Sunday 16 January 2011
Time: 21:30

SEQWATER FLOOD OPERATIONS CENTRE

FACSIMILE MESSAGE

Senior Flood Operations

Engineer 3

Senior Flood Operations
Engineer 1

Flood Operations
Engineer 2

Flood Operations Engineer 4

1.1.75 Flood Event - Operations Directive

TO: Somerset Dam Operators	Date:	$16 / 01 / 2011$
	Directive No:	13
	Time:	$21: 30$

This transmission comprises of this page and 0 other pages.

Message:

Please undertake the following operations:-

- Fully Close Sluice K at 22:00 on 16/01/2011
- Fully Close Sluice M at $03: 00$ on 17/01/2011
- Fully Close Sluice L at 07:00 on 17/01/2011
- Fully Open Regulator 12 at 07:15 on 17/01/2011

Please confirm this gate operation by fax once you have completed the requested operations.

Regards

Engineer 4
Duty Engineer
Appendix L

APPENDIX M - FLOOD EVENT LOG

Date	Time	Action	Category	Title
Friday 7 January 2011	8:00 AM	SDWD Model Updated - SDWD-201101060800.xis	Model Run	Flood Officer 9
	8:00 AM	NPD model updated - NPD-201101060800.xls	Model Run	Flood Ofllcer 9
	8:30 AM	Flood Officer 7 spoke with Dam Operator 9 (Stand-in Central Coordinator) about readiness of staff for flood operations. Graham confirms that staff have been rostered and are ready.	Correspondence	Flood Offlcer 7
	8:50 AM	Moreton Bay Regional Council (MBRC) called to query about flows at Fernvale bridge. Endineer 2 provided an update for possible gate operations.	Correspondence	Flood Offlcer 7
	9:05 AM	NPD Operator called to inform that North Pine Dam staff have been rostered and are ready.	Correspondence	Flood Officer 7
	9:40 AM	Dam Operations Manager called to inform that Ipswich City Council (ICC) hasreturned to the office and is contactable. He also requested for a situation update.	Correspondence	Flood Officer 7
	11:00 AM	ICC called for a situation update. Engineer 2 shared the release strategy for tonight.	Correspondence	Flood Officor 7
	11:49 AM	Engineer 2 advised MBRC Call Centre that North Pine Dam will cofiffence gate operations tonight. He requested for MBRC to call him.	Correspondence	Flood Officor 7
	12:00 PM	SDWD Model Updated - SDWD-201101061200.x/s	Model Run	Flood Officer 9
	12:04 PM	MBRC called. Engineer 2 advised her that the latest Nortione Dam gates may be opened will be 7:00pm today. FOC will advise them accordingly.	Correspondence	Flood Officer 7
	12:43 PM	MBRC called. Engineer 2 advised that water will be over Savages Crossing until end of the week.	Correspondence	Flood Officer 7
	12:46 PM	Engineer 2 advised Brisbane City Council (BEX) Wivenhoe Dam will commence gate operations later today.	Correspondence	Flood Officer 7
	1:32 PM	Engineer 2 left message for Somerset Regional Council (SRC) to return his call.	Correspondence	Flood Officer 7
	$1: 35$ PM	Engineer 2 advised MBRC Wivenhoe gate operations will be delayed to Saturday morning. This is due to higher than expected inflows from Lockyed	Correspondence	Flood Officar 7
	1:45 PM	Engineer 2 advised ICC Wivenhoe's gate operations will be delayed till Saturday morning. This is due to higher than expected inflows from Lockyer.	Correspondence	Flood Offleer 7
	1:46 PM	Engineer 2 left messagéfor BCC to return his call.	Correspondence	Flood Offlcer 7
	1:47 PM	Engineer 2 left message for BCC to return his call.	Correspondence	Flood Officer 7 ?
	2:41 PM	MBRC asked fongineer 2 mobile. He wanted to share MBRC's text message informing people living downstream from North R hé Dam.	Correspondence	Flood Offlcer 7
	2:45 PM	BCC called for situation update. Engineer 2 provided an update.	Correspondence	Flood Ofticer 7
	3:00 PM	SLug Model Updated - SDWD-201101061500.xls	Model Run	Flood Officor 9

APPÉNDIX M - FLOOD EVENT LUG

APPENDIX M - FLOOD EVENT LOG

4:20 PM	Engineer 2 phoned ICC advising that the current strategy was to maintain flow in the Brisbane River such that the Fernvale Bridge and the Mount Crosby Bridge could be kept open. However, future rainfall could well impact on those roads remaining open. Closure next Tuesday is a real possibility at this stage.	Correspondence	Flood Offlcer 1.
4:25 PM	Engineer 2 called BCC. A message was left to phone FOC.	Correspondence	Flood Offlcor 1
4:26 PM	Engineer 2 called BCC . A message was left to phone FOC.	Correspondence	Flood Offleer 1
4:27 PM	BCC returned phone call. BCC was advised by Engineer 2 that the current strategy was to maintain a flow in the Brisbane River such that the Fernvale Bridge and the Mount Crosby Bridge could be kept $\oint p$ en. However, future rainfall could well impact on those roads remaining open. Closure next Tuesday is a reatroossibility at this stage. Flow in the Lower Brisbane potentially might reach 3,000 cumecs by next Wednesdayor Thursday.	Correspondence	Flood Officor 1
5:18 PM	Flood Officer 1 left a message with Dam Operator 9 (A/Co-ord) regarding the potential for Fernvale Bridge and Mount Crosby Bridge to be closed, possibly from Tuesday. This may impact on staffing issues for both Wivenhoe and Somerset Dams during this flood event. Request for Dam Operator 9 to contact the FOC ASAP.	Correspondence	Flood Ofticer 1
5:25 PM	BCC returned call to Engineer 2. Engineer 2 advised potential for releasigg up to 2,500 cumecs by Tuesday. With further heavy rainfall, as forecast, the flow in the Lower Brisbane coukthicrease to 3,000 cumecs with potential for closure of Fernvale Bridge and Mount Crosby Bridge by Thursday (póssibly Wednesday). Releases from Wivenhoe are dependant on flows from Lockyer Ck and inflow into Wivenkoe. FOC will continue to update BCC.	Correspondence	Flood Oftlcer 1
5:32 PM	NPD Operator phoned the FOC with a manual reading of EL 20.660 at Lake Kurwongbah. He noted that should NPD gates be closed in the near future, the Lake Kurwongbah tailwater would impact on Youngs Crossing.	Correspondence	Flood Offlcer 1
5:40 PM	Dam Operations Manager phoned Engineer 2 for and date on the current situation.	Correspondence	Flood Officer 1
5:45 PM	Dam Operator 9 returned call and Flood Officer 1 advised that Engineer 2 had requested Dam Operator 9 to factor into his staffing roster of Wivenhoe and Somerset Dams the potential for the Fernvale bridge and the Mount Crosby Bridge to be closed from mid-week sometime, depending on the likelihood of further heavy rainfall.	Correspondence	Flood Officer 1 :
5:58 PM	Engineer 2 called BoM to discuss Wiveritho Dam's release strategy i.e. Major bridge open strategy Vs increased inflow into Wivenhoe resulting fromertrent heavy rainfall. Situation will become clearer in 24 hours time.	Correspondence	Flood Officer 1
6:00 PM	SDWD Model Updated - SDWD-201101091800.x/s	Model Run	Flood Ofticer 9
6:00 PM	NPD model updated - NPD - $201101091800 . x / s$	Model Run	Flood Officer 9
$6: 35 \mathrm{PM}$	The caretaker from the house at the Colleges Crossing Reserve rang FOC to enquire about predicted flood height at the Colleges Crossing Bridge, Engineer 2 referred him to ICC for an update on flood information affecting the Ipswich area. Advised no change in Wiverihoe releases at this stage and the future options were presently unknown.	Correspondence	Flood Otricer 1
7:00 PM	SDWD Modet Updated - SDWD-201101091900.xls, SDWD-201101091900norain.xls, SDWD201101094.900withrain.xls	Model Run	Flood Oftleer9
7:10 PM	FOC called SRC advising him that high releases from Wivenhoe (3000 cumecs) are expected to be necessary in view of heavy rain over the last 3 hours.	Correspondence	Flood Officer 6

APPENDIX M - FLOOD EVENT LOG

7:15 PM	FOC called Seqwater CEO advising him that high rainfall is expected overnight and releases from Wivenhoe \Rightarrow causing damaging flooding are likely to be necessary.	Correspondence	Flood Officer 6
7:15 PM	FOC called Director Dam Safety advising him that FOC is now looking at much larger flows and will have to ramp up releases to around 3000 cumecs as by as early as midnight which is likely to have flooding impacts on low-lying areas of Brisbane.	Correspondence	Flood Otricer 6
7:20 PM	Engineer 2 called BCC advising him of potential for high releases sooner than previously expes ${ }_{\text {c }}$ ed.	Correspondence	Flood Otticor 6
7:25 PM	NPD Operator called to advise dam level is at $39.82 \mathrm{mAHD}, 3$ gates are at increment 2 and two are at increment 1. The two at increment 1 are currently being raised to increment 2 (next few minutes).	Correspondence	Flood Officer 6
8:00 PM	SDWD Model Updated - SDWD-201101092000withnorain.xls	Model Run	Flood Otficers
8:05 PM	Engineer 1 called NPD Operator to confirm last directive is completed. All gates	Correspondence	Flood Officer 6
8:30 PM	ICC returned call and spoke to Engineer 3. He was informed of current situaftion and the likelihood of high releases tomorrow causing flood damage.	Correspondence	Flood Otricer 6
8:50 PM	Engineer 1 called BCC to request copy of flood damages curve from 2007 study. BCC will send a copy tomorrow.	Correspondence	Enginoor 1
8:55 PM	BCC called back and spoke with Engineer 3. Confirmed BCC mbtitisation triggers need to be in place. Status report is in preparation and will be emailed out shortly.	Correspondence	Flood Otficer 6
9:10 PM	Dam Operations Manager called and spoke with Engineer 1. Dam Operations Manager confirmed that releases will need to be ramped up from current 1400 cumecs to 2500 cumecs which will cause flooding in low lying areas of Brisbane. Brisbane flood information centre has not yet been mobilised. Somerset RC has no DTMR A/H contacts and will be contacting them in the moming. Dam Operations Manager will locate DTMR contacts. Confirmed volumes getting close to 1974 levels. Confirmed situation report has gone out.	Correspondence	Flood Officer 6
9:15 PM	BoM called and spoke with Engineer 2. They discussed on rainfall expectations and flood warning requirements for Brisbane. Bremer N Narrill situation being monitored. Actual and projected flows sent to BoM.	Correspondence	Flood Ofticer 6
9:20 PM	ICC spoke with Engineer 1. Emailing DTMR A/H contact to flood room. Kiosk caretaker at Colleges Crossing is being evacuated.	Correspondence	Fiood Officor 6
10:00 PM	SDWD Model Updated - SDUf-201101092200withnorain.xis, SDWD-201101092200-Forecast24hr.xls	Model Run	Flood Officer 9
10:00 PM	NPD model updated - NPD-201101092200.xls	Model Run	Flood Officer 9
10:00 PM	Engineer 3 called Whîenhoe operator (Dam Operator 7) and confirmed current flooding expectations based on rainfall predictions and expected impacts.	Cortespondence	Flood Officer 6
10:15 PM	FOC called SRC. A situation update was provided. Fernvale Bridge closure likely to be required in view of probable releases from Somerset to Wivenhoe.	Correspondence	Flood Officer 6
10:20 PM	Dam Operations Manager called and spoke with Engineer 1. A teleconference with Water Grid Manager and DERM was Esmpleted. Explained 9:00pm situation report. Water Grid Manager will be distributing media release in the mosting regarding closure of bridges.	Correspondence	Flood Officer 5

	10:30 PM	Mt Crosby WTP Manager called and spoke with Engineer 1. He was concerned the guardrails need to be taken off bridge before bridge goes over. Engineer 1 recommended getting the rails straight off in view of increasing flow expectations overnight. Flow expected to get to 2000 ML by morning.	Correspondence	Flood Oticer 6 .
	10:30 PM	Engineer 3 called Wivenhoe Dam operator (Dam Operator 7) requesting for a visual inspection of Fersisale Bridge.	Correspondence	Fiood Officer 6
	10:40 PM	Dam Operator 7 (Wivenhoe Dam) called discussed Fernvale Bridge situation with Engineer 3. Water was lapping the bridge girders.	Correspondence	Fiood Otricer 6
	10:45 PM	Dam Operations Manager called and spoke with Engineer 1. Dam Operations Manager willo contacting Dan Spiller to confirm closure of Mt Crosby Weir Bridge. Police are on site.	Correspondence	Flood Officer 6
	11:20 PM	Engineer 3 called ICC and left message regarding rates of rise at Mt Crosby. Bridge will be inundated within the next couple of hours.	Correspondence	Flood Officer 6
	11:25 PM	Engineer 3 called ICC regarding rates of rise at Mt Crosby (approx 200 mm - 3 m going over) - will be inundated within the next couple of hours. Confirmed more rain is on the way and releases will need to be increased.	Correspondence	Floed Officer 5
	11:25 PM	Engineer 1 spoke with Dam Operator 7 (Wiverhoe Dam). Water is up to the centreline of the Chine Gully approach to Fernvale Bridge. Esk Police are on site and are considering placing road closure signs in Fernvale, Dam operators living in Fernvale will be mobilised to the dam by Police prior to closure.	Correspondence	Flood Officer 6 :
	11:30 PM	Engineer 3 called SRC and left message advising of situatian.	Correspondence	Flood Offlcor 6
	11:35 PM	Engineer 1 called DTMR and left message regarding current road closure situation.	Correspondence	Flood Officer 6 :
	11:35 PM	Engineer 3 called SRC and left message for call to kP +returned re Fernvale Bridge situation.	Correspondence	Flood Otficer 6
	11:38 PM	Engineer 3 called SRC CEO and left message regarding Fernvale Bridge situation and requested call be returned ASAP.	Correspondence	Flood Officer 6
	11:40 PM	SRC called back and spoke with Engineer's. Engineer 3 confirmed the high flow levels and anticipated further level rises will impacts road crossings. Fermwale Bridge was about to go out. Informed of the levels and inflows to Wivenhoe and Somerset and the expectation for more rain.	Correspondence	Flood Ofticer 6
Monday 10 January 2011	12:00 AM	SRC called again and spoke with Engineer 3. Engineer 3 confirmed Police were on site at Fernvale Bridge and were contemplating road closure signs at Fernvale. Confirmed message has been left with DTMR but call not yet returned.	Correspondence	Floed Officer 5
	12:15 AM	Mt Crosby WTP Manager called to confirm Mt Crosby Weir road is closed (call taken by Flood Officer 6). Confirmed that ICC has been rotified and message left with DTMR.	Correspondence	Flood Offlcer 6
	12:45 AM	BCC called and spoke with Engineer 3 . Indicated that 3500 cumecs is the damaging flow level for Brisbane urban areas. The manual documents 4000 cumecs as the damaging level. Engineer 3 undertook to take this into consideration when preparing the current situation report, and would not refer to damage levels.	Correspondence	Flood Officers
	12:55 AM	Engineer 3 called Dam Operations Manager to discuss BCC's view on damaging flow. Engineer 3 confirmed that if flousiwere kept below 3500 the fuse plug would be triggered. Agreed that situation reports will not allude to damage feyels - the councils can make decisions on what to report in this regard.	Correspondence	Flood Officer 6

APPENDIX M - FLOOD EVENT LOG

1:00 AM	SDWD Model Updated - SDWD-201101100100withnorain.xls	Model Run	Flood Officer 9
1:00 AM	Engineer 1 called Dam Operator 1 (Somerset Dam) regarding purported dam stability issues (via ICC - twoleports received). Dam Operator 1 conflmed that inspection had revealed no issues.	Correspondence	Flood Officer 6
3:00 AM	SDWD Model Updated - SDWD-201101100300withnorain.xIs	Model Run	Flood Officer 9
3:00 AM	NPD model updated - NPD-201101100300.xls	Model Run	Flood Officer 9
4:10 AM	Engineer 3 discussed Wivenhoe status and release strategy with Dam Operator 7.	Correspondence	Fiood Officer 6
5:00 AM	SDWD Model Updated - SDWD-201101100500withnorain.xls	Model Run	Fiood Officers
5:00 AM	Dam Operator 4 called and discussed Somerset situation with Engineer 1.	Correspondence	Flood Officer 6
5:00 AM	NPD model updated - NPD-201101100500.xls	Model Run	Flood Officer 9
5:05 AM	Dam Operations Manager called and received situation update from Engineer 3.	Correspondence	Flood Officer 6
5:20 AM	Engineer 1 called BoM regarding next forecast update - due at 9:00 arm	Correspondence	Flood Officer 6
6:00 AM	Send out situation report for this morning.	Correspondence	Fiood Officer 8
7:40 AM	Talked to BoM - we are in general agreement about current flows in the Brisbane River.	Correspondence	Flood Officer 8
$8: 30 \mathrm{AM}$	FOC left a message for BCC to call back.	Correspondence	Flood Officer 8
8:38 AM	Talked to BoM to discuss our planned strategy i.e. to wharintain gate openings for the next 24 hrs . This increases flood storage by 75000 ML which is equivalent to $8,2 \mathrm{~m}$ rise and limits flows in the Brisbane to $3000 \mathrm{~m} 3 / \mathrm{s}$ this provides a buffer for potential runoff for the next 8 年 hrs .	Correspondence	Flood Officer 8
9:38 AM	Conference call with BCC - informed them that release from Wivenhoe will be maintained at $2000 \mathrm{~m} 3 / \mathrm{s}$ for the next 24 hrs . This will be revised in 24 hrs . The strategy is to limit the flows to $3000-3500 \mathrm{~m} 3 / \mathrm{s}$. At $3500 \mathrm{~m} 3 / \mathrm{s}$ about 322 (the whole property) will be submerged and about 7000 properties will be affected somehow damage bill $\$ 7 \mathrm{mil}$. If the rainfall in the Bremmer and Lockyer increases substantially - it is likely the flows from these catchments can peak at $1000 \mathrm{~m}^{3} / \mathrm{s}$ (on top of Wivenhoe release)	Correspondence	Flood Officor 8
10:08 AM	Received QPF - 100 mm in Erisbanne and 150 mm North Pine catchment	Other	Flood Officor 8
10:15 AM	Received phone call from EMQ and Logan/Scenic Rim District Disaster Coordinator - gave them the same information as what we gave BCC before.	Correspondence	Flood Officor 8
10:46 AM	BoM to inform that Engineer 2 can do the model and with $600 \mathrm{~m} 3 / \mathrm{s}$ in the Bremmer the flows in Brisbane will go up to $3600 \mathrm{~m} 3 / \mathrm{s}$. Bolv will discuss with BCC.	Correspondence	Fleed Offilcer 8
11:14 AM	ICC called to clarify our strategy. Gave him the same info as above.	Correspondence	Flood Officer 8
1:00 PM	SDWD 敉odel Updated - SDWD-201101101300withnorain.xls	Model Run	Flood Officor 9
12:02 PM	Spoke with Seqwater CEO to answer elaborate on Situation Report and inform him of large rainfalls currently occurring in the Wivenhoe catchment.	Correspondence	Flood Officer 8

APPENDIX M - FLOOD EVENT _JG

-

12:33 PM	Called BCC twice. No answer, left messages.	Correspondence	Flood Officer 8
12:36 PM	Spoke with ICC, informed them that we are moving strategy from urban damage control to dam safety priority	Correspondence	Flood Oflicer 8
12:41 PM	NPD operator called to inform FOC the level is dropping. Instructed them not to close gates - heavy rafiffell in catchment.	Correspondence	Flood Oflcer 8
2:00 PM	Send out third situation report for today.	Correspondence	Flood Officor 8
2:30 PM	Called BCC 3 times before getting through to Flood Information Centre (FIC). Discussed latest strategy with them i.e. changing from "Flood Mitigation" to "Dam Safety". We will start opening Wivenhoe gátes from 15:00.	Correspondence	Flood Officer 3
3:00 PM	Called Disaster Coordinator. No answer.	Correspondence	Flood Officer 8
4:00 PM	NPD model updated - NPD-201101101600.xls	Model Run	Flood Offlcor 9
3:15 PM	Had conference call with BoM. They agree with FCC on model discharge results. However, BoM included 6 hrs of additional rain which takes the discharge to $4600 \mathrm{~m} 3 / \mathrm{s}$	Correspondence	Flood Officer 8 :
4:09 PM	Engineer 2 spoke to a Police Officer about Cressbrook Dam - advising 千ŕat FOC does not manage Cressbrook but gave him a contact at Toowoomba RC	Correspondence	Flood Officor 8
5:00 PM	SDWD Model Updated - SDWD-201101101700withnorain.xls, SDWD-201101101700with50mmrain.xls	Model Run	Flocd Officer 9
5:09 PM	Dam Operator 2 phoned and reported water from Wivenhoein getting into the hydro	Correspondence	Flood Officer 8
6:06 PM	Get weather update from BoM - the forecast now is - still more of the same of what we had today.	Other	Flood Officer 8
6:45 PM	North Pine Dam operator raised concerns with seño्d groups using Lake Kurwongbah for rowing exercise while water is running over the spillway at 500 mm , He was referred to Rangers.	Correspondence	Flood Officer 8
7:30 PM	Dam Operator 2 (Somerset) called to inform that Somerset hydro is inundated with water. He believes he has located source of leak, has tightened seals to prevent further leakage. He also noted that there is oil in the water.	Correspondence	Flood Oticer 9
8:00 PM	SDWD Model Updated - SDWD-20 (40.1 102000withnorain.xls, SDWD-201101102000-Lockyer.xls, SDWD-201101102000-TMinflows.xls	Model Run	Flood Officor 9
20:00 PM	BoM called to advise of situation regarding flows in Lockyer. Estimated very heavy localised rainfall (eg. 600 mm in few hours) on Toowoomba escarpment to cause observed flood flooding. Will monitor via Glenore Grove gauging station.	Correspondence	Flood Officer 9
20:45 PM	Seqwater Mt Crosby $\mathrm{MATP}^{\text {P }}$ Manager called to get situation update. Advised that at 20 m there will be issues at Mt Crosby WTP. FQCto advise WTP Manager if likely to reach that level.	Correspondence	Flood Officer 9
21:00 PM	Spoke to Director Dam Safety regarding strategies for reducing Wivenhoe release to mitigate latest event in Lockyer. He endorsed variation to manual to operate at minimum gate settings to create gap to allow peak of flash flood to pass. Also endorsed concept allowing Wivenhoe HW to rise above 74 mAHD briefly.	Correspondence	Food Officer 9
21:30 PM	Proviged ICC with situation update.	Correspondence	Flood Officor 9
20:20 PM	Spoke to BoM regarding reducing Wivenhoe release to accommodate peak of Lockyer flash flood.	Correspondence	Flood Officer 9

APPENDIX M - FLOOD EVENT LOG

	11:20 PM	Spoke to Dam Operations Manager to give situation update. He agreed that if possible to reduce flow from Wivenhoe to accommodate Lockyer flash flood peak.	Correspondence	Fliod Officer 9
Tuesday 11 January 2011	12:00 AM	SDWD Model Updated - SDWD-201101110000withnorain.xls	Model Run	Flood Ofllcors
	12:00 AM	NPD model updated - NPD-201101110000.x\|s	Model Run	Flood Offlcors
	12:15 AM	Spoke to BCC to update on current release strategy.	Correspondence	Flood Officor9
	1:30 AM	Spoke to SRC. Somerset Regional Council offices were flooded and email addresses are no ronger working. Tony can be emailed on an alternative email address, which has been recorded.	Correspondence	Flood Oflcer 9
	2:15 AM	BCC called to confirm forecast peak height of 3.1 m at Brisbane city gauge for Wednesday high tide. This is based on 4600 cumecs modelled by BoM. Provided James with update on current release strategy.	Correspondence	Flood Offlcer 9
	3:00 AM	SDWD Model Updated - SDWD-201101110300withnorain.xls	Model Run	Flood Officer 9
	3:15 AM	BCC has provided inundation forecast for Brisbane city to assist with devising strategy to manage Wivenhoe releases	Correspondence	Flood ofticer 9
	5:15 AM	Spoke to BoM regarding reducing Wivenhoe release to accommodate peak of Lockyer flash flood. Update: Consensus was that reducing release from Wivenhoe would no Dapger be feasible due to attenuation of Lockyer peak and significant additional rainfall in upper Brisbane during the night.	Correspondence	Flood Offlcer 9
	7:00 AM	SDWD Model Updated - SDWD-201101110700withnorain.xls.	Model Run	Flood oficor 9
	7:00 AM	NPD model updated - NPD-201101110700.xls 5	Model Run	Flood Offlcor 9
	7:20 AM	Engineer 2 called Seqwater CEO to appraise of latest situation of Wivenhoe and lower Brisbane	Correspondence	Flood Oflicor 4
	7:22 AM	Engineer 2 called BoM to appraise of situation) BoM unable to talk and will call back.	Correspondence	Flood oftcer 4
	7:35 AM	BoM called back. Full appraisal of Seqwater strategy. Both Seqwater and BoM models results were discussed in detail, and generally agreed with each other.	Correspondence	Flood ofticer 4
	7:51 AM	Called Dam Operator 10 (Wivenho ${ }^{\text {a }}$ Dam) advised that gates opening at Wivenhoe are imminent.	Correspondence	Flood Offlcer 4
	7:56 AM	Engineer 2 called BoM. Advised BoM that Wivenhoe will ramp up to a minimum release of $3700 \mathrm{~m} 3 / \mathrm{s}$.	Correspondence	Flood Offlcor 4
	7:59 AM	Engineer 4 called SeqwaterCEO and advised that releases from Wivenhoe will reach $3700 \mathrm{~m} 3 / \mathrm{s}$ at a minimum, and BoM has been informe ${ }^{(t i k e l y}$ to affect Moggill 24 hours later. Phone call terminated due to bad connection.	Correspondence	Flood Officer 4
	8:01 AM	Seqwater CEO returned call. Engineer 4 advised that model to be run for BoM first and results to be past to BoM and BCC immediately. Rain likely to continue today	Correspondence	Fiood Offlcor 4
	8:05 AM	NPD Operaforinformed that levels are still rising and another directive is required. Engineer 4 advised to proceed as per operations manual.	Correspondence	Fiood Officor 4
	8:09 AM	Advised Dam Operator 10 (Wivenhoe Dam) that Wivenhoe Directive was coming through in a matter of minutes.	Correspondence	Fiood Ofllcor 4

8:10 AM	Engineer 4 called Director Dam Safety to advise of current Wivenhoe situation - Will exceed EL74m. Rampingyp gate opening to a minimum of 3700 and gate operations will progress.	Correspondence	Flood Offlcer 4
8:11 AM	Engineer 2 called BCC flood information centre (Duty Officer). Wivenhoe releases will reach $3700 \mathrm{~m} 3 / \mathrm{s}$ at a minimum and higher flows are possible.	Correspondence	Flood Officer 4
8:15 AM	Engineer 4 called Dam Operations Manager to advise of the situation that Wivenhoe will increase to $3700 \mathrm{~m} 3 / \mathrm{s}$ as a minimum.	Correspondence	Flood Officor 4
8:16 AM	Engineer 2 called SRC and left a message.	Correspondence	Flood Offlcer 4
8:20 AM	Engineer 4 Called Dam Operator 10 (Wivenhoe Dam) and advised more gate opening ditectives are coming.	Correspondence	Flood Officer 4
8:21 AM	Engineer 2 called ICC to advise of situation and that Wivenhoe releases to be at a minimum of $3700 \mathrm{~m} 3 / \mathrm{s}$	Correspondence	Flood Officer 4
8:25 AM	Engineer 4 called North Pine Dam operator. Verbal directive to open gates, faxed directive to follow before 9am.	Correspondence	Flood Officer 4
8:50 AM	Seqwater CEO called Engineer 2 mobile requesting 'worst case' scenario	Correspondence	Flood Officer 4
8:50 AM	Dam Operator 7 from Wivenhoe called informing that Wivenhoe has (ost'power, high voltage fuse blown. Hydro outlet is shut off.	Correspondence	Flood Officor 4
9:09 AM	Engineer 4 called Seqwater Tactical Maintenance Planner, advised that Wivenhoe has lost power, possibly blown high voltage fuses. Maintenance Planner to resolve issue.	Correspondence	Flood Officor 4
9:12 AM	NPD Operator called, NPD at 40.140 mHAD all gates atts, currently heading to setting 7 .	Correspondence	Flood Officor 4
9:13 AM	Energex called. All incoming power has been lost at Wivenhoe.	Correspondence	Flood Officer 4
9:16 AM	Engineer 4 called MBRC and left message: ventlarge inflows into North Pine Dam has resulted in steep gate openings. Flood downstream can be expected	Correspondence	Flood Officor 4
9:17 AM	Engineer 4 called MBRC and informed that very large inflows into North Pine Dam have resulted in steep gate openings. Flood downstream can be expected. Strathpine Rd (Old Gympie Rd) to be flooded within next hour.	Cortespondence	Flood Officer 4
9:21 AM	Dam Operator 2 from Somerset cafed Engineer 2. Water ingress through doors at the bottom of dam	Correspondence	Flood Officer 4
9:22 AM	Engineer 4 advised NPD Operator that Strathpine Rd is expected to be closed.	Correspondence	Fliood Oftricor 4.
9:26 AM	Engineer 4 advised NPD Operator verbally that all gates can go to 9 increments based on water level as per manual.	Correspondence	Flood Officor 4
9:40 AM	Engineer 2 called Flood Officer 7 and requested a technically knowledgeable person be dispatched to test HF radio links and satellite phone are in working condition	Correspondence	Flood Officor 4
9:51 AM	Voicemail-Ractical Maintenance Planner left message. He's contacted Energex and Energex suspect a dity feed. Currently aft helicopters are grounded. Specialist Trade Technician is lead at Mt Crosby. Energex will get as close as thex can and get helicopter lift when possible.	Correspondence	Flood Officor 4
10:00 AM	NPD model updated - NPD-201101111000.xls	Model Run	Flood Offlcer 9

APPENDIX M - FLOOD EVENT LOG

$\begin{aligned} & 10: 25 \mathrm{AM} \\ & 10: 29 \mathrm{AM} \end{aligned}$	North Pine Dam Operator called to report Lake level at EL 40.490 mAHD . All gates currently at setting No. 10 Stan from Seqwater called Engineer 2. In conference with Principal Dams and Weirs Planning. Internal questioning of release strategy. Internal discussion regarding current approved strategy.	Correspondence Correspondence	Fiood Officor 4 Flood Officor 4
10:45 AM	Engineer 4 advised MBRC of current situation.	Correspondence	Flood Officer 4
10:54 AM	Dam Operations Manager called. Bad line and disconnected.	Correspondence	Flood Officor 4
11:00 AM	SDWD Model Upciated - SDWD-201101111100withnorain.xls	Model Run	Flood Officor 9
11:01 AM	Message received by Engineer 4. Kilcoy Police rang Somerset, Engineer 4 advised general status information to be provided by dam operators, predictions to go through FOC.	Correspondence	Flood Officor 4
11:02 AM	Seqwater CEO requested update on situation.	Correspondence	Flood Ofticor 4
11:04 AM	Engineer 4 called Dam Operator 7. Discussed that if forecast rain falls, fuse plug	Correspondence	Flood Officor 4
11:06 AM	FAX not working at Wivenhoe! $<$	Other	Flood Officer 4
11:07 AM	BoM called. Inflow into NPD of 1500cumecs. Advised Wivenhoe strategy to be revised.	Correspondence	Flood Ofticor 4
11:17 AM	Principal Darns and Weirs Planning called Engineer 2 - on the way to talk to Grid Manager. Engineer 2 advised current strategy is 3 hourly.	Correspondence	Flood Officor 4
11:19 AM	Engineer 4 called MBRC. Advised North Pine still rising. Current releases to exceed 2000cumces.	Correspondence	Flood Officer 4
11:30 AM	North Pine Dam operator called to report lake level $\sqrt{\text { g }} 40.740 \mathrm{mAHD}$. Water level rising slowly. All gates now at setting 14.	Correspondence	Flood Offlcor 4
11:38 AM	Engineer 2 called BoM. Unable to contact BoM. Will call back.	Correspondence	Flood Officer 4
11:38 AM	Engineer 4 called Seqwater CEO and advised that releases at Wivenhoe will be ramped up to 4000 cumecs and strategy will be revised on an hourly basisis. In reality releasing slightly less than the Flood Ops manual.	Correspondence	Flood Officer 4
11:51 AM	Incoming Phone call from Engineer 1. Advised SS that Wivenhoe will ramp up to 4000 cumecs. Also advised that staff likely to stay in offices overnight.	Correspondence	Flood Officor 4
11:56 AM	Engineer 4 called MBRC andeft message again. Outfow will exceed 2000cumecs	Correspondence	Flood Officer 4
11:57 AM	Engineer 4 called MBRC. Left message: North Pine Dam outflow likely to exceed 2000cumecs.	Correspondence	Flood Officer 4
11:59 AM	Engineer 4 called M1BRC. Left message, outflow from North Pine Dam will exceed 2000cumces.	Correspondence	Flood Officer 4
12:04 PM	North Pine Darn Operator called to report lake level at EL 40.883 mAHD . Gates are currently set at setting 16.	Correspondence	Flood Officer 4
12:10 PM	Flood Officen called from FOC satellite phone. Made contact with Somerset and North Pine. Connection issues with Lapdlite to Wivenhoe.	Correspondence	Flood Officer 4
12:17 PM	MBRC called. Engineer 2 advised discharge in excess of 1989 flood (1500 cumecs). Current releases in excess of 2000cumecs.	Correspondence	Flood Officer 4

APPENDIX M - FLOOD EVENT _JG

$\begin{aligned} & \text { 12:30 PM } \\ & \text { 12:42 PM } \end{aligned}$	North Pine Dam Operator called to report lake level is now at EL 40.950 mAHD and rising. Gate settings at 17.2 Redlands Shire Council called requesting information for Lesley Harrison. Was told to call Operations Coordinator South.	Correspondence Correspondence	Flood Officor 4 Fiood Officer 4
12:42 PM	Call from Mary Valley Lead Operator. Asked what is required of the Northern dams. Was advised to ino more closely when/f 1 in 50 year event occurs.	Correspondence	Flood Officer 4
1:02 PM	North Pine Dam Operator called to report Lake level EL. 41.040 m AHD . Gate settings at setting 18.	Corespondence	Flood Oflice
1:26 PM	Seqwater CEO called and requested the FOC request the BoM to consider if Wivenhoe	Correspondence	Flood Offlice
1:44 PM	North Pine Dam called on Satellite phone to confim it is operational.	. Correspondence	Fiood oficer 4
1:50 PM	North Pine Dam Operator called to report lake level at EL 41.105 mAHD . Gate	Correspondence	ficeor
1:56 PM	Dam Operations Manager requesting status update.	Correspondence	Flood Officor 4
2:00 PM	SDWD Model Updated - SDWD-201101111400withnorain.xls ©	Model Run	Fibod officer 9
2:24 PM	Seqwater Wivenhoe Admin Officer called to pass on message. QLD Fire Rescue called to enquire about Wivenhoe Releases. Unable to call at this stage.	Correspondence	Flooc Oticor 4
2:37 PM	Seqwater CEO called to discuss current situation.	Correspondence	Flood Oflicer 4
2:46 PM	North Pine Dam Operator called to report lake level steady at 41.110 for last 30 minutes.	Correspondence	Fiood ofticer 4
2:53 PM	North Pine Dam is isolated as per conversation withegerator.	Correspondence	Flood Officor 4
3:00 PM	NPD model updated - NPD-20110111500.x\|s	Model Run	Flood Officer 9
3:06 PM	Manager WTP Operations North (Seqwater) Catied to enquire about the current release rate from Wivenhoe Dam.	Correspondence	Flood Ofticer 4
3:14 PM	Seqwater CEO called to discuss the proposed release of 10,000 cumecs. Engineer 4 and Engineer 2 explained release strategy is constantly being revised.	Corespondence	Flood ofticer 4
3:49 PM	BoM had a conference with Enginfer $1,2,3$ and 4 about current release strategy and possible maximum release scenario of $10000 \mathrm{~m} 3 / \mathrm{s}$. This yoryda be of a similar magnitude to the 1893 event ($\sim 8.36 \mathrm{~m}$ in Brisbane Port Office)	Correspondence	Flood Ofticer 4
3:54 PM	Manager WTP Operations North (Seqwater) called and talked to Engineer 4 regarding current inflow strategy	Correspondence	Flood Officer 4
3:58 PM	Called NPD Operator (Wivenhoe Dam) to check if all is ok, levels are slowly reducing.	Correspondence	Flood Officor 4
4:29 PM	Lowood Police rang to request water level of Wivenhoe and discuss the current release strategy with respect to the fuse plug (conversed with Flood Officer 9).	Correspondence	Flood Ofticer 4
4:33 PM	Phone calrwin Engineer 2 and Seqwater CEO. Discussed that even though the magnitude flood in Brisbane is similar to tg74 flood event, the no-dam flood would be significantly larger without Wivenhoe.	Correspondence	Flood Officor 4
4:41 PM	Director Dam Safety phone call. He requested more technical information in the status reports released by Duty Engineers. Director Dam Safety will send through an example of the technical data requested in the report.	Correspondence	Fliood offlcor 4

APPENDIX M - FLOOD EVENT LOG

4:46 PM	Principal Incident and Emergency Management (Seqwater) called to request update in inflow/outfow of Wivensoe Dam.	Correspondence	Flood Oricer 4
5:00 PM	SDWD Model Updated - SDWD-201101111700withnorain.xls	Model Run	Flood Oricer 8
5:12 PM	Engineer 4 called North Pine Dam operator regarding gate operating strategy. Engineer 4 advised fokeep gates at current setting until water is clear of the controls. Gate closing strategy then to follow Flood Maryal	Correspondence	Flood Officer 4
5:22 PM.	BoM, Engineer 2 and Engineer 3 discussed current Wivenhoe inflows and anticipated outflows. Engineer 2 confirmed that 7500 cumecs is still likely early tonight.	Correspondence	Food Ofticer 4
5:27 PM	North Pine Dam operator called to report of NPD level EL 40.7 m AHD. Engineer 4 vefidly advised 10 minute gate closure intervals is ok until 39.9 m AHD - then back to 15 min intervals.	Correspondence	Food Officer 4
5:48 PM	Dam Operations Manager asking Tarong Energy to hoid off releasing water from Splityard Creek.	Correspondence	Flood officer 4
6:00 PM	NPD model updated - NPD-20110111800.x\|s, NPD-20110111800 Final.xisO	Model Run	Flood Officer 9
6:00 PM	SDWD Model Updated - SDWD-201101111800withnorain.xls	Model Run	Flood Officer 9
6:04 PM	Mary Valley Lead Operator called to advise he is unable to reach 2 abe Macdonald to take readings.	Correspondence	Flood Officor 4
6:07 PM	Recap of current release strategy amongst Duty Engineers. Current Wivenhoe scenario: 74.9 m - all gates at 12 m . Won't go to 13 m settings until level reaches 75.0 m AHD.	Correspondence	Flood Officor 4
6:35 PM	Dam Operator 2 (Somerset Dam) called to confirm all is good.	Correspondence	Flood Officer 4
6:36 PM	Bitl Stevens called to inform team he is cut off due to flood waters and unable to come in.	Correspondence	Flood Officer 4
6:41 PM	Tarong Energy confirmed releases from Splityald creek have stopped.	Correspondence	Flood Officor 4
6:56 PM	Daryl Hicky informed that tailwater gauge appears to be OOA. Confirmed by Engineer 2.	Correspondence	Flood Oticor 4
7:00 PM	Spoke to NPD operator who confirmed 4 hat North Pine gate settings were at 17, with level of 40.5 . Closing sequence was still to close in 10 minete increments down to level 39.9 , at which time increments would increase to 15 minutes.	Correspondence	Flood Oticor 9
7:10 PM	NPD Operator rang, is concerned that the level is dropping too fast.	Correspondence	Flood Oticor 3
7:30 PM	Dam Operator 7 (Wivenhoedam) called to report that Wivenhoe Level 74.97 mAHD is holding.	Correspondence	Flood Oticer 3
7:30 PM	North Pine Dam Operator rang to say he is behind in gate settings.	Correspondence	Flood Oticor 3
7:25 PM	Engineer 3 called North Pine Dam Operator to advise that a directive will be sent to move all gates down to 11 m .	Correspondence	Flood OMlicer 3
7:45 PM	North Pine Dam Operator called FOC. Engineer 4 clarified directive 19 to drop gates from 16 to 11 in one go, at 15 minutes intervals.	Correspondence	Fiood Oticer 3
8:00 PM	BoM rang. Unofficially Engineer 2 advised that things have stabilised. Also advised predicted peaks at various sites.	Correspondence	Fioco Otricer 3

APPENDIX M - FLOOD EVENT LJG

8:25 PM	Tactical Maintenance Planner rang to advise that the high voitage feeder to Wivenhoe will not be restored for the duration of this event. Engineer 4 advised that Wivenhoe is operating successfully on the generator, and they have a fair bit of diesel. There are still 2 other backups to operate the gates.	Correspondence	Flioad Oftcer 3
8:25 PM	Colliers Building Services rang back. Engineer 1 asked about power supply to 179 Turbot Street. Codtiees Building Services said to email our power requirements.	Correspondence	Flood Officer 3
8:30 PM	Dam Operator 7 (Wivenhoe Dam) called to advise that Wivenhoe's level is 5 mm down.	Correspondence	Flood Officer 3
8:30 PM	Engineer 1 called Colliers Building Services and left a message to call back (regarding los Sof power to the 179 Turbot Street)	Correspondence	Flood Officor 3
8:30 PM	Engineer 1 rang SunWater to advise that power will be shitting down in the CBD tomorrow morning.	Correspondence	Flood Officer 3
8:35 PM	Engineer 1 rang SunWater to advise the power situation.	Correspondence	Flood Oflicer 3
8:35 PM	Seqwater CEO called FOC to speak with all duty engineers on the operating strategies for Wivenhoe releases.	Correspondence	Flood Oflloer 3
8:40 PM	Flood Officer 7 called FOC to ensure we received the Energex messageregarding power shutdown to the CBD.	Correspondence	Flood Officor 3
8:45 PM	SunWater rang. Engineer 1 advised that Energex will be cutting power to the CDD in the moming. SunWater will call Mike Minter and the security guys for Mineral House.	Correspondence	Flood Oticor
8:50 PM	North Pine Dam Operator called to report NPD Level at EL 40.07 mAHD . Gates are all at 11 increments.	Correspondence	Flood Ofticer 3
8:55 PM	Seqwater CEO rang asking about possibly reducing releases. Engineer 2 advised that we are seriously considering it, but this would have little effect on the levels in Brisbane River. CEO would like technical reports every hour throughout the night.	Correspondence	Fliod Ofticor' 3
9:00 PM	Engineer 1 emailed Colliers Building Servicesxyth our building power requirements.	Correspondence	Flood Office
9:05 PM	Engineer 2 rang BoM to advise that power to the CBD may be cut and send him actual and releases report.	Correspondence	Flood Officer 3
9:10 PM	SunWater called Engineer 1. SunWater advised he spoke to Colliers Building Services and is getting an Energex contact.	Correspondence	Flood Ofticor 3
9:20 PM	SunWater rang. Mike Minter told them we may not be able to have air conditioning.	Correspondence	Flood Oticer 3
9:25 PM	Engineer 1 called SunWater Colliers Building Services got back to him and has Haywoods Electrical lined up for tomorrow morning.	Correspondence	Flood Ofticer
9:30 PM	North Pine Dam Operator called. They are still behind in gate closures:	Correspondence	Fiood ofitcer 3
9:35 PM	Engineer 4 rangto discuss the latest directive to raise Wivenhoe Dam. Engineer 4 suggested not raising.	Correspondence	Flood Officer 3
9:40 PM	Flood Officer 9 called Dam Operator 7 (Wivenhoe Dam) to obtain a current level. EL 74.9? Gates have been raised to 11.5 m .	Correspondence	Fiood Oflcer 3
10:00 PM	SDWW Model Updated - SDWD-201101112200withnorain.xls	Model Run	Fiood Officer 9
10:00 PM	SunWater rang to advise the phone number for Steve from Energex 0418186814	Correspondence	Flood Officer 3

APPENDIX M - FLOOD EVENT LOG

	$\begin{aligned} & 10: 00 \mathrm{PM} \\ & 10: 30 \mathrm{PM} \end{aligned}$	SunWater rang requesting Engineer 1 mobile number to pass on onto Energex. SunWater rang to say Geoff White has pleaded our case with the CEO of Energex and it is likely 179 Turbot Street will not lose power.	Correspondence Correspondence	Flood Officer 3 Flood Officor 3
	10:35 PM	Dam Operator 7 (Wivenhoe Dam) called to report lake level of 74.94mAHD@ 10:30hrs. $\sim^{\text {a }}$	Correspondence	Flood Offleer 3
	11:00 PM	Dam Operator 7 (Wivenhoe Dam) called to report lake level of 74.92 mAHD @ 11:00hrs.	Correspondence	Fliod Oftice
	11:10 PM	Dam Operations Manager rang to request discharge from Wivenhoe when the gates are loyered to 10 m . Advised $6100 \mathrm{~m} 3 / \mathrm{sec}$.	Correspondence	Flood Offlcer 3
	11:30 PM	Flood Officer 9 called Dam Operator 7 (Wivenhoe Dam) to obtain a current level. EL 74.9 ? Gates have been raised to 11.5 m .	Correspondence	Flood Othler 3
Wednesday 12 January 2011	12:30 AM	Dam Operator 7 (Wivenhoe Dam) called to report lake level of 74.88 mAHD @12:30hrs.	Correspondence	Flood Officor 3
	1:00 AM	SunWater called to provide Energex contact details. Energex indicated that they didn't believe 179 Turbot St would be disconnected from power grid in the morning.	Correspondence	Flood Officer 9
	1:15 AM	Engineer 1 rang Dam Operator 7 (Wivenhoe Dam) advising next djfeetive. We want to get releases down as quick as possible while still lowering lake levels. Advised that we max aossibly have a communications problem in the morning if power to 179 Turbot Street is cut.	Correspondence	Flood Ofticer 3
	2:10 AM	BCC rang enquiring about a release strategy. Advised one will be issued at about 3:00am. Talked about the activities of the last 24 hours.	Correspondence	Flood Ofticor 3
	3:10 AM	Engineer 3 rang NPD Operator and advised no creakges to gate settings planned for the next hour or so.	Correspondence	Flood Offeer 3
	3:30 AM	Seqwater Mt Crosby WTP Manager called enquiring about levels at Mt Crosby.	Correspondence	Fiood Ofticer 3
	3:50 AM	Engineer 1 called BoM advising him thatbeciause inflows are not as much as earlier anticipated, the releases from Wivenhoe are less than previously suggested.	Correspondence	Fioco Officor 3
	4:05 AM	OIC of Lowood Police rang enquiring about the Wivenhoe fuse plug. Flood Officer 9 advised that there is no danger of the fuse plug failing, and that current releases from Wivenhoe Dam are about 4,900 cumecs.	Correspondence	Fiood Ofticor 3
	4:40 AM	Seqwater Mt Crosby WTP Manager rang to check that his emails with the Mt Crosby levels were being received. They are.	Correspondence	Fiood Officer 3
	5:15 AM	Dam Operations Manager rang enquiring current storage levels and releases. Engineer 3 advised.	Correspondence	Flood Officer 3
	5:30 AM	Dam Operations Manager rang enquiring estimated time for closing North Pine Dam. Engineer 1 advised possible today, but it has rot yet been decided. Also advised the inflows into North Pine Dam were equivalent to a 1:10,000 event.	Correspondence	Flood Officer 3
	5:30 AM	Engineer 3 called Wivenhoe Dam for the current level. Dropped 2 cm in 30 minutes.	Correspondence	Food Officer 3
	5:50 AM	Engifeer 2 called BoM advising him that we have significantly scaled back releases from Wivenhoe Dam, and will provably continue to scale back more. Agreed that Savages Crossing has peaked.	Correspondence	Flood Officor 3

APPENDIX M - FLOOD EVENT _JG

6:00 AM	SDWD Model Updated - SDWD-201101120600withnorain.xls	Model Run	Fliood Oficer 9
6:00 AM	North Pine Dam rang enquiring about closing down. Engineer 4 advised that we have not yet decided.	Correspondence	Flood Officer 3
6:10 AM	Dam Operations Manager rang and suggested that the fish recovery may be a fairly big job. Engineer 4 suggested that our staff can check this morning and then decide.	Correspondence	Flood Officer 3
6:15 AM	BCC rang enquiring the level of the pump station at Mt Crosby. Engineer 4 said we can't help, Gut that he should contact the treatment plant Manager.	Correspondence	Flood Officor 3
6:30 AM	Engineer 4 rang Dam Operator 7 (Wivenhoe Dam) advising that a directive will soon follow to lower gates to 5 m .	Correspondence	Flood Officor
6:35 AM	Paul Martin rang. Engineer 4 discussed current strategy:	Correspondence	Flood OHficer 3
7:00 AM	Liaised with Bureau regarding expected peak in lower Brisbane.	Correspondence	Flood Officors
7:50 AM	SunWater called to confim that 179 Turbot St had power.	Correspondence	Flood Officer 9
8:20 AM	Dam Operations Manager rang enquiring current storage levels and releases. Engineer 4 advised.	Correspondence	Flood Officor 2
9:20 AM	North Pine Dam Operator rang wanting to speak to Engineer 4.	Correspondence	Floox Ofticer 2
9:50 AM	Lowood Police rang enquiring current storage releases from Wivenhoe Dam. Engineer 4 advised.	Correspondence	Fiood Officer 2
10:20 AM	Dam Operator 2 (Somerset Dam) called querying whether \mathcal{O}° C have received fax and email regarding storage level. He was checking the wallis before and will be at hisceesk for the next 30 minutes. Dam Operator 13 is there with him.	Correspondence	Flood Officor 2
10:50 PM	Seqwater rang wanting to thank Flood Officer 1 for his and John's heroic effort in clearing Seqwater basement.	Correspondence	Fiood Oficer 2
11:20 AM	Flood Officer 7 called to inform that he and Sentor Hydrographer (Seqwater) are not able to access Enviromon. He asked if Engineer 2 can check the system	Correspondence	Flood Officor 2
11:50 AM	Seqwater CEO called to ask that all communications be forwarded to him.	Correspondence	Flood Officor 9
12:20 PM	Flood Officer 1 called Dam Operatorto (Wivenhoe Dam) to advise that Seqwater comms are to be switched off due to fiooding of the Margaret Streetoffices. Please send all future hourly bulletins to the FOC via fax, or altematively, phone or TPG link.	Correspondence	Floed Ofticor 1
12:25 PM	Flood Officer 1 called North Pine Dam advising that Seqwater comms are to be switched off due to flooding of the Margaret Street offices. Please send all future hourly bulletins to the FOC via fax, or alternatively, phone or TPG link.	Correspondence	Flood Ofticer/
12:32 PM	Leslie Harrison-Aám Operator called Engineer 4. Due to the failure of Seqwater comms, he was seeking direction on how to sydgeit a final report on operations at approx. 1600 today. Engineer 4 said to phone in to the FOC.	Correspondence	Flood Officer 1
12:55 PM	BoM visited FOC to liaise with the Duty Engineers,	Correspondence	Flood oticer 1
1:10 PM	Principal Dams and Weirs Planning called to request electronic copy of Wiv - Som Flood Ops manual to be forwarded to him.	Correspondence	Flood Officer 1

APPENDIX M - FLOOD EVENT LOG

1:15 PM	Dam Operator 10 (Wivenhoe Dam) called to report lake level: $74.79 \mathrm{mAHD} @ 13: 00 \mathrm{hrs}$. Note: Reading taken in surging water. Wivenhoe fax appears to have failed.	Correspondence	Flood Officer 1
2:05 PM	North Pine Dam Operator called to inform that North Pine level was 39.74mAHD and based on this levehbe is recommending at least one gate closure.	Correspondence	Fiood Officer 1
2:10 PM	Dam Operator 9 phoned from Wivenhoe Dam, The SES (and irngators) at Fernvale have concems that a flood peak might be coming down the Lockyer within the next couple of hours. Engineer 1 assured Graham that the flood heights have reduced by up to 3 metres and any increase would be less than 1 metre.	Correspondence	Oos Officor 1
2:25 PM	Dam Operator 10 (Wivenhoe Dam) called to report lake level: $74.81 \mathrm{mAHD} @ 14: 00 \mathrm{hrss}$ Note: Reading taken in surging water. Wivenhoe fax confirmed as failed.	Correspondence	Flood Officer
2:30 PM	North Pine Dam Operator called to advise that the automatic height gauge is drifting further from the manual gauge board readings. He will continue to provide both versions at hourly intervals but will rely on the manual gauge readings for gate operations.	Correspondence	ood Officor 1
3:05 PM	Dam Operator 7 (Wivenhoe Dam) called to report lake level of 74.81m\&j¢ @ 15:00hrs.	Correspondence	000 Offle
3:30 PM	BoM called Engineer 2 to discuss re-appraisal of the expected flood peak in Brisbane. Peak now may be 5.2 metres early on Thursday $13 / 12011$.	Correspondence	Fiood Officar 1
4:00 PM	SDWD Model Updated - SDWD-201101121600.x/s	Model Run	Flood Officer 9
4:00 PM	Dam Operator 7 (Wivenhoe Dam) called to report lake level of 74.80 mAHD @16:00hrs.	Correspondence	Fliood Officer
4:00 PM	North Pine Dam Operator called to report that Sidehimg Creek Dam is spilling at 20.560 mAHD . Spillway level is 20.37 mAHD .	Correspondence	Flood Officor 1
4:20 PM	BCC called FOC and had phone conference with Duty Engineers. He was seeking update for briefing with Lord Mayor.	Correspondence	Flood Officor 7
4:52 PM	DERM called FOC and left message for Engineer 2. They (DERM) will be gauging at Jindalee all night to catch the peak. Senior Hydrographer (Seqwater) has been contacted and will be joining the crew.	Correspondence	F10
$5: 00 \mathrm{PM}$	Dam Operator 7 (Wivenhoe Dam) called to report lake level of 74.82 mAHD @17:00hrs.	Correspondence	Flood Officor 1
6:00 PM	Dam Operator 7 (Wivenhoe Pam) called to report lake level of 74.80 mAHD @18:00hrs.	Correspondence	Flood Offlcer 1
7:00 PM	Dam Operator 7 (Wivenhoe Dam) called to report lake level of 74.82 @ 19:00hrs.	Correspondence	Fiood Officor 7
7:45 PM	Engineer 1 \& Engineer 3 advised BoM that FOC will be sending updated projected releases from Wivenhoe Dam. This has been ptepared with the aim of limiting flows at Moggill to 3,500 cumecs.	Correspondence	Fiood Offleer 7
8:00 PM	Engineer 1 \& Engineer 3 advised BCC Flood Information Centre that FOC will be sending updated projected releases from Wivenhoe Dam. This has been prepared with the aim of limiting flows at Moggill to 3,500 cumecs.	Correspondence	Flood Ofticer 7
8:55 PM	Dam \% $\%$ perator 7 (Wivenhoe Dam) called to report lake level 74.82 mAHD @ 21:00hrs. They will now report levels evel 2 hours.	Correspondence	Engnoor 1
9:15 PM	Dam Operator 7 (Wivenhoe Dam) called to inform that Energex restored power at Wivenhoe Dam at 21:15 hours.	Correspondence	Fiood Officor 7

APPENDIX M - FLOOD EVENT LJG

	9:50 PM	Mt Crosby WTP Manager provided an update on Kholo \& Mt Crosby: Kholo 19:15hrs 20.0m Mt Crosby 21:00 23.5 m He asked for a situation update. Engineer 1 shared Wivenhoe Dam's release strategy.	Correspondence	Flood Officer 7
	10:00 PM	Dam Operator 7 . Wivenhoe Dam) called to report lake level $74.81 \mathrm{mAHD} @ 22: 00 \mathrm{hrs}$. Will now report levels every 2 hours.	Correspondence	Hood Officor 7
Thursday 13 January 2011	12:00 AM	Dam Operator 7 (Wivenhoe Dam) called to report lake level 74.79mAHD @ 00:00. $<$	Correspondence	Flood Offlcor 7
	1:00 AM	BCC called FOC to enquire if Wivenhoe Dam has been compromised. Engineer 3 assured him that that is not the case.	Correspondence	Flood Officor?
	1:05 AM	Engineer 1 called BoM hotline number to check communications.	Correspondence	Flood Officer 7
	1:10 AM	BCC called the FOC regarding a viral text rumour that Wivenhoe Dam has failed. Engineer 3 assured him that that is not true and will speak with Dam Operations Manager about this matter.	Correspondence	Flood Offlcor 7
	1:20 AM	Queensland Police called to inform of rumours that Wivenhoe Dam has been compromised.	Correspondence	Flood Offlcor 7
	1:25 AM	Engineer 3 called Dam Operator 7 (Wivenhoe Dam) to confirm Wivenhoe Dam has not been compromised.	Correspondence	Flood Offlcor 7
	1:30 AM	Engineer 3 called Dam Operations Manager advising him, bout the rumours that Wivenhoe Dam has been compromised. Engineer 3 will send him the BCC contactetetails.	Correspondence	Flood Offlcer 7
	2:00 AM	Dam Operator 7 (Wivenhoe Dam) called to report level $74.765 \mathrm{mAHD} @ 2: 00 \mathrm{hrs}$.	Correspondence	Flood Officea 7
	4:00 AM	Dam Operator 7 (Wivenhoe Dam) called to reporinake level 74.74mAHD @4:00hrs. Will now report levels every 2 hours.	Correspondence	Flood Offleer 7
	6:00 AM	Dam Operator 7 (Wivenhoe Dam) called to report lake level $74.71 \mathrm{mAHD} @ 6: 00 \mathrm{hrs}$. Will now report levels every 2 hours.	Correspondence	Flood Officer 7
	6:43 AM	BoM called to inform that BoM hasdost their telephone system. He provided 2 contact numbers: 1580. Thornton St 4.45 m .Telemeter 4.20 m	Correspondence	Flood Officor 7
	7:30 AM	Dam Operator 2 has been advising Kilcoy Police of the FOC strategy for lower Somerset during the next 24 hours of opening sluice later today	Correspondence	Engineor 1
	7:50 AM	BOM called to ask keeights $3,500 \mathrm{~m} 3 / \mathrm{s}$ would be at Savages and Mt Crosby. Engineer 2 advised 34.5 m AHD and 16.5 m AHD respectively.	Correspondence	Enginoer 2
	8:05 AM	MBRC wanted to know when NPD gates will be closed. Advised to be closed by 0500 Friday	Correspondence	Enginoer 2
	8:15 AM	Somerset directive \#9 issued	Correspondence	Flood Officer 9
	9:00 AM	Dam Operations Manager wants to know when gates setting are changed on Wivenhoe and Somerset. Advised that NPD will be closed at 05 Friday.	Correspondence	Engineer 9

APPENDIX M - FLOOD EVENT LOG

	9:00 AM	Dam Operator 2 advised of projected level for Somerset, 103.5 by 2000 Thursday and 102.8 early Friday morring. Will open another sluice this afternoon.	Correspondence	Engineer 2.
	10:10 AM	Dam Operations Manager called to inform that power and IT services have been restored at Seqwater.	Correspondence	Flood Oticer 9
	10:30 AM	Dam Operations Manager called to request if he could be notified of any changes to releases fromblatenhoe	Correspondence	Flood Officer 9
	11:00 AM	SDWD Model Updated - SDWD-201101131100.xls	Model Run	Flood Onicer 9
	1:00 PM	SRC rang to enquire about Kilcoy Creek and Mary Smokes Bridge. Duty Engineers advised that it may be out of water tonight, certainly by tomorrow morning.	Correspondence	Flood Officer 9
	1:15 PM	Dam Operations Manager called to advise that Police had called to ask when Kilcoy would be accessible. Engineer 4 advised Dam Operations Manager that it would be by 6am tomorrow morning (14/1).	Correspondence	Flood Officor 9
	1:40 PM	Mt Crosby WTP Manager called for update on Mt Crosby. Engineer 2 informed h im that level would be maintained at 17.5 metres for next 7 days.	Correspondence	Flood Officer 9
	2:15 PM	Phone call from MBRC. Advice as follows: * damage to Gympie Rd abutments * No evacuations * No suburban flooding * Not aware of any over floor flooding. Pine Shire had 0.75 m freeboard.	Correspondence	Flood Officer 9
	2:30 PM	Wivenhoe directive \#36 issued - Open Gate 1 from 3.5 metres to 4.0 metres at 1500.5 - Open Gate 5 from 3.5 metres to 4.0 metres at 1600 - Open Gate 1 from 4.0 metres to 4.5 metres at 1 㑰0. - Open Gate 5 from 4.0 metres to 4.5 metres -	Correspondence	Floed Officer 9
	3:50 PM	NPD Operator called to confirm if FOC received Dam Observation report for North Pine Dam. Approx 6 of 40 uplift pressure gauges has abnormal readings.	Correspondence	Flood Oticer 9
	4:45 PM	MBRC was advised that NPD gates 4 ¢fli be closed at 0500 Friday	Correspondence	Enginoor 2
	7:37 PM	SunWater called to confirm building services were working and all in order.	Correspondence	Flood Officer 4
	7:51 PM	Engineer 1 called North Piedam Operator to discuss the current drainage strategy to close all gates by 5am tomorrow. Water level if Worth Pine Dam will be frequently monitored against the predictive model results, and gate opening will be adjusted accordingly if required.	Correspondence	Flood Officor 4
.	8:30 PM	Engineer 1 called Dam Operator 4 to advise of directive \#11.	Correspondence	Flood Officor 4
	8:41 PM	Engineer 1 calked Dam Operations Manager top advise of current release rates from Wivenhoe, Somerset and North Pine Dams.	Correspondence	Fliod Officer 4
Friday 14 January	12:46 AM	Ipswich District (Fernvale) Police rang to enquire into the integrity of Somerset Dam, based on information received by the Police. Engineer 1 indicated that surveillance procedures are in place to monitor the integrity of the Dam, and that Engineer 1 will confirm with the operators.	Correspondence	Flioed Officer 4

APPENDIX M - FLOOD EVENT _JG

2011

12:47 AM	Engineer 1 called Dam Operator 1 at Somerset to enquire to the integrity of Somerset Dam. Operator indicated all was good and no anomalies have been detected.	Correspondence	Flood Ofticor 4
12:49 AM	Engineer 1 called lpswich District Police back on 38171436 to confirm that Somerset was recently inspected and all was ok.	Correspondence	Flood Ofticor 4
5:13 AM	Fax received from North Pine Dam confirming closure of all gates.	Correspondence	Flood Ofticor 4
5:15 AM	Engineer 1 called MBRC to advise that North Pine Dam has closed the final gate at 5am.	Correspondence	Flood Offlcor 4
5:16 AM	North Pine Dam Operator called to confirm that all gates are closed, and Young's Crossingshould be passable within 2 hours. Lake Kurwongbah level is 20.43 m .	Correspondence	Fiood Offlcor 4
5:28 AM	Dam Operations Manager called to obtain a situation report: Engineer 1 provided the key information:	Correspondence	Flood Officer 4
5:37 AM	BCC called requesting information for Wivenhoe Dam and checking sit-rep dafta Enquired about flows throughout the event, Engineer 2 advised that not currently in a position to discuss these)	Correspondence	Flood Offlcer 4
7:40 AM	Dam Operations Manager rang FOC to enquire about river levels at Lowood. Pumps required to be installed to supply Lowood WTP. Engineer 2 advised RD that no significant rises were expected in the Brisbane River levels in the foreseeable future.	Correspondence	Flood Oftier 1
7:45. AM	ICC phoned the FOC. Enquiring about renewed rises in the Brisbane / Bremer River systems. He cannot contact BOM for an update. Engineer 2 advised that no significantrises were expected at Moggill. A constant flow in the river was the plan as a consequence of Wivenhoe releases.	Correspondence	Fliod Ofticer 1
8:20 AM	Principal Dams and Weirs Planning phoned Engineer 2. Enquiry regarding the Wivenhoe Dam fuse plugs (design cales/parameters).	Correspondence	Flood Offlee
8:21 AM	Seqwater CEO phoned the FOC. Engineer 2 discussed with CEO the release strategy from Wivenhoe Dam with a view to opening the Fernvale Bridge and MIT Crosby Bridge at the earliest possible time. Engineer 2 also updated CEO on the projected City Gauge heightever the next few days. This being ~ 2.5 metres due to continuous releases from Wivenhoe Dam.	Correspondence	Flood Officer 1
8:30 AM	Engineer 2 returned call back to Principal Dams and Weirs Planning. Engineer 2 extended an invitation to him and others to pay a visit to the FOC to inspect operations.	Correspondence	Flood Officor
10:10 AM	Dam Operator 2 rang from Somerset Dam. Checking that all comms avenues (faxes \& e-mails) are functioning. All good.	Correspondence	Fiood Ofticer 1
10:25 AM	BCC rang TM. Enquiring if any chance of cutting back Wivenhoe releases to lower flows than the current figure of 3,500 cumecs. Engineer 2 response was NO!	Correspondence	Flood Officor 1
10:40 AM	SunWater tradsmitted a message to Principal Dams and Weirs Planning that the right bank abutment to Mt Crosby Bridge has $\$$ suffered some erosion due to the flooding and there are concerns that the abutment may be further affected ty piping once the water level falls.	Correspondence	Flood Offlcor 1

APPENDIX M - FLOOD EVENT LOG

	10:50 AM	Operations Coordinator North rang from North Pine. The dam ceased flood operations at 5:00am this morning and fish recovery and clean-up has been completed. Approx. 31 lung fish were rescued. Quite a number of dead lung fish and other species. Erosion damage downstream of the dam is severe with loss of vegetation, stripped and fallen trees, bank erosion, and many dead fish caught within the root ball of fallen trees. He is organising back hoes and front end loader machinery to clear the debris between the NP dam wall and Grant Street.	Correspondence	Flood Oricer 1
	12:33 PM	Fiood Officer 7 phoned Engineer 2. Request from Seqwater Corp Comms about hourly updates, Particular concern about NPD which ceased flood operations at 5:00am this morning!! Engineer 3 advised thatweyates from the dams would continue to be channeled solely through the FOC.	Correspondence	Flood Oflcer 1
	12:35 PM	DERM phoned Engineer 2. Re: Gauging exercise at Jindalee:- Soundtek M9 from boat (6 passes) Jindalee gauging result:- $4,300 \mathrm{~m}^{3} / \mathrm{sec}$ at $6: 45$ metres AHD at 12:00 hrs	Correspondence	Flood Officer 4
	12:37 PM	Segwater CEP rang Engineer 2. Discussion about mis-informed reporting.	Correspondence	Flood Officort
	1:45 PM	Engineer 2 rang $B C C$ seeking clarification on BCC's fiood mapping. $B C C$ advised that at 3,500 cumecs, $B C C$ records indicate that 220 properties will have water on the property. Engineer 2 confirmed that water on the property' did not mean water above floor level i.e. Likely to be land inundation only.	Correspondence	Flood Officer 1
	1:53 PM	Dam Operations Manager rang Engineer 2. Routine call. Update\%n current status.	Correspondence	Flood Oflicer 1
	2:45 PM	Dam Operations Manager rang Engineer 2. Routine call. Update on current status.	Correspondence	Flood Officer 1
	3:30 PM	Dam Operator 10 rang from Wivenhoe Dam with concerns about some 'swirling' apparent in the downstream tailwater opposite 'The Common'. Dam Operator 10 thought there could be some erosion occurting under the flow. Matthew forwarded a marked photo of the phenonterion to Engineer 2. The consensus reached was that the phenomenon was the result of a 'hydraulic jump' . The matter would be referred to Engineer 4 for further investigation.	Correspondence	Flood Officer 1
	3:55 PM	Engineer 2 rang Engineer 4 to discuss the 'swirling' phenomenon identified by Dam Operator 10. Effect is at D / S end of plunge pool and is almost certainly a 'hydraulic jump'. Engineer 4 advised the issue was not of concern unless the phenomenon moves toward the fip bucket.	Correspondence	Flood Officer 1
	4:05 PM	Engineer 4 phoned Dam Operato '10 at Wivenhoe Dam to pass on advice that Engineer 4 had no concerns about the 'hydraulic jump' phenomenion identified by him earlier today.	Correspondence	Flood Ottreer 1
	4:50 PM	Mt Crosby WTP Manager phoned the FOC. Engineer 2 advised him that the current release strategy from Wivenhoe Dam (and therefore flows past the Mount Crosby WTPs) would be maintained until at least Monday (17/1).	Correspondence	Flood Oflicer 1
	5:50 PM	Dam Operations Manager rang Engineer 4 enquiring when the bridges to the east of Lake Wivenhoe would be clear of floodwater-Éngineer 4 advised all but the Sandy Ck - A\&PM Conroy Bridge on the Wivenhoe Somerset Rd would be dear by tomorrow (Sat) morning.	Correspondence	Flood Otheer 1
	7:00 PM	FOC change over.	Other	Fiood Officor 2
Saturday 15	8:40 AM	(9ar) Operations Manager rang. Engineer 2 advised strategy to possibly go below FSL at Wivenhoe by Thursday.	Correspondence	Fiood Ofricer 3

January2011	8:42 AM	Seqwater CEO rang to advise that the media come into the FOC today to			
	11:30 AM	Dam Operations Manager rang to request a summary of the Operations Manual for Wivenhoe. Engineer provide after checking with all duty engineers.	Correspondence	Flood Ofticer 3	
	12:12 PM	Dam Operations Manager rang to advise of a phone hook-up with the Minister and Seqwater CEO at 2:00pm, and requested that Engineer 1 be in at the FCO at that time.	Correspondence	Flood Offlcer 3	
	12:20 PM	Seqwater CEO rang to confirm a phone hook-up with the Minister and CEO at 2:00pm.	Correspondence	Flood Officer 3	
	12:55 PM	Engineer 2 advised Engineer 1 to come into the FOC for the phone hook-up at 2:00pm.	Correspondence	Flood Officer 3	
	110 PM	Director Dam Safety phoned about the Wivenhoe Flood manual summary. Engineen 2 rold Director Dam Safety that	Correspondence	Flood Offitera	Deleted: 3
		the summary is with the other duty engineers for checking before issuing.			Deleted: A
	1:15 PM	Dam Operations Manager rang with some questions on the Wivenhoe Flood manual summary.	Correspondence	Flood Officer 3	
	1:45 PM	Engineer 1 and Engineer 4 arrived at the FOC for the 2:00pm phone hookkup.	Correspondence	Flood officer 3	
	2:00 PM	Phone hook-up with Engineer 2, Engineer 1, Engineer 4 with Dam Operations Manager, Director Dam Safety, Seqwater CEO, Joh Bradley and Bob Reilly to discuss a report for the minister by COB Sunday.	Correspondence	Flood Officer 3	
	5:00 PM	Dam Operations Manager arrived to help write report for minister briefing.	Correspondence	Flood Officor 3	
	7:30 PM	Dam Operator 7 from Wivenhoe called to discuss strategy for the next 12 hours.	Correspondence	Flood Officor 4	
$\begin{aligned} & \frac{\text { Sunday } 15}{\text { January }} \\ & \underline{\underline{2011}} \end{aligned}$	4:12 AM	Called Dam Operator 7 at Wivenhoe to confirm directiferreceived via email. Directive being actioned ASAP.	Correspondence	Flood Officer 4	
	7:10 AM	Dam Operator 2 (Somerset Dam) emailed flood centre indicating he believed flood centre phones were out. Tried to contact Ag by office and mobile phones with no success (Telstra message bank on office phone and Dam Operator 2's message on mobile). Flood centre phones were checked - working OK. Problem is with Somerset phones. Believe fax also not receiving. Dam Operator 2 emailed to confirm they have local calls but no STD. Continued checking mobile - no response.	Correspondence	Fiood Officer 6	
	8:20 AM	Called Dam Operator 10 at Wivenhiée fo confirm directive 45 received. Confirmed not received - busy status on fax confirmation. Confirmed directive feceived via email.	Correspondence	Fiood Officer 6	
	9:40 AM	Retried all phones at Somerset - no response. Dam Operator 2 emailed to confirm that all phones are down at Wivenhoe, Email is still working and he will be checking emails every hour on the hour.	Correspondence	Fiood officer 6	
	10:20 AM	Email confirmation receved that Somerset Directive \#12 implementation has been completed.	Correspondence	Flood Officor 6	
	11:30 AM	FOC contacted by Ipswich/Somerset District Disaster Coordinator notifying that the Wivenhoe viewing area has been damaged. Engineer 1 unable to contact Wivenhoe staff (Dam Operator 10) - message left. Then contacted Dam Operator 7, who confirmed that the area is damaged and has been locked off and 2 security guards are on site. It won't be opened until the water level falls and a full inspection of the structure has been completed. Engineer 1 confirmed this with Police, who reported that there was damage to safety rails and water supply to toilets. Dam Operator 10 also responded to Engineer 1's call and confirmed the details.	Correspondence	Flood Oflcor 6	

APPENDIX M - FLOOD EVENT LOG

	12:30 PM	Phone call from Dam Operator 10 (Wivenhoe) - neither fax nor email received. Verbal instruction given to imprement gate operation as per Directive \#46 and email resent.	Correspondence	Fiood Oticor 6
	12;40 PM	Contract programmer called to advise that the back-up Linux box "Namah" at Mineral House is showing file system corruption errors, so the FCC is effectively without backup. The hydraulic model in the RTFN is missing because two Fortran programs "Modcom 2" and "Modef" have not been ported to the Linux box.	Correspondence	Flood Offlcer 6
	12:55 PM	Engineer 1 advised Warren Shallcross about the situation at Mineral House, and he will visit the backup operations centre ASAP.	Correspondence	Fiood Officer 6
	1:10 PM	Dam Operator 2 (Somerset) called to report that the phones are now working.	Correspondence	Flood Oticer 6
	2:40 PM	Engineer 2 spoke to Engineer 1 . Grid manager wants a summary of flood volumes Sot peak discharges.	Correspondence	Food Officer 6
	3:00 PM	Warren Shallcross called - confirmed with Engineer 1 that the computer system at Mineral House has been rebooted and is functional.	Correspondence	Food Officer 6
	3:10 PM	Dam Operations Manager rang to confirm current discharges. Confirmed 600 cumecs for Somerset and 3500 cumecs for Wivenhoe (approx).	Correspondence	Flood Ofticer 5
	4:00 PM	Directive \#47 implemented - Gate 2 opened to 7.0 m .	Correspondence	Flood Officers
	6:52 PM	Engineer 1 spoke with Dam Operator 7 (Wivenhoe Dam) aboutboirective \#48 Wivenhoe strategy. Dam Operator 7 confirmed receipt of Directive.	Correspondence	Fliood Officor 7
	7:00 PM	FOC change over.	Other	Flood Officer 7
	10:00 PM	Dam Operator 7 (Wivenhoe Dam) called to inform ${ }_{\text {c }}$ (toor panels missing from bulks.	Correspondence	Flood Offlcer?
Monday 17 January 2011	7:15 AM	Dam Operations Manager called to get Sit Rep. Advised that Somerset should remain mobilised until further notice	Correspondence	Flood Officor 8
	7:35 AM	Dam Operator 2 called - discussed strategyile. operate cone valves only from now on	Correspondence	Flood Oflcor 8
	9:15 AM	Mt Crosby WTP Manager called to find out about strategy for Wivenhoe shut down. Informed him that we will start closing down mid afternoon and aiming to have it closed by Wednesday	Correspondence	Flood Othlor 8
	9:35 AM	Dam Operations Manager callectit enquire when closing down will start and reminded us to inform Councils	Correspondence	Flood Oflcor 8
	10:00 AM	Advise Director Dam Safety about inconsistency between readings form BoM and actual HW gauges	Correspondence	Flood Oflcer 8
	10:15 AM	SRC was contacted aneddvised gate close will commence this afternoon and Fernvale Bridge will be out of the water sometime TưŞday morning	Correspondence	Flood Ofticor 8
	10:20 PM	BCC was contacted (left message) advising gate close will commence this afternoon.	Correspondence	Flood Officors
	10:20 PM	ICC was cogracted (left message) advising gate close will commence this afternoon.	Correspondence	Flood Ofticor 8
	11:15 PM	Called Mt Crosby WTP Manager to inform him that flow in Lockyer is $75 \mathrm{~m} 3 / \mathrm{s}$ and falling.	Correspondence	Flood Officor 8
	11:15 PM	Spoke to BCC . Advised him about gate closure. He mentioned that BCC will not provide any info on flood segurrence until they discussed with FOC.	Correspondence	Fiood Officor 8

APPENDIX M - FLOOD EVENT _JG

	11:20 AM	Dam Operations Manager called - Council wants to know draw down rates; so they can determine the effects on Coronation Dr. Engineer 3 informed RD that BCC -did not raise this when they spoke 10 mins before.	Correspondence	Flood Oficer 8
	11:20 AM	Seqwater CEO called saying he will email a revised copy of Michael O'Brain's document	Correspondence	Flood Oficer 8
	12:20 PM	Engineer 3 contacted BCC to get an update on Coro Dr situation. Engineer 3 spoke to $\mathrm{BCC} . \mathrm{BCC}$ advised he had spoken to BCC Geotec Officers and they had advised that @ this stage as Coro Dr was back within the banks that they could not see an immediate problem. Some bank slumping have been identified further up the river. Council would like the recession of flow to be as flat as practicable but also that releases be as small as possible @ the Port Office gauge by the time of the high tide on Friday. This is consistent with our current strategy of closing releases by Wednesday 20 Jan 2010.	Correspondence	Fiood Officer 8
	12:30 PM	Dam Operations Manager called, requesting an update on discussions with BCC -詣 requested that BCC confirm the discussion of 12:20 in writing.	Correspondence	Flood Offlcor 8
	1:01 PM	Dam Operations Manager called; saying Morton Bay wanted to know if there will be any more releases from NPD. Engineer 3 said nill planned unless we get more rain.	Correspondence	Flood Omfor 8
	2:15 PM	Dam Operations Manager called, asking for dates and times for Wiyenthe operations at the peak of the flood.	Correspondence	Flood Officer 8
	3:15 PM	BoM called to confirm that he received the info on the discrepancy in the auto level recorder	Correspondence	Flood Officor 8 .
	4:15 PM	BoM - they have not received manual observations for days,	Correspondence	Fiood Officor 8
Tuesday 18 January 2011	12:30 AM	Seqwater CEO called to inform that rapidly dropping water level at Lowood was causing issues with pumping for WTP. Asked if FOC could call John Granzien and then notify him via tot of the outcome.	Correspondence	Flood ofticors
	12:35 AM	FOC contacted John Granzien in regards to purpoitis issues at Lowood. Engineer 3 decided to halt all gate operations until further notice in order to ensuressecurity of water supply to Lowood.	Correspondence	Fiood Oticor 9
	1:00 AM	Text message sent to Seqwater CEO to advise of cessation of Wivenhoe gate operations until further notice.	Correspondence	Flood Officor9
	2:00 AM	BCC advise that the recession at Coramation Drive is not an issue with regards to bank stability	Correspondence	Flood Officor9
	5:00 AM	Dam Operator 7 called to advise that Fernvale Bridge was emerging from river. Current release 2054 cumecs.	Correspondence	Flood Officor9
	5:40 AM	Dam Operator 7 called to adxisel that the approach to the Fernvale Bridge from the Fernvale side was still underwater due to water bagked up in the quarry.	Correspondence	Flood Offeor9
	5:45 AM	Called John Granzien to advise that Wivenhoe gate operations would recommence close down sequence from 9am as per original strategy. John to advise FOC if pumping operation at Lowood would benefit from additional 3-6 hours delay in gate operations.	Correspondence	Flood Officers
	7:25 AM	Dam Operates 7 (Wivenhoe) called to advise that a Surveyor is taking a routine deformation survey	Correspondence	Flood Oflcor 5
	7:35 AM	$B C C$ enquired about preliminary assessment of magnitude of flood. BCC suggested that Seqwater, BOM and BCC should arrive at a consensus regarding any assessment on the magnitude of the event. Engineer 1 agreed. BCC also enquired if we had done an assessment of the effects of the dam on peak flow. Engineer 1 indicated that our prelim figure was a 13000 cumec peak at City Gauge without the Dams.	Correspondence	Flood Officor 5

$\begin{gathered} 8: 25 \mathrm{AM} \\ 10: 10 \mathrm{AM} \end{gathered}$	Dam Operator 10 (Wivenhoe) called to acknowledge Directive 55 Seqwater at Mt Crosby has requested some forward projections for flows at Mt Crosby Weir for the next 48 hours. They are looking at sludge dilution.	Correspondence Correspondence	Flood Officer 5 Flood Otficor 5
10:15 AM	Engineer 1 called Rob Townsley back to provide the following info re projected flows at Mt Crosby dolent: 18/1/2011 10:00-2300 cumecs 19/1/2011 10:00-1130 cumecs 20/1/2011 10:00-360 cumecs	Correspondence	Flood Officer 5
10:19 AM	BCC Flood Information Centre called to advise that Campbell Newman wants an indication of what the flood would have been without dams and asked if the figure of 13000 cumecs provided to BCC earlier could be released to the public.	Correspondence	Flood Offlcor 5
10:24 AM	Engineer 1 spoke to Dam Operations Manager to ask Seqwater's policy re rekease of information above. Dam Operations Manager to confirm with his comms people.	Correspondence	Flood Officer 5
10:30 AM	Seqwater comms officer called to advise that the minister's office has recommended that no info regarding releases from WD be released to anybody. He will-now communicate this response to the BCC Flood Info Centre and specifically Mark Gibson.	Correspondence	Flood Offlcer 5
10:38 AM	Somerset RC requested info re when Burtons Bridge is expecteo to be free from inundation. Under our current shutdown sequence, Engineer 1 advised that we expect Bertons to be free around midnight on Wed evening. SRC also advised that the bridge on New England Creek will tecome flood free at around the same time. SRC indicated that at 8am today the approaches to Fernvale were clegr of water. However, power lines and silt need to be removed. He expects the bridge to be open this afterion.	Correspondence	Flood Offlcer 5
10:55 AM	Principal Dams and Weirs Planning (Seqwater) called to confirm that we received the hydraulic model from WRM. (affirmative)	Correspondence	Flood Offlcor 5
12:05 PM	Seqwater CEP called to advise that he And $^{\circ}$ (ERM will come and visit the FOC at $2: 30$ this afternoon.	Correspondence ${ }^{\text {- }}$	Flood Offlcer 5
12:26 PM	Dam Operations Manager called to confirm programmed final shutcown. Engineer 1 advised scheduled for 9 am Thursday 20/1 2011. Dam Operations Manager to confirm fish recovery.	Correspondence	Flood Officer 5
1:22 PM	Confirmed with Dam Operator 40 that gate closure sequence was in accordance with directive as email received from WD re 13:00 closure was incorrect.	Correspondence	Flood Officer 5
2:00 PM	Engineer 4 called for an update of the closedown sequence	Correspondence	Flood Officor 5
2:15 AM	Engineer 1 called WRM re hydraulic model of Brisbane River...login and password not working...help not available at present	Correspondence	Flood Officer 5
2:30 PM	Seqwater CEO and DERM visited FOC to check current situation and to pass on thanks for job performed so far. Also requested that we hold further gate operations until problems at Lowood Pump Station are resolved.	Other	Flood Officer 5
4:05 PM	Enginezer 1 called NPD Operator to alert him to the possibility of operating North Pine Dam with incoming storms.	Correspondence	Flood Officer 5

APPENDIX M - FLOOD EVENT とJG

4:30 PM.	Dam Operations Manager rang noting the current storms and requested that Engineer 1 call MBRC to advise of the possibility of operating North Pine Dam.	Correspondence	Fliod Ofticor 5
4:34 PM	Email from Seqwater CEO containing Bob Reilly's approval to vary the flood release regime to enable aconstant flow for the Lowood WTP offtake.	Correspondence	Fioco otileer 5
4:45 PM	Engineer 1 rang MBRC to advise of the possibility of operating North Pine Dam in the next day or so if predicted falls of up to 50 mm occurred.	Correspondence	Fioco Otticer 5
6:25 PM	Dam Operations Manager called to discuss situation report for North Pine.	Correspondence	Flood Officer 5
6:57 PM	Engineer 4 phoned MBRC. Message left regarding plans to open NPD gates this evening as the lake level is approaching trigger level with more rain/showers forecast.	Correspondence	Flood Otheer 1
7:02 PM	Engineer 4 phoned NPD Operator regarding mobilising for NPD gate opening this evening. Tentative plan is for commencement of gate opening at 20:30.	Correspondence	Flood Ofticer 1
7:05 PM	Engineer 4 phoned the Duty Officer at MBRC regarding the planned imminent opening of the NPD gates. Target time is $20: 30$ if Council has the barriers in place. closing Youngs Crossing Road and the dam is fully manned.	Correspondence	Flood Ofticar 1
7:05 PM	Flood Officer 1 phoned Dam Operations Manager to provide an decate on the NPD mobilisation and proposed gate openings.	Correspondence	Flood oflicer 1
7:07 PM	Engineer 4 phoned Operations Coordinator North to advise of planned gate opening of NPD this evening. Cessation of operations (i.e gate closure) is expected to be arranged for tomorrow morning (19/1) in order for Youngs Crossing Road to be opened to peak hour traffic. Engineer 4 advised MD to plan for an early morning fish recovery exercise at NPD.	Correspondence	Fiood Officert
7:10 PM	MBRC returned phone call to Engineer 4. Engineer 4 repeated information already conveyed to MBRC Duty Officer - regarding requirement for Youngs CrossingBoad to be closed to traffic to allow NPD gates to be operated by 20:30 if possible.	Correspondence	Flood Officer 1
7:15 PM	Engineer 4 phoned Seqwater regarding Engineer 4 inability to access Citrix. Outage (?). Message left.	Correspondence	Fiood ofticer 1
7:15 PM	Engineer 4 phoned Dam Operations' Manager regarding Citrix comms outage. Message left requesting Dam Operations Manager to interyeñe to have the problem fixed.	Correspondence	Flood Officor 1
7:20 PM	IT (Seqwater) rang and 'reset' Citrix for Engineer 4.	Correspondence	Fioco Oflicer 1
7:30 PM	Engineer 4 phoned NPDOperator to confirm gate opening arrangements for 20:30 if Youngs Crossing Road has been closed to traffía by Council at that time.	Correspondence	Food Officor 1
7:40 PM	Dam Operations Manager rang the FOC to enquire if the Citrix issue was sorted. Citrix connection now functioning. Engineer 4 expressed concern about the current release strategy for Wivenhoe Dam. If the current release rate is maintained (set to accommodate Lowood temporary raw water pumps); the model indicates that the lake level could fall well below FSL (~EL 65.00??).	Correspondence	Flood Officer 1

APPENDIX M - FLOOD EVENT LOG

7:42 PM	Engineer 4 phoned Executive GM Water Delivery (Seqwater) to seek advice on who could supply the most upsyodate status report on the current situation at Lowood regarding river levels and pumping activities to supply the WTP. He suggested John Smith (?).	Correspondence	Flood Officor 1
7:45 PM	Engineer 4 phoned Principal Strategic Asset Maintenance Engineer (Seqwater) seeking info Re: Lowood. Maintenance Engineer referred Engineer 4 to Strategic Asset Maintenance Engineer (Civil).	Correspondence	Flood Officer
7:50 PM	Engineer 4 phoned Maintenance Engineer (Civil). - Reportedly on site at Lowood PS. No ansprer. Message le	Correspondence	Flood Officor 1
7:52 PM	Engineer 4 phoned Lowood WTP Operator to enquire as to current status regarding temporary pumping arrangements of raw water from the Brisbane River.	Correspondence	Flood Officen
7:55 PM	Dam Operator 2 (Somerset Dam operator) phoned the FOC from home seeking the Paty Engineer's intentions for operations at Somerset Dam overnight. Engineer 4 requested a Gauge Board reading of the lake level and advised that an operations strategy for Somerset Dam would be addressed within 30 , minutes - following satisfactory . mobilisation of NPD.	Correspondence	dofler
8:00 PM	Seqwater IT phoned Engineer 4 to check status of Citrix connection. Citrix connection is functioning.	Correspondence	Ood Oftica
8:05 PM	Dam Operator 2 phoned from Somerset Dam. Current lake level is $\operatorname{El} 98.95$ unchanged from lake level at 15:35 today.	Correspondence	Flood Ofticor 1
8:05 PM	Engineer 4 phoned Dam Operator 9 at home. Engineer 4 requested Dam Operator 9 to visit Lowood pumping intake site and report on status as unable to contact Maintenance Engineer (Civil).	Correspondence	Flood Officor
8:11 PM	Engineer 4 phoned Dam Operator 2 (Somerset). Danfoperator 2 to send fax in with lake level. Likely strategy will be to close off the regulator overnight and re-assessithe situation in the morning.	Correspondence	Fiood Officor
8:12 PM	Engineer 4 conversed with Manager Strategic Maintenance (Seqwater). He advised that arrangements are in hand to move the temporary pumps at the Brisbane River site at Lowood. The pumps are being re-located downhill to maintain extraction of raw water from the river to supply the Lowood WTP.		Food Officer 1
8:15 PM	Maintenance Engineer (Civil) contackoci Engineer 4. The temporary raw water pumps at Lowood are being moved closer to the river - chasing the antitionated lower level in the river due to reduced releases from Wivenhoe.	Correspondence	Fioco
8:18 PM	Dam Operations Manager rang the FOC to seek an update on operations at all 3 storages.	Correspondence	Flood Officer 1
8:25 PM	Engineer 4 confirmed on-stey manning arrangements at Lowood with Dam Operator 9 .	Correspondence	Fiood Offlcer 1
8:30 PM	Somerset Dam Operator advised FOC by fax that Regulator \#12 had been closed as per verbal advice from Engineer 4.	Information	Flood Officor
8:35 PM	Engineer 4 contacted Dam Operator 7 at Wivenhoe. Gate closing directive pending.	Correspondence	Flood Otticor 1
8:55 PM	NPD Operator phoned the FOC. MBRC have only just closed of Youngs Crossing Road. By the time the siren is sounded, the gate openings in Directive 31 scheduled to commence at $20: 30$ will be delayed by 45 minutes.	Correspondence	Flood Officer 1
9:00 PM	Dutweficer at MBRC rang Engineer 4 to advise that Youngs Crossing Road was now closed. Engineer 4 advised Put Officer that it was intended to maintain releases from NPD through until 5:00am Wednesday 19/1. With this operating strategy, Young's Crossing Road should be able to be re-opened to traffic by 7:00am tomorrow.	Correspondence	Flood Officer 1

APPENDIX M - FLOOD EVENT LOG

5:10 AM	Engineer 4 phoned Seqwater CEO to obtain a Govt. view on how long to maintain releases and to where the lake level should be held following closure of all gates. Timing of the gate closure might be dependant on the erosfon issue.	Correspondence	Flood Officer 1
5:15 AM	Engineer 4 phoned Engineer 2 to arrange for Engineer 2 to relieve Engineer 4 ASAP in the FOC as he is required to inspect the reported damage at Wivenhoe Dam.	Correspondence	Flood Officer 1
5:20 AM	Engineer 4 phoned Principal Dams and Weirs Planning (Seqwater) to arrange a joint inspectionsof the erosion damage at Wivenhoe Dam as reported by Dam Operator 7 .	Correspondence	Flood Officor 1
5:25 AM	Dam Operations Manager phoned Engineer 4 to obtain an update. Engineer 4 advised Dam Operations Manager that damage has been reported to the area D / S of the flip bucket at Wivenhoe: An inspection ASAP is warranted.	Correspondence	Fiood Officer 1
5:30 AM	Engineer 4 phoned Director Dam Safety to advise that damage had been reporterkat Wivenhoe Dam by the operator. Initial information indicates that large boulders are piled up in the phonge pool D / S of the flip bucket. The source of these boulders is unknown as releases are still continuing from thegates. Engineer 4 has arranged to inspect the site with Principal Dams and Weirs Planning in a few hours afid an invitation was extended to Director Dam Safety as an interested party to attend the inspection. Engineerd4 4uil provide updates as they come to hand.	Correspondence	Flood Offleor 1
5:35 AM	Dam Operator 7 phoned Engineer 4 on his mobile phone with an update report.	Correspondence	Flood Ofticer 1
8:08 AM	Engineer 4 phoned Engineer 2. Things seem to be O.K. but wewill continue to close all gates by this afternoon.	Correspondence	Flood Othloer 2
8:20 AM	Engineer 2 phoned Flood Warning Centre advising that flood operation for current event will be shut down around lunch time.	Correspondence.	Flood Oftcer 2
9:23 AM	Engineer 4 phoned Engineer 2 asking whether we stould run a regulator.	Correspondence	Flood Oflicor 2
9:51 AM	Engineer 2 phoned Engineer 4 regarding modelling results.	Correspondence	Flood Officor 2
10:00 AM	Engineer 2 phoned Engineer 4 regarding rodeling results. Engineer 2 wants to advise Dam Operator 7 to stop at Gate 3 at 1 metre, but they agree to close as planned and maintain operational release instead of flood release.	Correspondence	Flood Oftcor 2
10:15 AM	Engineer 4 has discussed the event closure with Director Dam Safety. It was agreed that the flood will be considered closed with the closure of the gates at 1200 . At that time, control of the dam will revert to Seqwater. As the low flow channel to the regulator is blocked, the centre gate will be opened to 1 metre to manage on-going inflows with the aim of getting to 95% (EL 66.5).	Correspondence	Enginoer 2
10:43 AM	Received QPF - 15 mm -5mm generally, heavier falls to about 50 mm in Brisbane and North Pine catchments.	Other	Flood oftcor 2
11:14 AM	Engineer 3 phoned Engineer 2 - Still operational until tonight.	Correspondence	Fload Oftcer 2
11:28 AM	Seqwater at M - -rosby phoned FOC requesting for peak flow at Mt Crosby Weir during the latest event.	Correspondence	Flood Officer 2
11:36 AM	Engineer 2 phoned Engineer 4 confirming that Engineer 3 and Flood Officer 8 will be on tonight.	Correspondence	Flood Offlioor 2
11:45 AM	Enginger 2 phoned Mt Crosby advising that peak flow over Mt Crosby Weir was about 9150 cumecs.	Correspondence	Fliood Oflicor 2
11:51 AM	Engineer 2 phoned (left message with) MBRC regarding potential for closing operation tonight.	Correspondence	Flood Officer 2
11:52 AM	Engineer 2 phoned (left message with) Operations Coordinator North to call him back.	Correspondence	Flood Officer 2

APPENDIX M - FLOOD EVENT _JG

11:59 AM	Engineer 4 phoned Engineer 2 stating that divers will investigate erosion d / s Wivenhoe Dam today.	Correspondence	Flood Officor 2
1:25 PM	Mt Crosby phoned Engineer 2 discussing about the information which Engineer 2 sent.	Correspondence	Flood Officor 2
1:39 PM	Dam Operator 10 phoned Engineer 2 advising Wivenhoe Dam EL is 66.89 m AHD.	Correspondence	Flood Officor 2
3:21 PM	MBRC phoned wanting AJ Wyllie Bridge to be closed at 9:00 PM rather than 7:00 PM, and stating that she will update 24 hour call centre number. They will send email to confirm all this.	Correspondence	Flood Ofticor 2
4:00 PM	Received QPF - $15 \mathrm{~mm}-25 \mathrm{~mm}$ generally, heavier falls to about 50 mm in Brisbane and North Pine catchments.	Other	Flood Ofticer 2
7:30 PM	MBRC called to say that the aiternate route @ Petri is open (sooner than the 9 PM forecas	Correspondence	Flood Officer 8
9:10 PM	Called Operations Coordinator North to inform him that NPD will be mobilised.	Correspondence	Flood Oticor 8
9:10 PM	Called NPD Operator to mobilise. The WL is approaching trigger level for gateopening.	Correspondence	Flood Officer 8
9:20 PM	Called MBRC call centre to inform them that NPD will be operated. They called back and advised that they can close Young's crossing by 11 PM. They will confirm once road is closed.	Correspondence	Flood Officor 8
9:38 PM	NPD Operator called to confirm they are ready The gauge reading ©0 39.54 @ 9:30PM	Correspondence	Flood Ofticer 8
2:15 AM	MBRC called regarding release at NPD. He was advised that the gates will be open for a while yet	Correspondence	Flood Ofticor 8
6:50 AM	MBRC called to find out when the gates on NPD will be shat they were advised that the gates will only be closed in time for the afternoon peak.	Correspondence	Flood Oticor 8
7:20 AM	Engineer 1 called SRC to advise of flow in Lockyer Creek. Tony concerned about Burtons Bridge but Engineer 1 indicated that we will endeavour to keep flows below $400 \mathrm{~m} 3 / \mathrm{s}$.	Correspondence	Enginoer 1
7:25 AM	Engineer 1 called Ipswich CC and advised of-ginewed flows in Lockyer Creek and Middle Brisbane R.	Correspondence	Enginoer 1
7:40 AM	Engineer 1 called BCC and advised of increased flows in Lockyer Creek and Middle Brisbane. Advised that Savages Crossing and/will be Colleges Crossing are inundated. Estimated travel time 30 to 36 hours.	Correspondence	Engineer 1
7:55 AM	Engineer 1 called NPD and spoke © Oam Operator 7. Discussed proposed strategy to drain until around 2:00 PM with current gate settings. Requested hourly readings so as to monitor model performance.	Correspondence	Engineor 1
8:00 AM	NPD Operator calied to discuss proposed operations. Engineer 1 indicated that we will continue as is until 10:00am QPF comes in and then decide from there as to strategy.	Correspondence	Engineor 1
8:40 AM	Dam Operations Manager called enquiring about the timeliness of the notice we gave to MBRC. Engineer 1 advised him accordingly.	Correspondence	Flood Officor 2
8:45 AM	Flood Officer 9 called (re Lowood pump station) enquiring the time to peak (height and discharge). FOC response was about 9 hours with height of about 3.7 m corresponding to 300 cumecs.	Correspondence	Fliood offlcor 2
8:50 AM	Flood ©ficer 9 called (re Lowood pump station) enquiring current height and discharge. Together we estimated that it wassabout 150 cumecs (50 from Lockyer Creek and 100 from Wivenhoe Dam) corresponding to about 2.4 m .	Correspondence	Flood Offlcer 2

APPENDIX M - FLOOD EVENT LOG

9:45 AM	Dam Operations Manager advised Wivenhoe will not be drained to 66.5 m AHD, but will be maintained at or just below FSL.	Correspondence	Flood Officor 2
10:21 AM	Received QPF - 15mm-25mm generally, heavier fails to about 50 mm in Brisbane and North Pine catchmpents.	Other	Flood Officer 2
10:30 AM	Dam Operations Manager called enquiring whether closing all releases in Wivenhoe Dam will cause level to exceed gate trigger in the next three day. Engineer 1 advised that with rain on the ground he expects it not to, however forecast as per QPF is $15-25 \mathrm{~mm}$, so we may need to review that decision tomorrow.	Correspondence	Flood Offlcer 2
11:12 AM	MBRC called. Engineer 1 advised all gates will be closed at 2:00 PM.	Correspondence	Flood Officer 2
11:14 AM	Engineer 1 phoned Operations Coordinator North. They decided to close NPD by 2pm to allow MBRC to open Young's Crossing for afternoon peak.	Correspondence	Flood Ofticer 2
11:15 AM	Flood Officer 9 called enquiring peak height and discharge at Lowood with Wixenhoe Dam gates closed. We decided to just minus 100 cumecs from previous estimation. He also wantsge to email him the Lowood rating curve.	Correspondence	Flood Oftricor 2
11:33 AM	Engineer 1 called NPD Operator (re Directive 36)	Correspondence	Flood Officor 2
11:36 AM	Engineer 1 called Engineer 2. Engineer 2 will monitor situation ofermght and Engineer 1 will become Duty Engineer again tomorrow.	Correspondence	Flood Officer 2
11:44 AM	Communications Advisor, Media and Ministerial (Seqwater) called to confirm whether we have closed all gates at Wivenhoe Dam. Flood Officer 2 said yes.	Correspondence	Flood Officer 2
1:07 PM	Dam Operations Manager called confirming NPD c/§stre.	Correspondence	Flood Officer 2
1:35 PM	Communications Advisor, Media and Ministerial (Seqwater) called about Lowood pump motor sitting on the platform and wanting to know what flow will come down from Lockyer. Engineer 1 said about 300 cumecs.	Correspondence	Flood Officer 2
1:37 PM	Engineer 2 called. Flood Officer 8 will berontonight (Flood Officer 2 should ring him this afternoon). Mt Crosby Weir gauge is broken so Water Treatment heys will give manual readings via BoM website. City gauge is currently reading 0.3 m high.	Correspondence	Flood Officer 2
2:10 PM	Engineer 1 advised MBRC that North Pine Dam gate operations had ceased at 14:00 and that Youngs Crossing should be clear of water within the next hour to an hour and half.	Correspondence	Engineer 1
2:15 PM	Engineer 1 called NPD Qperator and indicated that Engineer 2 will be on call tonight monitoring the situation. NPD Operator advised that the tree branch snagged on Gate C had swung around and was now resting on pier therefore okay. Hofwever a 75 mm branch was caught in the ropes of Gate B and may need to be removed before another operation. Operations Coordinator North has organised for the Rangers to examine tomorrow.	Correspondence	Engineer 1
2:40 PM	Dam Operator 2 called from Somerset Dam and enquired as to proposed operational release strategy. Engineer 1 advised that no releases planned for now until Wivenhoe spillway issues are resolved.	Correspondence	Englneer 1
3:20 PM	Engineer 1 called MBRC Call Centre to provide heads up on possible gate operations tonight. Indicated that with 25 m a over catchment we will commence gate operations at 21:00.	Correspondence	Engineor t

APPENDIX N - FLOOD OPERATIONS ENGINEERS RESUMES

Engineer 1

SunWater Position Title

Headworks Design Manager

Business Group

Infrastructure Development

Location

Brisbane

Qualifications

- Bachelor of Engineering (Civil), Queensland University of Technology, 1983
- PostGrad Certificate in Hydrology, University of New South Wales, 1986

Professional Affiliations

- CPEng Institution of Engineers, Australia (NPER 3)
- Registered Professional Engineer, Queensland (No. 4887)
- Association of Professional Engineers, Scientists and Manôers, Australia
- Australian Institute of Project Management (No. 7209)

Competencies/Professional Development

- Environmental Management Systems (ISO 14 GO)
- Project Management

Papers/Publications

- ANCOLD 2009, 2008, 2005, 2002
- HWRS 2005, 2003, 1999

Background

Engineer 1 has over 26 years experience in water engineering during which time he has gained expertise in hydrology andwater resource studies. He is currently Headworks Design Manager of the majortheadworks design group which provides civil design services for a range of water supply infrastructure projects including dams, weirs and fish transfer systems. The team's 20 professional and technical staff are responsible to Engineer 1 for service délivery to both internal and external clients.

Engineer 1's mailareas of interest concern design flood estimation and hydraulic modelling of ford plain flows and project management. He is proficient in the use of numerous trologic and hydraulic modelling packages and he is involved in leading a number of project teams.

Water Industry - Areas of Expertise

\cdots - Design Flood Hydrology

- River Hydraulic Modelling
- Water Resource Simulation
- Drought Management
- Environmental Flow Assessment
- Dam Safety and Risk Assessment

Key Skills / Proficiencies

- Project Management
- Flood Management and Operation

APPENDIX N - FLOOD OPERATIONS ENGINEERS RESUMES

Engineer 4

Engineer 4 is a Civil Engineer with almost 30 years experience in the Queensland Water Industry. Engineer 4 has held roles in design, construction and operations working on major bulk water supply projects throughout Queensland, including the Burdekin River Irrigation Project, Wivenhoe Dam and most of Queensland's major irrigation and bulk water supply projects. Engineer 4 is one of Australia's most experienced civil engineers in relation to the management of flood operations at gated dams, having at various times been responsible for managing operations and maintenance at eight major gated dams in Queensland and interstate.

For the last 15 years Engineer 4 has had responsibilities in flood management and operations at Wivenhoe and Somerset dams and is currently a Flood Operations Engineer for these dams as defined under the Water Supply Act 2008, one of a team offour.

As well as being an experienced civil engineer, Engineer 4 holds complementary tertiary qualifications in environmental impact assessment, infrastructure madagement, operations management, electrical engineering and computing.

Engineer 4 is currently responsible for Seqwater's dam safetymanagement programs which include responsibilities for managing the structural safety at Seqwater's 25 dams and 52 weirs, responsibilities for water management and regulatory reporting in accordance with the Water Act 2000 and the Water Stuply Act 2008 and management of Seqwater's hydrographic and seismic networks.
APPENDIX O - HOURLY RAINFALL TABLES

$\begin{aligned} & \text { ALERT } \\ & \text { ID } \end{aligned}$	$\begin{gathered} \text { BOM } \\ \text { ID } \end{gathered}$	Station	Location		24				4 Hours Ending 09:00				$\begin{aligned} & 8 \text { Day } \\ & \text { Total } \end{aligned}$
			Latitude	Longitude	6/01	$7 / 01$	$8 / 01$	$9 / 01$	$10 / 01$	$11 / 01$	$12 / 01$	$13 / 01$	
6500	540184	Mt Glorious-B	-27.3120	152.7470									
6511	541057	Mt Pechy	-27.3167	152.0817	44	16	16	7	81	101	98	0	283
6514	540139	Gregor Ck-P	-26.9800	152.4040	27	39	11	25	221	77	25	1	426
6517	540140	Gregor Ck-B	-27.0000	152.4040						Δ			
6520	540141	Boat Mountain	-26.9789	152.2847	40	52	20	25	179	62	26	4	408
6523	540142	Cressbrook Dam	-27.2650	152.1950	32	28	14	7	-94	120	11	1	307
6526	540143	Helidon	-27.5440	152.1130	56	42	25	6	101	33	0	0	263
6529	540144	St Aubyns	-27.0619	151.8944	25	26		20	74	123	8	2	301
6540	540145	Yarraman	-26.8358	151.9692	32	40	21	20	113	130	0	1	357
6542	540146	Cooyar Ck	-26.7417	152.1367	23	55	28	18	118	118	3	1	364
6550	540147	Walloon-P	-27.6170	152.6680	25	14	14	3	69	42	114	0	281
6553	540148	Rosentretters Br	-27.1383	152.3294	28	27	25	4	129	111	23	4	351
6555	540479	Atkinson Dam	-27.4320	152.4640	44	28	9	5	109	119	98	0	412
6556	540149	Glenore Grove	-27.5242	152.4080	16	24	13	4	84	77	129	0	347
6559	540150	Savages Xing	-27.4410	152.6680	4	27	5	5	113	246	144	0	544
6562	540151	Kalbar Weir	-27.9230	- $\begin{array}{r}\text { ¢ } \\ \hline\end{array}$	42	39	7	4	15	67	55	0	229
6565	540152	Tenthill	-27.6360	152.2140									
6568	540153	O'Reillys Weir	-27.497	152.5892	10	36	6	2	98	146	206	0	504
6571	540154	Harrisville	-27.8150	152.6406	14	19	10	1	30	76	53	0	203
6574	540155	Caboonbah	- -27.1460	152.4900	24	23	39	9	130	154	54	0	433
6577	540156	Gatton	-27.5564	152.2731	17	36	21	4	87	68	88	0	321
6580	540157	Adams $\mathrm{BP}^{\text {P }}$	-27.8294	152.5108	33	30	13	2	36	93	92	1	300
6583	540158	Showground Weir	-27.6386	152.3844	13	27	18	1.	68	103	117	0	347

Appendix 0

ALERT ID	$\begin{aligned} & \mathrm{BOM} \\ & \mathrm{ID} \end{aligned}$	Station	Location		Rainfall (mm) 24 Hours Ending 09:00								8 Day Total
			Latitude	Longitude	$6 / 01$	$7 / 01$	8/01	9/01	$10 / 01$	11101	$12 / 01$	13101	
6590	540160	Sornerset Dam HW-B	-27.1200	152.5510	20	. 18	42	22	159	136		1	463
6593	540159	Somerset Dam HW-P	-27.1000	152.5510									
6596	540161	Crows Nest	-27.2308	152.0311	44	21	15	11	115	人	18	0	322
6598	540162	Toowoomba	-27.5114	151.9536	44	18	27	9	81	117	24	1	321
6600	540163	Kilcoy	-26.9481	152.5836	12	38	18	24	779	96	61	2	430
6601	540494	Mt Binga	-26.9920	151.9850	38	39	35	22	121	118	13	2	388
6602	540164	Top of Brisbane	-26.4772	152.1567	45	52			41	66	0	0	291
6603	540493	Blackbutt	-26.8860	1521020	45	75	30	33	160	107	13	0	463
6604	540165	Toogoolawah	-27.0858	152.3722	16	26	22	12	177	103	27	2	385
6605	540492	Eskdale	-27.1670	152.1860									\%
6606	540166	West Woodbine	-27.7847	152.1497	35	17	5	4	17	88	33	0	199
6607	540491	Lindfield	-26.8370	152.5810	50	34	18	90	271	86	65	1	615
6608	540167	Jimna	-26.6610	152.450°	29	44	28	42	117	47	22	1	330
6609	540490	Monsildale	-26.5820	152.3250	25	43	62	49	117	160	4	2	462
6610	540168	Kluvers Lkt	-27.2070	1752.7030	4	52	24	17	126	164	191	4	582
6611	540489	Redbank Creek	-27.2770	152.2890	32	40	21	7	130	170	27	1	428
6612	540488	Mt Stanley	-26.6820	152.2050	24	61	32	32	137	160	2	1	449
6613	540487	Hazeldean	-27.0280	152.5370	9	38	32	18	204	123	90	5	519
6614	540486	Westvale $\mathrm{NO}^{\text {ch }}-27.0170$		152.6100									
6615	540169	\because Thornton	-27.8211	152.3800	23	31	12	5	46	123	98	0	338
6617	540170	Little Eqypt	-27.7042	152.0650	50	18	8	1	30	92	30	1	230

ALERT	$\begin{aligned} & \mathrm{BOM} \\ & \mathrm{ID} \end{aligned}$	Station	Location		Rainfall (mm) 24 Hours Ending 09:00								8 Day Total
			Latitude	Longitude	$6 / 01$	7101	8101	9/01	$10 / 01$	$11 / 01$	$12 / 01$	$13 / 01$	
6619	540171	Mt Castle	-27.9636	152.3756	52	55	17	4	88	195	122	21	554
6621	540172	Nukinenda	-27.0567	152.1072	11	43	19	13	114	113	10	2	325
6623	540173	Tarome	-27.9867	152.5008	31	55	9	0	26	81	82	0	284
6624	540474	Moogerah Dam	-28.0310	152.5450	23	55	16	1	21	人98	76	0	288
6626	540475	Maroon Dam	-28.1840	152.6340	20	19	1	5	34	78	46	0	203
6630	540175	Lyons Br-B	-27.4717	152.5236	25	25	13	4	483	130	239	0	519
6633	540174	Lyons $\mathrm{Br}-\mathrm{P}$	-27.4717	152.5236	26	22	11	5	75	114	214	0	467
6636	540177	Wivenhoe Dam HW-B	-27.3550	152.5960	6	29			87	135	197	0	464
6641	540179	Wivenhoe Dam TW-B	-27.3900	152.5960	8	32	6	5	99	157	206	0	513
6643	540178	Wivenhoe Dam TW-P	-27.4100	152.5960		30°	7	2	101	160	218	0	525
6646	540183	Lowood-B	-27.4700	152.5930	8	29	7	4	104	183	210	0	545
6649	540182	Lowood-P	-27.4900	152.5930	6	22	8	9	99	163	194	0	501
6651	540180	Amberley-P	-27.6780	152.6990	39	13	16	3	68	32	86	0	257
6653	540181	Amberley-B	-27.6783	16\%6989	38	12	16	3	59	32	81	1	242
6656	540472	Bill Gunn Dam	-27.6320	152.3790	13	31	23	1	74	102	132	0	376
6658	540473	Lake Clarendon Dam		152.3530	21	35	20	5	88	76	134	0	379
6680	540138	Mt Glorious-P	-27.3220	152.7470	29	46	16	24	204	260	228	2	809
6690	540185	Mt Mee-P	-27.0700	152.7800	10	55	46	30	220	137	179	10	687
6701	540246	Mt Mee-B	-27.0700	152.7800	9	55	49	28	219	138	179	9	686
6702	540338	Woodford-B	-26.9300	152.7600	8	42	43	37	181	88	196	5	600

APPENDIX O-HOURLY RAINFALL TABLES

ALERT ID	$\begin{aligned} & \mathrm{BOM} \\ & \mathrm{ID} \end{aligned}$	Station	Location		Rainfall (mm) 24 Hours Ending 09:00								8 Day Total
			Latitude	Longitude	6/01	$7 / 01$	8/01	$9 / 01$	$10 / 01$	11/01	$12 / 01$	13/01	
6705	540337	Woodford-P	-26.9500	152.7600	8	41	43	38	182	88	196	5	601
6708	540188	Devon Hills	-26.9000	152.3210	28	42	43	55	162	68	16	1	415
6711	540189	Baxters Ck	-27.1958	152.8000	3	37	23	17	127	170	192	0	569
6714	540190	Ferris Knob	-26.8542	152.8167	0	33	24	90	250	18	224	11	710
6716	540191	West Bellthorpe	-26.8230	152.6780	50	30	14	104	312	134	95	7	746
6717	540261	Linville	-26.8050	152.2720	30	39	32	37	439	51	34	0	362
6730	540192	Jindalee	-27.5322	152.9239	24	35	${ }^{-8}$	5	75	26	45	0	218
6733	540193	Rosewood	-27.6600	152.6030	21	14		3	67	54	152	0	328
6736	540194	Kuss Rd	-27.6658	152.5414									
6739	540195	Washpool	-27.8290	152.7550	12	20	11	1	24	60	38	0	166
6742	540196	Walloon-B	-27.6100	152.6680	26	16	14	6	67	42	113	0	284
6748	540198	Brisbane City	-27.4730	153.0300	42	36	12	15	105	20	41	0	278
6751	540199	Mt Crosby	-27.5300	152.7980	4	39	11	6	86	25	73	0	244
6754	540200	Moggill-P	-27.5950	152.8636	3	39	6	5	60	35	52	0	200
6759	540277	North Pine Dam-B	-27.2750	152.9300	4	45	4	9	82	53	67	0	264
6760	540202	North Pine Dam	-27.2650	-19\%\%9300	3	45	4	8	83	52	65	0	260
6763	540203	Petrie	-27.2700	152.9750	6	57	5	12	121	63	55	0	319
6766	540204	Lake Kurwongbah	-27.2500	152.9500	7	52	7	10	127	60	72	1	336
6769	540205	Drapers Xing	-27.3500	152.9167	2	47	8	9	123	47	84	2	322
6774	540207	Wilsons Peak-P ~ 28.2440 : 152.4860											
6775	540059	Peachester	-26.8400	152.8406									
6778	540060	Samfor	-27.3610	152.8790	21	41	6	9	131	51	99	2	360

ALERT ID	Station									hourly	Rain	nfall	$m \text { m) }$	endi	$9 \mathrm{a}$	$7 \mathrm{~J}$	anua	I								Daily Total
		10	11	12	13	14.	15	16	17.	18	19	20	21	22	23.	00.	01	02	03.	04.	05	06	07.	08	09	mm
6500	Mt Glorious-B												-		.					\because		\cdots		\cdots
6680	Mt Glorious-P	3	8	1	0	0	0	0	0	0	0	0	0	0	0	0	(1)	1	1	0	0	0	0	0	2	17
6514	Gregor Ck-P	0	0	9	7	1	0	0	0	0	0	0	0	\bigcirc	0	1	2	2	2	0	2	4	3	4	0	37
6517	Gregor Ck-B																									
6520	Boat Mountain	0	0	23	7	0	0	0	0	0	0	0	0	0	0	1	1	1	1	0	1	6	3	4	2	50
6523	Cressbrook Dam	8	10	3	1	0	0	0	. 0	0	0	0		\square^{0}	0	0	2	1	0	0	0	1	0	0	2	28
6526	Helidon	28	7	2	0	0	0	0	0	0	0	0	0	0	0	0	0	3	2	0	0	0	0	0	0	42
6529	St Aubyns	2	5	2	0	0	0	0	0	0	0	人8\%	0	0	0	1	0	0	0	0	0	2	5	8	2	27
6540	Yarraman	0	7	22	2	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	2	0	1	1.	4	40
6542	Cooyar Ck	0	0	16	27	2	0	0	0		0	0	0	0	0	0	0	1	2	1	2	2	0	2	1	56
6550	Walloon-P	1	5	4	0	1	1	0	0	0	0	0	1	2	0	0	0	0	0	0	1	0	0	0	0	16
6553	Rosentretters Br	3	0	13	1	0	0		(2)	0	0	0	0	0	0	0	2	1	1	1	0	1	1	3	2	29
6555	Atkinson Dam	4	9	6	2	2	1	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	4	29
6556	Glenore Grove	2	6	3	2	3	<<	10	0	0	0	0	0	0	0	0	0	4	0	0	0	0	1	0	2	23
6559	Savages Crossing	0	6	4	1	1	0	1	0	0	0	0	0	0	0	0	0	2	0	0	0	0	0	0	12	27
6562	Kalbar Weir	6	13	4	2	1	1	0	0	0	0	0	0	0	1	4	1	2	0	0	1	3	0	0	0	39
6565 Tenthill								\because																	
6568	O'Reillys Weir	0			1	2	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	11	37
6571	Harrisville	1	9	4	1	0	2	0	0	0	0	0	0	1	0	1	0	0	0	0	0	0	0	0	0	19
6574	Caboonbah	0^{2}	0	2	2	2	1	0	0	0	0	0	0	0	0	0	6	2	0	0	1	2	0	4	1	23
6577	Gatton	9	18	1	2	1	1	0	0	0	0	0	0	0	0	0	0	1	2	0	0	0	0	0	1	36

ALERT	Station									ourl	Rain	fall	n)	ndin	9	77	nua									Daily Total
		10	11	12	13	14	15	16	17.	18	19	20	21	22	23	00	01	02	03	04	05	06	07	08	09	mm
6580	Adams Br	9	9	5	3	2	2	0	0	0	0	0	0	0	0	0	0	Qti		0	0	0	0	0	0	31
6583	Showground Weir	4	11	2	1	4	1	0	0	0	0	0	0	0	0	0	0	2	1	0	0	0	1	0	0	27.
6590	Somerset Dam HW-B	0	0	0	4	2	1	0	0	0	0	0	0	0	0			1	0	0	0	3	0	5	1	19
6593	Somerset Dam HW-P																									
6596	Crows Nest	2	11	1	0	0	0	0	0	0	0	0	0	$0)^{5} 0$		1	1	0	1	0	0	0	2	1	1	21
6598	Toowoomba	9	3	1.	1	0	0	0	0	0	0	0	0	0	0	0	0	2	1	1	0	0	0	1	0	19
6600	Kilcoy	0	0	9	9	1	1	0	1	00		060		0	0	1	1	1	1	1	3	0	2	5	1	37
6601	Mt Binga	1	9	6	2	0	0	0	0	0	0	0	0	0	0	3	0	0	1	0	0	5	4	4	4	39
6602	Top of Brisbane	0	0	0	12	15	0	3	0	$0 \leqslant 0$		0	0	0	0	0	0	0	0	6	0	2	1	3	4	46
6603	Blackbutt	0	7	43	7	0	0	1	0	0	0	0	0	0	0	1	0	1	0	0	2	3	1	5	5	76
6604	Toogoolawah	1	0	5	3	0	0	0	$0{ }^{8} 0$		0	0	0	0	0	0	2	2	2	0	1	2	5	4	1	28
6605	Eskdale																									
6606	West Woodbine	9	4	2	0	1	0×0		0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1	0	18
6607	Lindfield	0	0	0	11	2	3	2	1	2	0	0	0	0	0	1	1	2	0	0	2	0	3	1	4	35
6608	Jimna	0	0	0	4	(1)	15	10	3	0	0	0	0	0	0	3	1	1	0	0	2	0	2	0	0	42
6609	Monsildale	0	0	2	2	17	7	3	2	1	0	0	0	0	0	0	1	0	0	0	3	1	1	0	2	42
6610	Kluvers Lkt	0	7	6		0	2	4	0	0	0	0	0	0	0	0	1	0	0	0	0	2	0	14	4	52
6611	Redbank Creek	13	12	5	2	0	0	0	0	0	0	0	0	0	0	0	1	1	1	0	0	0	0	1	5	41
6612	Mt Stanley	0	0°	7	22	21	0	0	0	0	0	0	0	0	1	0	0	1	0	0	4	2	1	0	1	60
6613	Hazeldean	0	0	. 2	14	1	1	0	0	0	0	0	0	0	0	0	4	5	0	0	1	6	2	4	0	40
6614	Westvale																									

$\begin{aligned} & \text { ALERT } \\ & \text { ID } \end{aligned}$	Station		1	12	13	14	15	16	Hourly Rainfall (mm) ending 9am 7 January										03	04	05	06	07	08	09	Daily Total mm
		10.							17.	18	19	20	21	22	23	00	01	02								
6702	Woodford-B	0	0	0	13	0	2	2	2	2	0	0	0	0	0	0	0	0	0	1	5	2	9	0	2	40
6705	Woodford-P	0	0	0	13	0	2	2	2	2	0	0	0	0	0	0			0	1	5	2	9	0	2.	40
6708	Devon Hills	0	0	14	11	1	0	0	0	0	0	0	0	0	0	0	0	1	1	0	2	2	1	8	0	41
6711	Baxters Ck	0	0	0	6	1	2	4	2	1	0	0	0	0	0	(6)	0	0	0	1	0	0	1	15	4	37
6714	Ferris Knob	0	0	0	1	1	0	5	2	5	0	1	0	0	0	1	0	0	1	1	2	2	9	1	2	34
6716	West Bellthorpe	0	0	0	8	1	3	3	2	2	0	0	0	0	0	1	1	1	0	0	1	1	4	0	4	32
6717	Linville	0	0	17	7	5	0	0	0	0	0	0	0	0	0	0	1	0	1	0	3	0	2	1.	2	39
6730	Jindalee	1	2	10	3	1	2	1	0	0	0	0	2	0	0	0	0	0	1	0	0	0	0	0	13	36
6733	Rosewood	2	5	2	1	1	2	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	14
6736	Kuss Rd	1	7	2	2	1	2	0	0	0	(2)	0	0	0	0	0	0	0	0	1	0	0	0	0	0	16
6739	Washpool	2	2	1	1	2	2	0	0	0	0	0	0	1	5	3	0	0	0	0	0	0	0	0	0	19
6742	Walloon-B	1	5	4	0	0	2	0			0	0	1	2	0	0	0	0	0	0	1	0	0	0	0	16
6748	Brisbane City	0	1	0	7	2	0	3	1	2	0	1	0	0	0	0	0	0	1	0	0	0	0	0	17	35
6751	Mt Crosby	0	10	12	4	0		O	0	0	0	0	2	1	0	0	0	0	0	1	0	0	0	0	8	39
6754	Moggill-P	1	1	10	1	1	1	0	0	0	0	0	1	4	0	0	0	0	0	0	0	0	0	0	20	40
6759	North Pine DamB		0	0				4	4	2	1	0	0	0	0	0	0	0	0	0	0	0	0	18	2	44
6760	North Pine Dam	0	0	0	11	1	1	4	4	2	1	0	0	0	0	0	0	0	0	0	0	0	0	18	2	44
6763	Petrie	0	0	8-	12	5	0	4	4	2	1	0	0	0	0	0	0	0	0	0	0	0	0	22	2	60
6766	Lake Kurwongbah	0	0	0	7	7	0	5	4	1	2	0	0	0	0	0	0	0	0	0	0	0	1	12	0	39
6769	Drapers Xing	-		1	7	1	0	3	4	1	0	0	0	0	0	0	1	0	0	0	0	0	0	12	6	47
6774	Wilsons Peak-P													.												

APPENDIX O -HOURLY RAINFALL TABLES

[^8]

APPENDIX O - HOURLY RAINFALL TABLES

$\begin{gathered} \text { ALER } \\ \text { Ttas } \\ \text { ID } \end{gathered}$	Station	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	1		$\begin{aligned} & 1 \\ & 3 \end{aligned}$	$\begin{aligned} & 4 \\ & 4 \\ & ! \\ & ! \\ & 1 \\ & 1 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 5 \end{aligned}$	$\begin{aligned} & 1 \\ & 6 \end{aligned}$		nf	!	m	n	d	94,											Dail y Tota 1
									$\begin{aligned} & 1 \\ & 7 \end{aligned}$	$\begin{aligned} & 1 \\ & 8 \end{aligned}$	$\begin{aligned} & 1 \\ & 9 \end{aligned}$	$\begin{aligned} & 2 \\ & 0 \end{aligned}$	$\begin{aligned} & 2 \\ & 1 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & 2 \\ & 3 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 2 \end{aligned}$	$\begin{aligned} & 0 \\ & 3 \end{aligned}$	$\begin{aligned} & 0 \\ & 4 \end{aligned}$	$\begin{aligned} & 0 \\ & 5 \end{aligned}$	$\begin{aligned} & 0 \\ & 6 \end{aligned}$	$\begin{aligned} & 0 \\ & 7 \end{aligned}$	$\begin{aligned} & 0 \\ & 8 \end{aligned}$	0 9	mm
					1																					
6711	Baxters Ck	1	$\begin{aligned} & 1 \\ & 9 \end{aligned}$	1	0	0	0	0	0	3	0	0	0	0	0	0			0	0	0	0	0	0	0	24
6714	Ferris Knob	1	1	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	0	0	0	0	0	0	0	0	0	0			0	0	0	0	0	0	0	0	25
6716	West Bellthorpe	0	0	2	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	2	0	0	0	1	0	0	0	0		0	0	0	0	0	0	0	1	0	0	16
6717	Linville	1	1	0	9	9	9	2	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	32
6730	Jindalee	5	1	1	0	0	0	0	0	2	0	0	$0 \times$	0	0	0	0	0	0	0	0	0	0	0	0	9
6733	Rosewood	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	4	0	1	0	0	0	0	0	0		-	0	0	0	1	0	0	0	0	0	0	0	0	18
6736	Kuss Rd	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	4	0	1	0	0	0	0	0			0	0	0	0	0	0	0	0	0	0	0	0	0	15
6739	Washpool	5	2	3	0	0	0	0	0			0	0	0	0	0	1	0	0	0	0	0	0	0	0	11
6742	Walloon-B	$\begin{aligned} & 1 \\ & 3 \end{aligned}$	1	0	1	0	0	0			0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	16
6748	Brisbane City	5	0	0	0	1	1	0	2	3	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	13
6751	Mt Crosby	6	3	0	0	0	0	0	0	0	3	0	0	0	0	0	1	0	0	0	0	0	0	0	0	13
6754	Moggill-P	6	1	0	0	0		\%	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	8
6759	North Pine DamB	2	2	0	0		20	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	6
6760	North Pine Dam	2	2	0	0	0°	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	6
6763	Petrie	0	3	0	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	5
6766	Lake Kurwongbah	1	3		0	0	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	6
6769	Drapers Xing	1		0	0	0	0	0	4	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	10
6774	Wilsons Peak-P		8																							
6775	Peachester	$0 \times$																								
6778	Samford		2	1	0	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	7

		N	$\stackrel{\sim}{N}$		N	＋	ω	$\stackrel{\checkmark}{\sim}$	\％	은	ω	\bigcirc	\sim	\checkmark	ω	\sim		\cdots	－		＋	＋m	$3-$	N			の	のペ	N	$¢$	－
$\stackrel{\Gamma}{i}$		\bigcirc	－	－	O	－	－	O	m	－	－	－	－	－	－	－		－	O	\bigcirc	－	－ 0	O	－		－	－	0	－	\checkmark	－
		－	－	0	－	－	－	\checkmark	N	∞	\bigcirc	－	－	－	－	\bigcirc		－	－	－	O	－	0	－		\bigcirc	O	－	－	N	－
		\bigcirc	$\stackrel{\sim}{\sim}$	$\stackrel{ }{ }$	$\stackrel{\sim}{\square}$	－	\bigcirc	の	N	\checkmark	－	－	－	－	O	－		－	－	－	0	－	0	－			－	－ 0	$\stackrel{\square}{-}$	N	$\stackrel{\sim}{\sim}$
		－	の	¢	\wedge	\bigcirc	－	－	\checkmark	N	O	N	\bigcirc	－	－	\bigcirc		－	－	\checkmark	\bigcirc	－	O	10		－	－	－	－	－	
		\bigcirc	0		O	－	－	－	O	O	O	－	\checkmark	－	0	－		0	O	\checkmark	O	－	\bigcirc	－		－	\bigcirc	－ 6	－	－	－
		10	\bigcirc		－	－	－	－	－	－	－	\checkmark	－	\leftarrow	\checkmark	－		\checkmark	0	－	0	O	0	－		－	－	－	－	－	－
$\stackrel{1}{2}$					－	－	－	－	－	－	－	0	－	－	－	－		－	－	－	－	－	－	－		\bigcirc	－	－	－	－	－
$\stackrel{\square}{2}$		－	O	人	－	－	－	－	－	－	－	O	－	－	\bigcirc	\bigcirc		0	O	0	\bigcirc	0	0	\bigcirc		－	－	－ 0	－	\bigcirc	0
$\stackrel{\square}{5}$		\bigcirc	－			－	－	\checkmark	－	－	－	－	－	－	－	\bigcirc		0	\bigcirc	－	－	O	－	O		－	N	， 0	－	－	\bigcirc
8 8 8 8 9 \vdots \vdots 5		O	\bigcirc		－	δ	4	0	－	－	O	\bigcirc	0	\bigcirc	O	－		－	O	\bigcirc	0	0	\bigcirc	－		－	－	－	\bigcirc	－	m
		0	－		0	－	0	6	18	－	－	O	－	O	－	－		－	O	O	－	－	\bigcirc	N		\bigcirc	－	－	－	－	0
		－	\bigcirc		0	－	O	－	O	0	0	O	－	\bigcirc	－	5		－	O	－	0	－	\bigcirc	N		－	O	－	－	－	0
		O	－		\bigcirc	－	\bigcirc	O	\bigcirc	－	Q	10	O	O	－	－		－	O	O	O	\bigcirc	－	－		－	O	O	－	－	0
		－	O		N	－	－	N	\checkmark	\checkmark	\bigcirc		O	\bigcirc	\bigcirc	\bigcirc		\bigcirc	－	\bigcirc	\bigcirc	－	－	0		\bigcirc	O	O	N	0	o
		O	－		－	O	0	0	O	0	O	－	－	E	di：	\bigcirc		－	\bigcirc	－	O	－	\bigcirc	－		\bigcirc	－	－	\bigcirc	0	\bigcirc
$\stackrel{\pi}{5}$		－	－		O	O	－	O	－	O	－	－	－	－	0	4		－	－	O	O	－	－	－		－	－	O	－	V	－
$\stackrel{\pi}{0}$		－	－		O	0	\checkmark	m	\bigcirc	－	O	0	－	－	－		5		－	0	\checkmark	－	－	\bigcirc		\bigcirc	0	－	－	\bigcirc	－
$\begin{gathered} 2 \\ \frac{5}{5} \\ \frac{1}{1} \end{gathered}$		ω	－		－	\checkmark	\checkmark	15	O	N	－	O	－	N	－	－			18	－	\checkmark	－	－	0		응	\checkmark	\bigcirc	m	ल	\checkmark
		\bigcirc	－		\checkmark	N	\cdots	\bigcirc	0	Γ	O	\bigcirc	\cdots	\checkmark	\bigcirc	－		\checkmark	\bigcirc	N	0	\bigcirc	－	\checkmark		－	－	－	－	－	0
		－	O		0	O	0	\bigcirc	\bigcirc	－	\cdots	0	－	0	\checkmark	－		\bigcirc	O	－		\％	－	\bigcirc		－	O	\bigcirc	－	－	0
		－	0		O	O	O	－	\bigcirc	O	－	O	O	－	\checkmark	－		O	\bigcirc	O	－	O	19	\bigcirc		\bigcirc	－	－	－	－	\bigcirc
		O	0		－	O	－	\bigcirc	－	0	－	－	O	O	－	－		0	－	0	－	－	0	6	1		O	O	－	－	0
		O	O		O	－	O	－	－	O	－	O	－	－	－	O		O	－	O	－	－	－	O		10	－	－	\bigcirc	－	－
		－	O		0	－	O	－	－	0	－	0	－	O	－	－		O	－	O	O	－	－	－		－	¢	O	－	－	－
$\begin{aligned} & \frac{5}{0} \\ & \frac{1}{4} \\ & 5 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \\ & 2 \end{aligned}$		$\left\|\begin{array}{c} a \\ \frac{1}{u} \\ \vdots \\ \vdots \\ \frac{1}{0} \\ \vdots \\ \dot{0} \\ 0 \end{array}\right\|$	Gregor Ck-B		$\begin{gathered} \varepsilon \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{gathered}$		$\left\|\begin{array}{c} 0 \\ \stackrel{0}{0} \\ \frac{0}{4} \\ 0 \\ 0 \end{array}\right\|$	$\begin{aligned} & \frac{c}{\mathbf{c}} \\ & \stackrel{\stackrel{c}{0}}{\substack{0}} \\ & \frac{1}{\mathbf{N}} \end{aligned}$	$\begin{gathered} v \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{gathered}$	$\begin{aligned} & 0 \\ & \frac{1}{1} \\ & 0 \\ & \frac{0}{9} \\ & \frac{0}{3} \\ & 3 \end{aligned}$				$\left\|\begin{array}{c} 0 \\ -\overline{0} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}\right\|$		$: \begin{aligned} & \bar{c} \\ & \stackrel{c}{4} \\ & \underset{\sim}{4} \\ & \hline \end{aligned}$			$\left\|\begin{array}{l} \frac{\Gamma}{0} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}\right\|$	$\left\|\begin{array}{l} 5 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}\right\|$	\dot{c}	Showground Weir	0 \sum_{1}^{1} x^{3} E 0 0 0 0 0 0 0 0 0 0 0							䓂
	8	$\begin{aligned} & 8 \\ & \infty \\ & \hline \\ & \hline \end{aligned}$	$\left\|\begin{array}{c} \stackrel{\rightharpoonup}{40} \\ \stackrel{y}{2} \end{array}\right\|$	$\stackrel{N}{i n}$	$\left\lvert\, \begin{gathered} 0 \\ N \\ 0 \\ 0 \end{gathered}\right.$	$\begin{aligned} & 2 \\ & N \\ & 0 \end{aligned}$	$\left\|\begin{array}{c} 0 \\ \widehat{N} \\ 0 \end{array}\right\|$	$\left\lvert\, \begin{gathered} \mathbf{N} \\ \mathbf{N} \\ 0 \end{gathered}\right.$	$\left\|\begin{array}{c} \mathrm{O} \\ \stackrel{\rightharpoonup}{0} \end{array}\right\|$	$\left\|\begin{array}{c} \mathrm{Y} \\ \stackrel{\rightharpoonup}{\mathrm{o}} \end{array}\right\|$	$\left\lvert\, \begin{aligned} & \text { 웅 } \\ & \mathrm{B} \\ & 0 \end{aligned}\right.$	$\left\lvert\, \begin{gathered} 6 \\ 6 \\ 6 \end{gathered}\right.$	$\begin{aligned} & 10 \\ & 10 \\ & 0 \\ & 0 \end{aligned}$	$\left\|\begin{array}{l} \infty \\ 0 \\ 0 \\ 0 \end{array}\right\|$	$\begin{aligned} & 9 \\ & 8 \\ & 8 \\ & 8 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\left\|\begin{array}{l} \mathbf{n} \\ \mathbf{0} \\ 0 \end{array}\right\|$		$\stackrel{\Gamma}{\stackrel{\rightharpoonup}{8}}$	$\left\|\begin{array}{c} \pm \\ \stackrel{8}{\mathbf{S}} \end{array}\right\|$	$\left\|\begin{array}{c} N \\ \stackrel{N}{0} \end{array}\right\|$	$\dot{\infty}$		$\begin{aligned} & 38 \\ & 0 \\ & 0 \\ & \hline 8 \end{aligned}$	$\begin{aligned} & 10 \\ & 0 \\ & 0 \\ & 0 \\ & \hline 0 \end{aligned}$	¢	－	8	$\begin{aligned} & \dot{8} \\ & 8 \\ & \hline \end{aligned}$	N	\％

ALERT ID	Station	Hourly Rainfall (mm) ending 09:00 9 January 2011																								Daily Total mm
		10	11	12	13	14	15	16	17	18	19	20	21	22	23	00	01	02	03	04	05	06	07	08	09	
6604	Toogoolawah	0	0	0	0	0	1	0	0	0	4	0	0	1	0	1	0	0	0	0.	0°	3	1	1	0	12
6605	Eskdale																			\%						
6606	West Woodbine	0	0	0	0	0	3	0	0	0	0	0	0	0	1	0	0	0	Qt	0	0	0	0	0	0	4
6607	Lindfield	0	0	0	0	2	3	2	7	4	0	0	1	0	0	0	0	0	E1	0	4	35	28	1	1	89
6608	Jimna	0	0	0	0	0	3	3	6	2	0	0	0	0	0	0	0	0	0	0	1	8	10	8	0	41
6609	Monsildale	0	0	0	0	0	0	10	2	3	0	0	0	0	0	0	(Q)	0	0	1	0	0	8	18	9	51
6610	Kluvers Lkt	0	0	0	1	2	0	0	1	0	1	0	0	5	1		CO	1	0	1	2	1	0	1	0	17
6611	Redbank Creek	0	0	0	0	0	4	0	1	0	0	0	0	0		60	0	0	0	0	2	0	1	0	0	8
6612	Mt Stanley	0	0	0	0	0	0	4	1	4	1	0	0	0	$0{ }^{0}$	0	0	0	0	0	0	4	5	12	0	31
6613	Hazeldean	0	0	0	0	0	3	0	1	0	3	0	0	0	0	1	0	0	0	0	1	8	2	0	0	19
6614	Westvale)												
6615	Thornton	0	0	0	0	0	1	0	0	0	0	0	- 0	0	4	0	1	0	0	0	0	0	1	0	0	7
6617	Little Egypt	0	0	0	0	0	1	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	1
6619	Mt Castle	0	0	0	0	0	0	0	0	0	0	O	0	2	2	0	1	0	0	0	0	0	0	0	0	5
6621	Nukinenda	0	0	0	0	0	0	1	0	0	(0)	2	0	0	3	0	0	1	1	0	0	0	7	0	0	15
6623	Tarome	0	0	0	0	0	0	0	0	Q	0	0	0	0	1	0	1	0	0	0	0	0	0	0	0	2
6624	Moogerah Dam	0	0	0	0	0	0	0		0°	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	1
6630	Lyons $\mathrm{Br}-\mathrm{B}$	0	0	0	0	1	3	0	C	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1	6
6633	Lyons Br-P	0	0	0	0	1	4	- 0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	6
6636.	Wivenhoe Dam HW-B	0	0	0	0	1		Oó	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	4
6641	Wivenhoe Dam TW-B	0	0	0	0		5	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	1	5
6643	Wivenhoe Dam TW-P	0	1	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0	0	1	5
6646	Lowood-B	0	0	0	0^{\prime}	3	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0	0	0	1	6
6649	Lowood-P	0	0		0	0	0	0	3	0	0	0	0	0	0	0	0	0	2	0	0	1	0	0	1	7
6651	Amberley-P	0	0	Q	0	2	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3
6653	Amberley-B	0	Q	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	3
6656	Bill Gunn Dam	0	, ${ }^{\circ}$	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	2
6658	Lake Clarendon Dam	Q ${ }^{\circ}$	0	0	0	0	2	3	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	6
6680	Mt Glorious-P ex	\%	1	1	1	4	0	0	1	0	1	0	3	3	0	0	0	1	1	1	0	4	0	1	0	23
6690	Mt Mee-P ${ }^{+}$	0	0	0	0	1	0	0	1	4	1	0	1	2	1	0	0	0	1	3	6	7	0	0	1	29
6701	Mt Mee-B ${ }^{\text {d }}$	0	0	0	0	1	0	0	1	4	1	0	1	2	1	0	0	0	0	4	6	7	0	0	1	29
6702	Woodford-B	0	0	1	0	3	2	0	2	1	1	3	0	0	0	1	0	0	0	1	13	7	1	0	1	37

ALERT ID	Station	Hourly Rainfall (mm) ending 09:00 9 January 2011																								Daily Total mm
		10	11	12	13	14	15	16	17	18	19	20	21	22	23	00	01	02	03	04	05	06	07	08	09	
6705	Woodford-P	0	0	1	0	3	2	0	2	1	1	3	0	0	0	1	0	0	0	1	73	7	1	0	1	37
6708	Devon Hills	0	0	0	0	0	3	0	0	0	4	4	0	1	1	0	1	0	0	3	1	13	24	4	0	57
6711	Baxters Ck	0	0	0	2	2	0	0	1	3	1	0	1	0	0	0	0	0	1		2	1	0	0	0	17
6714	Ferris Knob	0	0	0	0	8	2	6	7	0	0	0	0	0	0	0	0	0	${ }^{2}$	1	26	33	3	0	3	91
6716	West Bellthorpe	0	0	1	0	3	10	1	17	1	2	0	0	0	0	0	0	0^{\prime}	0	2	11	27	28	2	1	106
6717	Linville	0	0	0	0	0	1	2	0	1	2	1	0	1	0	0	(0)	0	0	1	0	3	8	17	1	38
6730	Jindalee	0	0	0	1	0	0	0	0	0	1	0	2	0	0		\% 0	1	0	1	0	0	0	1	0	7
6733	Rosewood	0	0	0	0	1	0	2	0	0	0	0	0	0	0,	- 0	0	0	0	0	1	0	0	0	0	4
6736	Kuss Rd	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
6739	Washpool	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
6742	Walloon-B	0	0	0	0	3	0	1	0	0	0	0	$0 \cdot$	0	1	0	0	0	0	1	0	0	0	0	0	6
6748	Brisbane City	0	0	0	1	0	0	0	0	0	0	1	4	0	0	0	0	0	0	0	0	1	1	10	1	16
6751	Mt Crosby	0	0	0	0	3	0	0	0	0	0	6	0	0	1	0	0	0	1	1	0	0	0	0	0	6
6754	Moggill-P	0	0	0	0	3	0	0	0	0	0	0°	0	0	0	0	0	0	0	1	0	0	0	1	0	5
6759	North Pine Dam-B	0	0	1	0	4	0	0	1	0	(b)	1	0	0	0	0	0	0	0	2	1	0	0	1	0	11
6760	North Pine Dam	0	0	1	0	4	0	0	1	O	0	1	0	0	0	0	0	0	0	2	1	0	0	1	0	11
6763	Petrie	0	0	2	1	5	0	0		8	0	1	0	0	0	0	0	0	0	4	0	0	0	0	0	13
6766	Lake Kurwongbah	0	0	1	1	4	0	0	0^{3}	0	0	0	0	1	0	0	0	0	0	4	0	0	1	0	0	12
6769	Drapers Xing	0	0	1	0	3	0	(o)		0	0	0	1	0	0	0	0	1	1	0	0	1	0	2	0	10
6774	Wilsons Peak-P							-																		
6775	Peachester																									
6778	Samford	0	0	1	0	6	${ }^{\prime} 0$	0	0	0	0	0	3	0	0	0	0	0	0	1	0	1	0	3	0	12

ALERT ID	Station	Hourly Rainfall (mm) ending 9am 10 January																								Daily Tota mm
		10	11	12	13	14	15	16	17	18	19	20	21	22	23	00	01	02	03	04	05	06	07	08	09	
6500	Mt Glorious-B																			c^{8}						
6680	Mt Glorious-P	0	1	2	9	6	2	4	19	3	3	4	10	1	7	3	0	0			2	1	1	0	3	81
6514	Gregor Ck-P	1	10	5	5	11	24	37	24	27	25	9	5	10.	3	7	0	0	\% 1	2	5	1	2	6	2	222
6517	Gregor Ck-B																	1								
6520	Boat Mountain	0	4	17	3	14	4	39	8	13	16	7	3	9	5	11	,	0	2	0	1	0	0	7	3	166
6523	Cressbrook Dam	0	1	8	10	0	3	8	18	5	5	8	12	1	4	$2 \times$	C 1	0	0	0	2	3	1	1	4	97
6526	Helidon	0	0	8	11	4	3	5	11	14	11	4	7	9	2	CO°	1	0	0	0	0	5	3	1	2	101
6529	St Aubyns	0	0	2	2	5	6	13	5	8	14	7	3	2	2	1	2	0	0	0	1	0	0	0	1	74
6540	Yarraman	0	1	1	10	37	21	5	4	6	9	6	3	5	\%	1	2	1	0	0	0	0	1	0	0	116
6542	Cooyar Ck	0	8	1	12	34	10	5	2	7	8	10	5.	-3	5	1	2	3	0	0	0	0	0	0	0	116
6550	Walloon-P	1	13	5	0	0	0	1	3	1	2	2	ct	3	1	0	1	1	0	0	0	7	0	10	10	68
6553	Rosentretters Br	0	9	13	7	1	11	17	11	16	11	6	-4	1	2	3	1	0	0	0	5	3	1	4	3	129
6555	Atkinson Dam	0	8	8	0	0	0	10	13	1	1.	C ${ }^{\text {c }}$	31	5	2	4	0	0	0	1	3	11	0	4	2	110
6556	Glenore Grove	0	5	9	1	2	0	3	31	1	4	2	8	4	1	2	0	1	0	0	1	4	2	1	4	86
6559	Savages Crossing	0	10	2	0	0	1	18	14	0	- 2	16	8	7	4	2	4	0	0	1	7	5	1	9	2	113
6562	Kalbar Weir	0	0	3	1	0	3	0		-0	0	0	1	0	0	0	0	0	0	0	1	2	2	1	1	15
6565	Tenthill								\%																	
6568	O'Reillys Weir	0	11	1	0	0	0	22-	12	1	0	12	13	5	4	3	1	0	0	0	5	10	1	6	1	98
6571	Harrisville	0	0	3	0	0	00	$\underline{4}$	0	0	0	1	1	0	0	0	0	0	0	1	2	3	4	9	5	30
6574	Caboonbah	1	10	13	0	0	K22	15	5	22	6	7	4	1	5	4	0	0	0	1	5	4	0	3	3	131
6577	Gatton	0	0	18	2	全	2	5	10	9	8	2	7	6	1	1	1	0	0	0	1	5	2	1	4	86
6580	Adams Br	0	0	10		0	2	1	0	0	0	1	2	0	0	1	0	0	0	0	0	3	4	0	13	37
6583	Showground Weir	0	2		K^{2}	1	1	8	3	8	3	0	10	7	0	1	1	0	0	0	0	3	1	0	5	67
6590	Somerset Dam HW-B	2	17	22	${ }^{1}$	0	41	5	9	16	5	4	4	1	4	5	1	1	0	3	5	4	0	5	3	158
6593	Somerset Dam HW-P		S																							
6596	Crows Nest		${ }^{-}$	6	7	2	8	11	32	13	9	6	10	1	3	1	1	0	0	0	2	1	0	1	3	117
6598	Toowoomba	\square°	0	2	12	3	2	2	16	7	5	4	4	9	1	1	0	0	1	0	0	3	3	1	3	79
6600	Kilcoy	8	10	3	4	12	16	28	20	24	8	7	6	6	4	4	1	0	0	4	4	3	2	9	1	184
6601	Mt Binga ${ }^{\text {a }}$	0	0	4	5	21	9	23	5	6	16	10	3	3	3	5	3	0	1	0	0	0	0	2	3	122
6602	Top of Brisbane	8	0	0	6	0	6	4	3	2	5	1	1	5	1	0	0	0	0	0	0	0	0	0	0	42
6603	Blackbutt	0	3	1	7	17	54	5	4	5	20	8	4	5	5	10	1	2	1	0	0	1	0	5	2	160

		2	$\stackrel{\infty}{\sim}$	$\underset{\sim}{\circ}$	$\stackrel{\stackrel{N}{5}}{\stackrel{1}{2}}$	$\frac{\infty}{\leftarrow}$	$\stackrel{\sim}{N} \mid$	$\|\stackrel{\infty}{\underset{N}{\infty}}\|$	$\stackrel{g}{f}$	$\stackrel{\stackrel{N}{N}}{ }$	φ	¢	∞	F	$\stackrel{\sim}{\sim}$	N		¢	\cdots	∞	은	$\underset{\sim}{\mathrm{O}}$	－	－	$\stackrel{\square}{6}$	人	N	∞		N	$\underset{N}{N}$	N ${ }_{\sim}^{\infty}$
2 $\stackrel{\pi}{3}$ $\stackrel{2}{2}$ $\stackrel{y}{3}$	N	N	∞	\checkmark	0	\bigcirc	＊	\sim	－	N	N	N	V	N	N		－L	\bigcirc	\sim	\checkmark	－	\checkmark	\checkmark	m	N	－	\checkmark	\checkmark	\checkmark	－	\checkmark	＋
	－	J	\bigcirc	$\stackrel{m}{-}$	N	0	\bigcirc	m	\bigcirc	N	－	－	\checkmark	－	\sim	15	\bigcirc	N	－	\checkmark	\bigcirc	\sim	ω	N	N	－	－	－	の	ω	ω	ω
	N	N	－	is	N	－	N	\checkmark	\checkmark	－	N	－	is	0	m	m	$\cdots 5$	－	－	－	0	\checkmark	－	\bigcirc	－	O	\checkmark	m	\cdots	－	\checkmark	\bigcirc
	N	N	\bigcirc	N	－	\bigcirc	\checkmark	\checkmark	\bigcirc	N	m	\bigcirc	N	，	N	N	N 6	φ	ω	∞	F	안	\bullet	\bullet	m	－	\cdots	\checkmark	\sim	\cdots	m	\cdots
			0	\checkmark	0	0	∞	m	－	N	－	－	－		－	－	\bigcirc	N	N	N	－	∞	\checkmark	\checkmark	\sim	，	10	－	$\stackrel{\sim}{N}$	은	안	is
			\bigcirc	\sim	－	0	m	－	－	－	－	－	－	－	－		0	－ 0	－	－	－	－	－	－	－	－	0	－	m	ω	ω	5
	O			－	－	0	\checkmark	－	－	－	－	－	－	0	\bigcirc	－	－ 0	0	－	－	－	0	－	－	－	－	\checkmark	－	\checkmark	N	N	$N \sim$
	－			6	¢	0	N	－	－	\checkmark	－	－	－	－	－	－	－	\checkmark	\checkmark	\checkmark	－	\checkmark	O			－	－	－	\checkmark	N	N	N
요	0		－	ω			N	N	\checkmark	N	－	－	－	\checkmark	－	－	\bigcirc	\checkmark	－	－	N	\checkmark	N	\checkmark	－	－	－	－	m	m	m	N
	m		0	m	\checkmark	\checkmark			\bigcirc	m		－	－	－	－	－	0	m	m	m	－	\checkmark	N	m		－	\bigcirc	\sim	o	음	은	\bigcirc
	m		－	∞	is	\checkmark	）		6	J	－	－	－	N	－	O	0	F	－	∞	N	ω	\checkmark	－	－	－	0	\bigcirc	क	∞	∞	∞
	N		\checkmark	\checkmark	\checkmark	\checkmark	－	－	\cdots	6		\checkmark	－	\cdots	0	－	－ 10	is 10	15	\bigcirc	N	∞	N	ω	N	，	，	\cdots	\cdots	\bigcirc	\checkmark	N
	\cdots		0	N	ω	－	N	$\stackrel{\sim}{\square}$	ω	J	2	－	\checkmark	m	\checkmark	N		F	F	N	∞	∞	\bigcirc	$\stackrel{m}{2}$	ल	の	－	안	\checkmark	은	은	∞
	\cdots		0	の	の	－	の	$\stackrel{\rightharpoonup}{+}$	$\stackrel{ }{\sim}$	－		－	O	－	－	－		\checkmark	\checkmark	$\stackrel{3}{2}$	$\stackrel{m}{2}$	\cdots	क	∞	N	N	\sim	\cdots	－	N	N	\bigcirc
	\cdots		r	\pm	の	0	\sim	\bullet	N	$\stackrel{ }{ }$	－	－	J	＋		－		r	\checkmark	－	N	－	\checkmark	T	－	－ 0	\sim	m	∞	N	，	N
	09		\bigcirc	ल	N	음	ω	\checkmark	N	N	－	m	m	N						－	O	－	O	－	－	0	－	\checkmark	∞	N	은	$\stackrel{\square}{\square}$
	\cdots		－	운	in	N	10	$\stackrel{0}{\circ}$	N	\cdots	－	－	－	a				$\stackrel{\alpha}{\dot{\alpha}}$	∞	ω	の	の	F	の	N		in	m	\checkmark	∞	∞	$\stackrel{\square}{-}$
	$\stackrel{0}{\sim}$		－	N	m	n	F	$\stackrel{\square}{\square}$		0	\checkmark	\bigcirc	or	\cdots	N	－			${ }^{2}$	N_{N}	$\stackrel{-}{-}$	$\stackrel{?}{?}$	$\stackrel{1}{\square}$	\cdots	－	－	O	ल	$\stackrel{\sim}{N}$	은	은	N
	N		\bigcirc	$\stackrel{\sim}{N}$	∞	＊	\cdots	ल	\bigcirc	M	－	－	\bullet	\cdots	－	N		－				\checkmark	0	0	－	－	－	－	$\stackrel{ }{ }$	テ	下＇	N
	m		\checkmark	H	$\stackrel{+}{\bullet}$	N	N	ণ	$\stackrel{+}{N}$	－	－	\bigcirc	\sim	∞	\checkmark	r		O	\checkmark	－	－	Q	1	O	－	－	N	\checkmark	N	$\stackrel{\square}{\square}$	$\stackrel{m}{\square}$	ब
	人		N	\checkmark	$\stackrel{1}{\square}$	N	\checkmark	F	$\stackrel{\square}{*}$	\bigcirc	φ	の	$\stackrel{\sim}{*}$	N	∞	18					\checkmark	\checkmark	N		N	N	\sim	－	－	\checkmark	\checkmark	ω
	$\stackrel{\sim}{N}$		N	\cdots	\cdots	\cdots	N	T	∞	안	$\stackrel{ }{\sim}$	N	\bigcirc	6	－	－		－ 6	ω	\checkmark	\checkmark	\checkmark	－	ω	5		N	안	\sim	∞	ω	\cdots
	o		O	음	\checkmark	\checkmark	안	\sim	$\stackrel{\sim}{N}$	\％	－	－	ल	\bigcirc	－	－		∞		∞	の	O	F	$\stackrel{ }{\sim}$	$\stackrel{m}{2}$	\cdots		N	N	$\stackrel{\infty}{\sim}$	$\stackrel{\sim}{\square}$	∞
	－		－	\checkmark	m	$\stackrel{N}{N}$	N	0	∞	－	\bigcirc	－	－	－	－	O		0	0	O	\bigcirc	\bigcirc	－	0	－			18	is	$\stackrel{\infty}{\sim}$	\cdots	ω
$\begin{aligned} & 5 \\ & \frac{0}{0} \\ & 0 \end{aligned}$	$\frac{5}{\sqrt{0}}$ 2 3 $\frac{10}{0}$ 0 0 0		$\begin{aligned} & 0 \\ & c \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 3 \\ & 4 \\ & 0 \\ & 0 \\ & 3 \end{aligned}$										$\begin{aligned} & \stackrel{\Delta}{40} \\ & 0 \\ & \stackrel{\rightharpoonup}{0} \\ & \stackrel{\rightharpoonup}{2} \end{aligned}$										$\left(\begin{array}{l} 0 \\ \frac{1}{1} \\ 0 \\ 0 \\ 0 \\ 0 \\ 3 \end{array}\right.$									\％
$\stackrel{n}{4} \stackrel{\square}{4}$	$\left\|\begin{array}{c} \mathbf{~} \\ 8 \\ \wp \end{array}\right\|$	0	$\left\lvert\, \begin{aligned} & 8 \\ & 8 \\ & 8 \end{aligned}\right.$	$\left\|\begin{array}{\|c} \hat{8} \\ \stackrel{0}{2} \end{array}\right\|$	$\left\lvert\, \begin{aligned} & \infty \\ & 0 \\ & 0 \\ & 0 \end{aligned}\right.$	$\left\|\begin{array}{c} 9 \\ 0 \\ 0 \\ 0 \end{array}\right\|$	$\stackrel{\circ}{\circ}$	$\stackrel{\rightharpoonup}{6}$	$\stackrel{N}{c}$	$\begin{array}{c\|c} 9 \\ \hline & 4 \\ 0 \\ \hline \end{array}$	$\left\|\begin{array}{l} 6 \\ 0 \\ 0 \end{array}\right\|$	$\stackrel{N}{N}$	$\frac{9}{6}$	$\stackrel{\rightharpoonup}{N}$				O	$\begin{array}{c\|c} \substack{4 \\ \\ \\ \hline \\ \hline} \end{array}$	$\begin{gathered} 0 \\ \hline \\ \hline \\ \hline \end{gathered}$	$\begin{aligned} & \overline{4} \\ & \hline \mathbf{6} \end{aligned}$	$\left\lvert\, \begin{aligned} & \infty \\ & \mathbf{C} \\ & \mathbf{0} \end{aligned}\right.$	¢	$\begin{aligned} & 9 \\ & \hline \\ & \hline \end{aligned}$	$\stackrel{\Sigma}{\mathbf{8}}$	$\begin{aligned} & 5 \\ & 0 \\ & 0 \\ & \hline 0 \end{aligned}$	¢	$\left(\begin{array}{l} \infty \\ 0 \\ 0 \\ 0 \\ 0 \end{array}\right.$	－8	$\left\|\begin{array}{l} 8 \\ 8 \\ 8 \end{array}\right\|$	$\left\|\begin{array}{l} \stackrel{\rightharpoonup}{\mathrm{o}} \\ \hat{\mathrm{O}} \end{array}\right\|$	N

		$\bar{\sigma}$	N	0	\bigcirc	N	ल	$\stackrel{\text { N }}{\sim}$	앆	$\stackrel{\sim}{N}$	\％	앙	$\stackrel{\text { 안 }}{ }$	N	$\left\lvert\, \begin{gathered} \mathrm{N} \\ \underset{\sim}{2} \end{gathered}\right.$	\bigcirc		$\left\lvert\, \begin{aligned} & \mathrm{g} \\ & \mathrm{~F} \end{aligned}\right.$	N	$\stackrel{0}{\circ}$	\bigcirc	\％	0	$\underset{\sim}{\infty}$	$\stackrel{\circ}{c}$	\％	$s \left\lvert\, \frac{0}{i}\right.$	\％	은	8	응
$\frac{2}{3}$		\checkmark	－	－	N	\bigcirc	\bigcirc	\checkmark	－	O	N	\bigcirc	¢	\bigcirc	¢	∞		0	O	ナ	－	$\stackrel{\square}{6}$	ल	\bigcirc	O	N	\cdots	－	\cdots	\bigcirc	m
		－	\bigcirc	－	－	O	－	－	－	\bigcirc	＋	\bigcirc	∞	0	$\stackrel{\infty}{\infty}$	m		$\stackrel{\square}{7}$	N	은	m	$\stackrel{\infty}{-}$	－	m	の	\sim	0	\cdots	\bigcirc	－	－
		O	N	v	N	O	－	O	－	－	\checkmark	－	N	N	N	－		ले	ω	ω	∞	－	\％	\checkmark	＋	\bigcirc	－	은	\bigcirc	－	0
		∞	0	－	\bigcirc	\cdots	0	N	\bigcirc	\bigcirc	\bigcirc	\checkmark	¢	¢	$\stackrel{\square}{\bullet}$	\bigcirc		N	0	N	¢	M	\checkmark	ㅇ	\％	\checkmark	N	の	－	\bigcirc	\bigcirc
		$\stackrel{\sim}{\sim}$	암	－	入	\cdots	O	15	N	$\stackrel{\sim}{N}$	\bigcirc	\％	©	10	\checkmark	－		\checkmark	\bigcirc	N	\checkmark	－	－	－	ふ	M	\checkmark	$\stackrel{\rightharpoonup}{F}$	$\stackrel{\sim}{\sim}$	ω	$\stackrel{1}{2}$
			\bullet	\bigcirc	\sim	O	0	N	0	$\stackrel{5}{2}$	O	\checkmark	O	\bigcirc	－	－		O	0	\bigcirc	－	－	－	\bigcirc	－	ω	\bigcirc	a	$\stackrel{ }{-}$	\bigcirc	$\stackrel{\sim}{~}$
					N	N	O	\bigcirc	∞	0	N	\bigcirc	N	\bigcirc	N	\checkmark		\bigcirc	－	\bigcirc	N	No	\checkmark	\bigcirc	－	o）	\checkmark	\bigcirc	พ	\bigcirc	\llcorner
		N		$)$	－	\checkmark	O	N	\checkmark	0	\cdots	∞	\checkmark	－	\bigcirc	F		－	N	－	－	\checkmark	－	\bigcirc	－	N	\bigcirc	N	\bigcirc	－	\bigcirc
б		－	\checkmark			10	－	$\stackrel{8}{6}$	4	\％	O	O	－	\bigcirc	\checkmark	－		0	\bigcirc	\bigcirc	－	\bigcirc	\bigcirc	\bigcirc	－	\bigcirc	\checkmark	N	¢	\cdots	\pm
8		m	\bigcirc		－	\cdots	6	∞	안	$\stackrel{6}{2}$	\bigcirc	\checkmark	0	O	－	N		O	N	－	\bigcirc	－	－	－	－	\cdots	\cdots	\bigcirc	N	N	$\stackrel{\sim}{\sim}$
		－	\checkmark		\bigcirc	－	0	20	这	$\stackrel{\sim}{\sim}$	\bigcirc	0	O	\bigcirc	\checkmark	N		O	N	\bigcirc	\checkmark	\checkmark	\checkmark	\checkmark		N	\checkmark	N	\llcorner	∞	m
		－	－		\checkmark	O	O	N	C_{0}	边	N	O	N	O	N	\checkmark		－	－	0	O	－	ω	\bigcirc		\bigcirc	N	\checkmark	m	－	∞
		m	－		O	6	－	－	－	O		5	\bigcirc	－	－	－		\checkmark	N	N	0	N	－	\bigcirc		∞	\checkmark	\checkmark	\bigcirc	－	0
		O	m		\bigcirc	N	N	N	O	\checkmark	\bigcirc	\％	8	－	－	－		O	－	ω	O	－	－	\bullet		\cdots	－	ω	\bigcirc	\bigcirc	－
		O	N		N	－	0	N	－	0	－	－	O	0	0	N		0	－	N	\checkmark	N	\checkmark	N	，	\bigcirc	\bigcirc	\checkmark	15	0	－
		O	－		O	O	－	－	－	－	\checkmark	－	\bigcirc	－	7			O	O	O	－	\bigcirc	\bigcirc	\bigcirc		－	－	\cdots	\bigcirc	－	\bigcirc
		\checkmark	－		0	O	－	－	－	－	－	－	－	－	－			0	O	O	－	－	\cdots	\bigcirc		r	－	O	－	－	－
		N	\bigcirc		－	O	N	\checkmark	N	－	\bigcirc	－	N	\checkmark	－	N		Wg	\bigcirc	O	N	N	－	－		－	∞	N	N	－	－
		N	，		N	－	\checkmark	N	－	\bigcirc	\checkmark	N	－	－	\bigcirc	－		－	\％	6	\square	－	N	－		－	N	－	\llcorner	0	\cdots
		$\stackrel{\mathrm{N}}{ }$	－		0	\cdots	F	\checkmark	O	－	－	\bigcirc	－	\checkmark	－	O		m	N	－	\hat{Y}	$\underset{N}{2}$	ω	\checkmark		－	내	－	м	\bigcirc	N
		$\stackrel{M}{\mathrm{~m}}$	N		の	范	$\stackrel{\square}{\square}$	の	\square	\bigcirc	\bigcirc	N	\checkmark	－	\checkmark	－		－	－	∞	ω	\％	－	N		©	안	\bigcirc	N	\bigcirc	0
		N	M		$\stackrel{\sim}{\mathrm{N}}$	0	N	N	－	－	－	m	ω	\checkmark	\checkmark	N		\checkmark	ω	J	－	ω	\checkmark	$$		m	0	안	ल	0	∞
		O	\checkmark		\checkmark	－	N	\bigcirc	\bigcirc	－	N	\bigcirc	－	0	\cdots	∞		－	$\stackrel{m}{\square}$	\bigcirc	O	N	N	σ		©	－	N	O	\bigcirc	0
		O	O		－	O	0	－	O	0	－	－	\checkmark	－	\bigcirc			0	N	O	－	$\stackrel{\square}{\sim}$	－	\checkmark		\div	8	10	O	O	－
$\begin{gathered} \stackrel{5}{0} \\ \stackrel{\pi}{n} \\ \dot{n} \end{gathered}$		$\begin{array}{\|c} a \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ \vdots \\ \vdots \end{array}$	$\left(\begin{array}{c} 1 \\ \frac{1}{c} \\ 0 \\ \vdots \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}\right.$	0 \vdots \vdots \vdots \vdots \vdots 0 0 0		$\left\|\begin{array}{c} \underline{E} \\ 0 \\ 0 \\ \frac{c}{0} \\ 0 \\ 0 \\ 0 \\ 0 \\ \omega \\ 0 \\ \hline \end{array}\right\|$		$\left\|\begin{array}{c} n \\ \sum_{2}^{0} \\ \frac{2}{4} \\ \vec{c} \end{array}\right\|$			$\left\|\begin{array}{l} \frac{0}{1} \\ \frac{1}{0} \\ 0 \\ \frac{10}{70} \\ 3 \end{array}\right\|$			$\begin{array}{\|c\|} \hline 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ \hline 0 \end{array}$	0 0 $=0$ 0 0 0 0 n 0 0 0 0 0 0 0		$\frac{\stackrel{c}{\bar{c}}}{\frac{1}{\sqrt{2}}}$			$\begin{aligned} & \frac{c}{\pi} \\ & 0 \\ & c \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\left\|\begin{array}{c} c \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}\right\|$	\dot{c}	$\left\lvert\, \begin{aligned} & 2 \\ & \hline \frac{1}{0} \\ & 3 \\ & 0 \\ & \frac{c}{5} \\ & 0 \\ & \frac{0}{0} \\ & 0 \\ & 0 \\ & \frac{0}{\infty} \end{aligned}\right.$			$\left\{\begin{array}{l} n_{0} \\ \mathbf{2} \\ 2 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}\right.$	0 0 0 0 -				－
$\begin{aligned} & \stackrel{\rightharpoonup}{\alpha} \\ & \stackrel{1}{4} \end{aligned}$	8	$\left\|\begin{array}{l} 8 \\ 0 \\ 0 \\ 0 \end{array}\right\|$	$\left\lvert\, \begin{gathered} \mathrm{N} \\ \stackrel{y}{0} \end{gathered}\right.$	$\left\lvert\, \begin{gathered} \mathrm{N} \\ \stackrel{N}{0} \end{gathered}\right.$	$\left\|\begin{array}{l} \mathbf{N} \\ \stackrel{N}{0} \end{array}\right\|$	$\left\|\begin{array}{l} \mathbf{N} \\ \mathbf{N} \end{array}\right\|$	$\left\|\begin{array}{c} \infty \\ \stackrel{\rightharpoonup}{\infty} \\ \hline \end{array}\right\|$	$\left\|\begin{array}{c} \mathbf{N} \\ \mathbf{N} \end{array}\right\|$	$\left\|\begin{array}{c} \text { 웅 } \\ \stackrel{0}{0} \end{array}\right\|$		$\begin{array}{\|c} 0 \\ 0, \\ 0 \\ 0 \end{array}$	$\underset{C}{\hat{O}}$	$\begin{aligned} & \mathrm{C}_{\hat{\circ}}^{\mathrm{C}} \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 8 \\ & 0 \\ & 0 \end{aligned}$	$\begin{gathered} 9 \\ \stackrel{n}{0} \\ \hline 1 \\ \hline \end{gathered}$		$\left\|\begin{array}{l} 0 \\ 0 \\ 0 \\ 0 \end{array}\right\|$	$\left\|\begin{array}{l} \infty \\ 0 \\ 0 \\ 0 \end{array}\right\|$	$\stackrel{-}{18}$	$\left\|\begin{array}{c} N \\ N \\ 0 \end{array}\right\|$	$\left\|\begin{array}{c} \mathrm{N} \\ \mathrm{~B} \end{array}\right\|$	$\left\lvert\, \begin{aligned} & 8 \\ & 0 \\ & 0 \\ & 0 \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & \infty \\ & \infty \\ & 0 \\ & 0 \end{aligned}\right.$	$\begin{aligned} & 9 \\ & 8 \\ & 8 \end{aligned}$	$\begin{aligned} & 8 \\ & 8 \\ & 68 \\ & \hline 8 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\left\lvert\, \begin{aligned} & \infty \\ & 0 \\ & 0 \\ & 0 \end{aligned}\right.$	$\begin{aligned} & 8 \\ & 8 \\ & 8 \end{aligned}$	$\left\|\begin{array}{l} \overline{8} \\ 8 \\ 0 \end{array}\right\|$	$\begin{aligned} & \mathrm{N} \\ & 8 \\ & 8 \end{aligned}$	¢

$\begin{aligned} & \text { ALERT } \\ & \text { IDR } \end{aligned}$	Station	Hourly Rainfall (mm) ending 9am 11 January																								Daily Total mm
		10	11	12	13	14	15	16	17	18	19	20	21	22	23	00	01	02	03	04	05	06	07	08	09	
6604	Toogoolawah	0	1	34	18	0	1	0	0	0	0	7	0	0	0	0	0	12	0	1	23	3	2	0	0	102
6605	Eskdale																			+						
6606	West Woodbine	0	0	1	0	7	9	2	0	1	2	0	0	0	12	6	0	0	Q	1	5	7	29	6	0	88
6607	Lindfield	0	18	7	0	3	7	0	1	0	2	0	4	2	1	3	1	2	$\stackrel{\square}{9}$	1	0	6	10	5	3	85
6608	Jimna	0	2	10	0	2	1	0	0	0	1	0	7	4	1	2	0	2	4	6	1	2	0	2	0	47
6609	Monsildale	0	0	0	0	10	3	0	0	1	1	1	14	33	58	10	0	0	0	29	2	0	0	1	0	163
6610	Kluvers Lkt	1	7	4	3	0	4	1	0	0	2	0	2	2	0	2	\%	1	2	1	12	26	46	7	40	163
6611	Redbank Creek	0	0	36	75	6	6	3	0	0	0	1	4	1		, 2	0	0	0	0	19	15	2	2	0	172
6612	Mt Stanley	0	0	0	0	2	0	1	0	0	0	0	2	12	. 68	21	0	0	0	29	24	0	0	1	0	160
6613	Hazeldean	2	1	3	4	5	8	28	0	0	1	7	0	1	\%	0	1	1	0	0	10	13	13	13	12	123
6614	Westvale													$\overline{3}$												
6615	Thornton	3	6	6	4	10	2	2	1	1	1	0	S^{-1}	1	7	1	0	4	3	0	0	4	6	35	17	117
6617	Little Egypt	0	0	1	1	9	7	6	0	0	1	人	0	1	6	0	0	1	5	0	3	28	22	1	0	92
6619	Mt Castle	21	11	16	11	7	5	5	5	1	2	, 5	5	5	15	4	7	4	6	0	0	9	6	34	11	195
6621	Nukinenda	1	0	11	9	2	3	1	0	0	2	0	1	1	0	2	14	6	8	23	13	0	1	0	15	113
6623	Tarome	8	7	10	5	0	1	1	0	0	1	2	0	0	1	5	0	4	14	2	0	0	0	13	9	83
6624	Moogerah Dam	14	8	10	5	1	0	3		¢ 0	1	1	1	1	1	3	4	0	15	0	0	0	0	3	23	95
6630	Lyons $\mathrm{Br}-\mathrm{B}$	0	1	2	0	1	2		0°	0	0	0	0	0	0	0	0	0	1	0	2	32	43	22	20	128
6633	Lyons Br-P	0	0	2	0	1	1	A	0	0	0	0	0	1	0	0	0	0	0	0	2	29	41	21	1.5	114
6636	Wivenhoe Dam HW-B	0	3	3	0	0	00	0	0	0	0	0	0	1	0	0	0	0	1	0	3	20	32	35	38	136
6641	Wivenhoe Dam TW-B	0	3	4	1		O	0	0	0	1	0	1	3	0	0	1	0	1	0	2	22	33	39	46	157
6643	Wivenhoe Dam TW-P	1	2	4	1	(0)	1	0	0	0	0	1	0	4	0	1	0	0	1	0	3	22	33	39	46	159
6646	Lowood-B	0	1	2	$2{ }^{2}$	1	3	0	0	0	0	0	0	1	0	0	0	0	1	2	3	16	43	53	55	183
6649	Lowood-P	1	1	1.	0	0	0	0	0	0	0	4	0	0	2	0	0	0	0	1	4	16	37	45	53	165
6651	Amberley-P	14	2	Q)	0	0	2	0	0	0	0	1	0	1	0	0	1	1	1	0	0	2	2	1	6	34
6653	Amberley-B	13	2	0	0	1	1	1	0	0	0	0	0	1	1	0	0	1	1	0	0	2	2	1	4	31
6656	Bill Gunn Dam	1	2	1	2	7	4	1	1	0	0	0	1	4	3	1	0	0	2	1	2	6	46	14	1	100
6658	Lake Clarendon Dam	0	1	1	3	1	0	2	0	1	0	0	0	1	3	0	0	1	3	0	9	31	9	4	8	78
6680	Mt Glorious-P	1	20	1	3	3	3	2	1	0	3	1	3	9	1	1	0	1	3	9	14	27	28	57	71	262
6690	Mt Mee-P ${ }^{\text {P }}$	0	8	5	2	5	1	0	0	1	1	5	3	1	2	1	0	0	4	9	14	24	29	9	15	139
6701	Mt Mee- $\mathrm{B}^{\text {a }}$	0	8	5	2	5	1	0	0	1	1	5	3	1	2	1	0	0	4	9	14	24	29	9	15	139
6702	Woodford-B	1	19	2	1	1	2	0	0	0	7	3	3	2	1	0	1	0	0	7	21	12	1	1	1	86

		\cdots	$\stackrel{\sim}{\sim}$		N	\cdots		ω	N	\cdots	$\stackrel{10}{\square}$	$\stackrel{\sim}{\sim}$	へু	알	$\stackrel{¢}{\square}$	is		$\stackrel{\rightharpoonup}{\mathrm{N}}$	3	\％	8	N	$\frac{9}{\square}$	\bigcirc		$\stackrel{\square}{\square}$	N	，		$\stackrel{\square}{-}$	－	$\stackrel{m}{\square}$
		－	－		－	\bigcirc		\bigcirc	－	－	－	－	，	0	\bigcirc	0		－	－	－	\bigcirc	－	－	－		\bigcirc	\bigcirc	－		－	\bigcirc	－
		0	O		－	\bigcirc		－	－	－	－	－	is	0	－	0		－	－	－	－	－	－	0		－	－	\bigcirc		－	－	0
		－	－		－	\bigcirc		\bigcirc	－	－	－	－	స	－	－	O		－	－	O	－	－	－	O		－	－	－		－	－	0
		－	－		－	－		\bigcirc	－	－	－	－	－	－	－	0		\bigcirc	0	－	－	－	－	0		－	－	－		－	－	0
		－	－		－	－		\bigcirc	－	－	0	－	－	－	－	0		－	－	O	－	－	－	－		－	N	， 0		－	\bigcirc	－
		－	－		－	－		\bigcirc	－	－	0	－	－	－	－	－		－	－	\checkmark	－	－	－	0		－				－	－	－
		81	O		0	\bigcirc		－	－	0	0	－	－	－	－	－		－	－	－	－	－	－	－ 0	－	－	－	0		－	－	\bigcirc
			勺		\bigcirc	\bigcirc		\bigcirc	－	－	－	O	－	－	－	\bigcirc		\bigcirc	－	－	－	－	－	－ 0		－	－	－		－	－	\bigcirc
		O	0		19	\checkmark		O	－	O	O	O	－	－	\bigcirc	－		－	－	－	－	－	－	0		－	－	－		－	－	－
		\bigcirc	－			9		0	0	－	0	\bigcirc	－	－	\bigcirc	\bigcirc		－	0	－	\checkmark	－	N	， 0		－	－	－		－	－	\bigcirc
		－	－		－	0	\bigcirc	O	\bigcirc	O	O	O	－	－	\bigcirc	\bigcirc		－	－	－	－	－	－	0		－	－	－		－	\bigcirc	\checkmark
		O	－		0	－			do	O	O	O	－	－	\bigcirc	\bigcirc		\bigcirc	－	－	\bigcirc	－	－	0		－	O			－	－	－
		\checkmark	－		\bigcirc	\bigcirc		\checkmark	－	θ	18	－	\bigcirc	－	\bigcirc	\bigcirc		\checkmark	－	－	－	－	－	\bigcirc		\bigcirc	－	－		－	\bigcirc	0
		\bigcirc	N		is	\checkmark		0	－	－	Q	7	0	\bigcirc	－	－		\wedge	－	\checkmark	－	－	m	0		N	，	－		－	－	\bigcirc
		Γ	\cdots		N	\bigcirc		\bigcirc	\bigcirc	－	\checkmark	¢	\bigcirc	\bigcirc	\bigcirc	\bigcirc		－	\bigcirc	\checkmark	\bigcirc	－	－	－		－	－	\checkmark		\checkmark	\bigcirc	\bigcirc
		Γ	N		－	－		－	\bigcirc	\bigcirc	N	\checkmark	－	－	4	\bigcirc		\checkmark	\bigcirc	\checkmark	N	\cdots	N	\bigcirc		\checkmark	∞	ω		－	－	\bigcirc
		N	\checkmark		∞	\cdots		O	0	－	$\stackrel{ }{-}$	∞	－	－	－	6		－	O	∞	－	ल	N	， 0		－	N			\checkmark	\bigcirc	10
		m	N		O	－		－	－	O	－	－	－	\bigcirc	O	N		0	15	m	은	$\stackrel{1}{N}$	∞	∞		\checkmark	O	0		\checkmark	\bigcirc	－
		N	O		の	－		O	O	－	の	O	－	N	N	$\stackrel{\square}{7}$		∞	08	N	$\stackrel{\square}{-}$	$\stackrel{\sim}{\square}$	$\stackrel{\sim}{N}$	N		－	\cdots	\cdots		－	\bigcirc	\cdots
		O	\checkmark		－	N		N	0	\bigcirc	$\stackrel{N}{\sim}$	O	－	$\stackrel{N}{N}$	M	F		\％	F	N	下	の	N	N		\checkmark	m			ハ	O	0
		\checkmark	\checkmark		\bigcirc	\checkmark		N	O	－	\bigcirc	O	\bigcirc	ָ	¢	$\stackrel{\sim}{\square}$		$\stackrel{1}{4}$	∞	$\stackrel{\square}{\square}$	N	麻	$\stackrel{N}{\Sigma}$	$\stackrel{\text { ¢ }}{\sim}$		F	m	－		\checkmark	－	－
		ω	\cdots		－	\cdots		－	－	O	V	n	－	N	$\stackrel{\square}{\sim}$	\bullet		$\stackrel{\sim}{\sim}$	\wedge	\checkmark	$\stackrel{m}{2}$	\bigcirc		2		N	N			－	O	－
		0	ナ		\bigcirc	－		\bigcirc	\bigcirc	\bigcirc	F	O	－	N	\mathscr{C}	\checkmark		\％	心	N	\cdots	\pm	\％	\bigcirc		d	－			\checkmark	\bigcirc	\checkmark
		O	－		－	－		\bigcirc	－	－	$\stackrel{\odot}{\sim}$	N	O	15	$\stackrel{\infty}{\sim}$	ω		\bar{m}	은	－	N	－	\checkmark	＋ 0		\bigcirc	，			－	O	0
$\begin{gathered} 5 \\ \frac{0}{4} \\ 0 \\ 0 \end{gathered}$	$\begin{aligned} & 0 \\ & 0 \\ & \tilde{n} \\ & \dot{O} \\ & \dot{O} \\ & \frac{0}{0} \\ & \stackrel{H}{\Sigma} \end{aligned}$	$\begin{gathered} 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ \vdots \\ \end{gathered}$		0 0 \vdots \vdots \vdots 0 0 0 0						$\begin{array}{\|c} \frac{y}{0} \\ \substack{0 \\ 0 \\ 0 \\ 8 \\ 0} \end{array}$	$\left\{\begin{array}{l} 0 \\ \frac{1}{6} \\ 0 \\ \frac{0}{10} \\ 3 \end{array}\right.$									$\begin{aligned} & \frac{c}{\pi} \\ & \frac{0}{c} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{gathered} \frac{c}{9} \\ \substack{1 \\ 0 \\ 0} \end{gathered}$							צ		$\begin{aligned} & \stackrel{(0}{0} \\ & \stackrel{C}{0} \\ & \stackrel{\rightharpoonup}{\Sigma} \end{aligned}$		－
$\frac{\stackrel{L}{4}}{4} \stackrel{1}{4}$	$\left\|\begin{array}{l} 8 \\ \hline 0 \\ 0 \end{array}\right\|$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\left\lvert\, \frac{\pi}{n}\right.$	$\frac{N}{i n}$	$\left\|\begin{array}{l} \mathbf{N} \\ \mathbf{N} \\ \hline 1 \end{array}\right\|$	$\underset{\substack{0}}{\sim}$	$$	$\left\lvert\, \begin{aligned} & 9 \\ & \mathbf{N} \\ & 0 \end{aligned}\right.$	$\left\lvert\, \begin{gathered} 9 \\ \substack{0 \\ 0} \end{gathered}\right.$	$\left\lvert\, \begin{gathered} N \\ \underset{c}{0} \\ \hline \end{gathered}\right.$	$\left\lvert\, \begin{aligned} & \circ \\ & \stackrel{0}{\mathrm{O}} \\ & \hline \end{aligned}\right.$	$\mathscr{8}$	－		$\begin{aligned} & 9 \\ & 10 \\ & 18 \end{aligned}$	N	$\begin{aligned} & \mathbf{y} \\ & \hline \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\left\|\begin{array}{l} \infty \\ 0 \\ 0 \\ 0 \end{array}\right\|$	$\stackrel{\Gamma}{5}$	$\left\lvert\, \begin{gathered} 2 \\ 1 \\ 0 \end{gathered}\right.$	$\stackrel{N}{\mathrm{~N}}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\stackrel{2}{6}$				$\begin{aligned} & \infty \\ & 0 \\ & 0 \\ & 0 \end{aligned}$			$\begin{gathered} \overline{8} \\ \varnothing \end{gathered}$	$\left\lvert\, \begin{aligned} & \mathrm{N} \\ & \mathbf{O} \\ & 0 \end{aligned}\right.$	\％

	N		¢	\bigcirc	$\stackrel{\sim}{N}$	\cdots	$\bigcirc \bigcirc$	$\stackrel{\sim}{N}$	\cdots	¢		$\stackrel{\text { 단 }}{ }$	\bar{m}	$\stackrel{N}{N}$	F	∞	ω	N	$\stackrel{\text { N }}{\stackrel{+}{\sim}}$	\％	\hat{N}	∞	$\stackrel{\rightharpoonup}{N}$	$=\frac{N}{v}$	∞	∞	$\stackrel{\sim}{\sim}$	－	N	¢	∞	－
8			－	－	\bigcirc	0	－ 0	－	－	\checkmark		\bigcirc	－	0	\checkmark	\bigcirc	O	\bigcirc	0	\bigcirc	\bigcirc	O	O	O	－	－	－	O	\bigcirc	N	N	
∞	\bigcirc		\bigcirc	－	\bigcirc	－ 0	0	O	－	0		－	－	－	－	－	O	－	－	－	－	O		0	－	O	－	0	－	－		
－	－		－	－	－	O 0	－	O	－	0		0	\checkmark	－	－	－	O	－	－	－	0	－	－	0	－	－	－	0		－		
\bigcirc	－		－	－	－	0	－	－	－	\bigcirc		\bigcirc	－	－	O	0	－	－	0	－	－	O	0	O	－	－	\bigcirc	O	N	O	0	
\bigcirc	\bigcirc		－	\bigcirc	－	－	－	0	\bigcirc	－		O	－	－	\bigcirc	－	0	－	0	\bigcirc	－	－	－	－	－	－	－	0	－	－	O	O
			\bigcirc	－	－	0	0	O	\bigcirc	\checkmark		－	\checkmark	－	0	0	0	O	\bigcirc	\bigcirc	0	－	－	0	－	－	0	－	m	0	O	0
	－	4	80	O	－	O	－	－	－	－		O	N	－	O	－	－	\checkmark	－	O	O	－	O	0	\bigcirc	0	N	O	\checkmark	F		0
N	\bigcirc			88	－	O	O	－	－	－		－	－	N	O	\bigcirc	－	－	－	－	－	－	－	\checkmark	－	－	－	O	－	－	0	\checkmark
N	－		\bigcirc	0		0°	O	N	－	\bigcirc		O	\bigcirc	－	O	O	N	－	－	－	O	－	－	O	－	－	0	O	\checkmark	\cdots	m	0
$E_{18} 8$	－		O．	－	－			－	\checkmark	\bigcirc		－	－	\checkmark	O	\checkmark	－	\checkmark	0	\checkmark	－	\bigcirc	－	O	－	－	N	寸	\checkmark	－	－	\bigcirc
	0		\bigcirc	O	\bigcirc	－			0	0		－	－	－	\bigcirc	－	－	－	－	－	N	－	－	O	－	\bigcirc	\bigcirc	－	N	N	\sim	0
N	O		\bigcirc	－	－	0	0	O				O	－	－	－	O	－	0	\bigcirc	－	O	－	\bigcirc	O	－	－	O	－	0	N	N	0
	0		0	\bigcirc	0	\bigcirc	－	\bigcirc	－	－		01	\checkmark	\checkmark	－	0	－	－	－	－	O	－	－	O	－	－	0	O	N	\bigcirc	－	\bigcirc
E¢ 융	－		O	\checkmark	－	O	0	－	－	N				m	N	N	－	O	－	\checkmark	－	O	\checkmark	\checkmark	－	－	\checkmark	－	－	－	－	0
	ω		\checkmark	은	O	O	m	－	－	\bigcirc		N		8	\checkmark	O	－	－	－	－	O	\checkmark	－	O	\checkmark	－	O	\bigcirc	m			－
	－			$\stackrel{\square}{\square}$	O	0	－	∞	－	\checkmark		∞	0	N	O	0	－	N	O	\checkmark	N	－	N		O	－	m	N	N	\cdots	15	은
	ω		N	－	O	0	\cdots	寸	\checkmark	∞		$\stackrel{N}{\sim}$	\checkmark	$\stackrel{10}{\sim}$	－	\checkmark	8	0	\bigcirc	\checkmark	\checkmark	N	\bigcirc	O	N	\checkmark	\checkmark	－	\checkmark	m	$\stackrel{\square}{-}$	\sim
은	\bigcirc		N	is	N	－	－	ω	－	음		$\stackrel{\text { N}}{ }$	15	$\stackrel{\square}{\square}$	－	ω	∞	－	1	－	－	－	－	O	\bigcirc	－	N	\checkmark	m	\checkmark	\checkmark	\checkmark
	－		\cdots	N	σ		－	N	－	$\stackrel{-}{+}$		$\stackrel{\square}{*}$	o	$\stackrel{\sim}{N}$	O	$\stackrel{-}{-}$	－	N	$\stackrel{8}{N}$	\cdots	寸	∞	σ	은	σ	o	$\stackrel{\infty}{\sim}$	$\bar{\sim}$	15	ω	\sim	m
＋	m		\checkmark	N	m	\bigcirc	N	\bigcirc	－	$\stackrel{\infty}{\sim}$		\checkmark	\cdots	o）	－	$\stackrel{1}{\sim}$	人	\bigcirc	\％	os	(4)	$\left\lvert\, \frac{m}{s}\right.$	$\stackrel{5}{5}$	¢	$\stackrel{1}{\sim}$	$\stackrel{\square}{-}$	$\stackrel{n}{n}$	$\stackrel{N}{m}$	∞	の	O	10
	N		N	\checkmark	－	0	m	－	－	∞		∞	\checkmark	N	\checkmark	∞	－	$\stackrel{9}{+}$	F	in	$\|\stackrel{\circ}{18}\|$	\sim	8	\％	$\stackrel{\rightharpoonup}{\square}$	－	$\stackrel{m}{N}$	N	∞	8	\％	＇
N	\bigcirc		$\stackrel{18}{5}$	F	\checkmark	\bigcirc	m	ल	－	－		∞	\checkmark	F	－	0	N	m	$\underset{\sim}{\infty}$	$0 \begin{aligned} & 0 \\ & \hline \end{aligned}$	$\left\lvert\, \begin{gathered} \mathbf{m} \\ \hline \end{gathered}\right.$	$\|\mathrm{m}\|$	m	\％	$\stackrel{\wedge}{5}$	\bigcirc	$\underset{\sim}{A}$	$⿳ ⺈ ⿴ 囗 ⿰ 丨 丨 心 夊$	9	$\stackrel{M}{e}$	m	\％
	\cdots		\checkmark	∞	N	\checkmark－	0	－	－	ω		\cdots	\bigcirc	\checkmark	0	\checkmark	\checkmark	＋	${ }_{4}^{4}$	¢	ल	ल	is	ㅇ	\％	P	$\stackrel{N}{2}$	안	은	N	N	¢
은	\bigcirc			N	O	O	\bigcirc	－	\checkmark	o		\bar{N}	N	$\stackrel{N}{N}$	\checkmark	$\stackrel{\sim}{\sim}$	F	$\stackrel{\oplus}{N}$	ָ	लै	ल	$\left\lvert\, \begin{aligned} & \infty \\ & \infty \end{aligned}\right.$	$\stackrel{\square}{\square}$	$\stackrel{\square}{\square}$	$\stackrel{ }{*}$	－	6		\％	$\stackrel{\ominus}{\square}$	$\stackrel{\square}{+}$	∞
$\frac{\pi}{0}$	$\begin{array}{\|c} \substack{10 \\ 0 \\ 3 \\ 0 \\ \hline 0 \\ \hline 0 \\ 0 \\ 0 \\ \hline 1 \\ \hline \\ \hline} \end{array}$		West Woodbine			$\begin{aligned} & \frac{0}{2} \\ & \frac{0}{W} \\ & \vdots \\ & \frac{0}{2} \\ & \end{aligned}$				\mid		$\left\lvert\, \begin{gathered} \stackrel{C}{\circ} \\ \stackrel{y}{c} \\ 0 \\ \stackrel{\circ}{5} \end{gathered}\right.$						$\begin{gathered} 0 \\ \frac{1}{2} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{gathered}$	Lyons Br-P						$\left\lvert\, \begin{gathered} \frac{n}{1} \\ \frac{2}{2} \\ \frac{0}{2} \\ \frac{0}{c} \\ \frac{c}{4} \end{gathered}\right.$						$\begin{aligned} & \Phi \\ & \Phi \\ & \sum_{2}^{Q} \\ & \Sigma \\ & \hline \end{aligned}$	m
$\stackrel{দ}{\bar{c}}$	8	$\left\lvert\, \begin{aligned} & \infty \\ & 8 \\ & 8 \\ & 0 \end{aligned}\right.$	$\begin{array}{l\|l\|} \hline 8 \\ \hline 8 \\ \hline 8 \\ \hline \end{array}$	$\left\|\begin{array}{l} \hat{y} \\ 0 \\ 0 \end{array}\right\|$	$\left\lvert\, \begin{aligned} & \infty \\ & 0 \\ & 0 \\ & 0 \end{aligned}\right.$	$\begin{array}{l\|l} 0 \\ \hline 8 \\ 0 \\ 0 \\ \hline \end{array}$	$\begin{array}{\|l\|l\|} \hline & 0 \\ 0 \\ 0 \\ 0 \end{array}$	$\stackrel{\Gamma}{\overline{8}}$	$\stackrel{N}{\stackrel{N}{8}}$	$\left\lvert\, \begin{aligned} & m \\ & \stackrel{m}{0} \\ & \hline \end{aligned}\right.$	$\stackrel{\rightharpoonup}{\varphi}$	$\begin{array}{\|c} \stackrel{0}{\infty} \\ \stackrel{0}{0} \end{array}$	$\left\lvert\, \begin{gathered} \stackrel{\rightharpoonup}{6} \\ \varnothing \end{gathered}\right.$	$\left\|\begin{array}{l} \frac{9}{9} \\ 0 \end{array}\right\|$	$\left\|\begin{array}{l} \overline{\mathrm{s}} \\ \mathbf{c} \end{array}\right\|$	$\left\lvert\, \begin{aligned} & 0 \\ & \underset{o}{0} \\ & \hline \end{aligned}\right.$		$\left\lvert\, \begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}\right.$	$\begin{aligned} & 2 \\ & \underset{8}{8} \end{aligned}$	$\left\lvert\, \begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}\right.$	$\underset{\mathbf{~}}{\mathbf{~}}$	$\left\lvert\, \begin{gathered} 9 \\ \underset{8}{4} \\ \hline \end{gathered}\right.$	$\left\|\begin{array}{l} 0 \\ 0 \\ 0 \\ 0 \end{array}\right\|$	¢	$\stackrel{\Gamma}{\stackrel{0}{0}} \mid$	$\left(\begin{array}{l} n \\ 0 \\ 0 \\ 0 \end{array}\right.$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\left\lvert\, \begin{aligned} & \infty \\ & \infty \\ & \infty \end{aligned}\right.$	$\begin{aligned} & 8 \\ & 8 \\ & 8 \\ & \hline \end{aligned}$	$\stackrel{\stackrel{\rightharpoonup}{\circ}}{\stackrel{\rightharpoonup}{6}}$	N

$\begin{aligned} & \text { ALERT } \\ & \text { ID } \end{aligned}$	Station	Hourly Rainfall (mm) ending 9am 13 January																								Daily Total mm
		10	11	12	13	14	15	16	17	18	19	20	21	22	23	00	01	02	03	04	05	06	07	08	09	
6604	Toogoolawah	0	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	O,	0	0	0	0	0	2
6605	Eskdale																									
6606	West Woodbine	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	00	(\%)	0	0	0	0	0	0	0
6607	Lindfield	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	人	0	0	0	0	0	0	0	2
6608	Jimna	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0		ro	0	0	0	0	0	0	0	1
6609	Monsildale	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	\% 0	0	0	1	0	0	0	0	0	2
6610	Kluvers Lkt	0	0	0	0	0	0	0	0	0	0	0	0	0	0	θ	0	0	3	1	0	0	0	0	0	4
6611	Redbank Creek	0	0	0	1	0	0	0	0	0	0	0	0	0	-0,	0	0	0	0	0	0	0	0	0	0	1
6612	Mt Stanley	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
6613	Hazeldean	2	0	1	1	1	0	0	0	0	0	0	0	3^{2}	0	0	0	0	0	0	0	0	0	0	0	5
6614	Westvale												6.1													
6615	Thornton	0	0	0	0	0	0	0	0	0	0		\bigcirc	0	0	0	0	0	0	0	0	0	0	0	0	1
6617	Little Egypt	0	0	0	0	0	0	0	0	0		O	0	0	1	0	0	0	0	0	0	0	1	0	0	2
6619	Mt Castle	0	0	0	0	0	0	0	2	1	(9) ${ }^{\text {c }}$	1	0	0	0	0	0	7	1	0	1	0	0	0	0	22
6621	Nukinenda	0	0	0	0	0	0	0	2	0.	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	3
6623	Tarome	0	0	0	0	0	0	0	0 O	${ }^{8}$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6624	Moogerah Dam	0	0	0	0	0	0	0	(ब)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6630	Lyons $\mathrm{Br}-\mathrm{B}$	0	0	0	0	0	0	Q	\% 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6633	Lyons Br-P	0	0	0	0	0	0.3	\bigcirc	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6636	Wivenhoe Dam HW-B	0	0	0	0	0	(0)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6641	Wivenhoe Dam TW-B	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6643	Wivenhoe Dam TW-P	0	0	0		60	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	1
6646	Lowood-B	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6649	Lowood-P	0	0	(a)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6651	Amberley-P	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
6653	Amberley-B		\%	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
6656	Bill Gunn Dam	a	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6658	Lake Clarendon Dam,	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6680	Mt Glorious-P ${ }_{-x} \mathrm{~S}^{9}$	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1	0	0	0	0	3
6690	Mt Mee-P, ${ }^{\text {P }}$	0	1	5	1	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	9
6701	Mt Mee-B ${ }^{\text {c }}$	0	1	5	1	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	9
6702	Woodford-B	1	1	1	0	2	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	6

ALERT ID	Station	Hourly Rainfall (mm) ending 9am 13 January																								Daily Total mm
		10	11	12	13	14	15	16	17	18	19	20	21	22	23	00	01	02	03	04	05	06	07	08	09	
6705	Woodford-P	1	1	1	0	2	0	0	0	0	0	0	0	1	0	0	0	0	0	(0)	0	0	0	0	0	6
6708	Devon Hills	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1		0	0	0	0	0	0	1
6711	Baxters Ck	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	ल	0	0	0	0	0	0	1
6714	Ferris Knob	2	0	1	4	1	0	1	0	0	0	0	0	0	0	1	0.	S	0	0	0	0	0	0	0	11
6716	West Bellthorpe	0	1	0	1	2	0	0	0	0	0	0	0	0	1	0		2	0	0	0	0	0	0	0	7
6717	Linville	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6730	Jindalee	0	0	0	0	0	0	0	0	0	0	0	0	0	0	(9)	0	0	0	0	0	0	0	0	0	0
6733	Rosewood	0	0	0	0	0	0	0	0	0	0	0	0	0	Q)	0	0	0	0	0	0	0	0	0	0	0
6736	Kuss Rd														-											
6739	Washpool	0	0	0	0	0	0	0	0	0	0	0	0	0°	0	0	0	0	0	0	1	0	0	0	0	1
6742	Walloon-B	0	0	0	0	0	0	0	0	0	0	0	60.	0	0	0	0	0	0	0	0	0	0	0	0	0
6748	Brisbane City	0	0	0	0	0	0	0	0	0	0	8	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6751	Mt Crosby	0	0	0	0	0	0	0	0	0	0	- ${ }^{\circ}$	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6754	Moggill-P	0	0	0	0	0	0	0	0	0	$0 \cdot$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6759	North Pine Dam-B	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6760	North Pine Dam	0	0	0	0	0	0	0	0.	θ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6763	Petrie	0	0	0	0	0	0	0	Q	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1
6766	Lake Kurwongbah	0	0	0	0	0	0	0.	V	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1
6769	Drapers Xing	0	0	0	0	0		\%	0	0	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	2
6774	Wilsons Peak-P						U																			
6775	Peachester					-																				
6778	Samford	0	0	0	0	60°	0	0	0	0	0	1	0	0	0	0	0	1	0	0	0	0	0	0	0	2

APPENDIX P

Rainfall Intensity Frequency Duration

SITE SUMMARY

	ALERTID	Station	Location	
			Latitude	Longitude
	6511	Mount Pechey	-27.3170	152.0820
	6514	Brisbane River at Gregors Creek	-26.9800	152.4040
	6520	Emu Creek at Boat Mountain	-26.9789	152.2847
	6523	Cressbrook Dam	-27.2650	152.1950
	6526	Helidon	-27.55	152.1
	6529	Saint Aubyns	-27.0619	151.8944
	6540	Yarraman	-26.8358	151.9692
	6542	Cooyar Creek at Dam Site	-26.7417	152.13676
	6550	Bremer River at Walloon	-27.6170	$152.668{ }^{\circ}$
	6553	Cressbrook Creek at Rosentretters	-27.1383	152, 294
	6556	Lockyer Creek at Glenore Grove	-27.5242	452.4081
	6559	Savages Crossing	-27.44 0^{0}	152.6680
	6568	O'Reilly's Weir	-2784167	152.5833
	6571	Warrill Creek at Harrisville	27.8150	152.6406
	6574	Caboonbah	-27.1460	152.4900
	6577	Lockyer Creek at Gatton	-27.5564	152.2731
	6580	Bremer River at Adams Bridge; ${ }^{\text {a }}$	-27.8294	152.5108
	6583	Laidley Creek at Showgroulnd Weir	-27.6386	152.3844
	6596	Crows Nest	-27.2308	152.0311
	6598	Toowoomba	-27.5114	151.9536
	6600	Kilcoy $\sim^{\text {c }}$	-26.9481	152.5836
	6604	Toogoolaw ${ }^{\text {a }}{ }^{\text {a }}$	-27.0858	152.3722
	6606	Woodbine West	-27.7847	152.1497
	6608	Jimana	-26.6610	152.4510
	6610	*	-27.2070	152.7030
	66156	Thorton	-27.8211	152.3800
	6617	Little Egypt	-27.7042	152.0650
	6619	Mount Castle	-27.9636	152.3756
	6621	Nukinenda	-27.0567	152.1072
	6623	Tarome	-27.9867	152.5008
0°	6630	Lyons Bridge	-27.47	152.53
	6633	Lyons Bridge	-27.47	152.53
	6636	Wivenhoe Dam	-27.3550	152.5960
	6643	Wivenhoe Dam Tailwater	-27.4100	152.5960
	6649	Brisbane River at Lowood	-27.4900	152.5930
	6651	Warrill Creek at Amberley	-27.6780	152.6990
	6680	Mount Glorious	-27.3220	152.7470
	6705	Stanley River at Woodford	-26.9500	152.7600
	6708	Brisbane River at Devon Hills	-26.9000	152.3210
	6711	North Pine River at Baxters Creek	-27.1958	152.8000

6714	Ferris Knob	-26.8542	152.8167
6716	Bellthorpe West	-26.8230	152.6780
6730	Brisbane River at Jindalee	-27.5322	152.9239
6733	Bremer River at Rosewood	-27.6600	152.6030
6739	Purga Creek at Washpool	-27.8290	152.7550
6748	Brisbane River at City Gauge	-27.4730	153.0300
6751	Brisbane River at Mount Crosby	-27.5300	152.7980
6754	Brisbane River at Moggill	-27.5950	152.8630
6760	North Pine Dam	-27.2650	152.9300
6763	North Pine River at Petrie	-27.2700	152.9750
6766	Lake Kurwongbah	-27.2500	152.9500
6769	South Pine River at Drapers Crossing	-27.3500	152.9167
6778	South Pine River at Samford	-27.3610	152.8790

6511 - Mount Pechey

Duration	Recorded Intensity	End Time	AEP
	$\mathrm{mm} / \mathrm{hr}$		1 in Y
15 M	61.6	$\begin{gathered} 13: 13 \\ 10 / 01 / 2011 \end{gathered}$	< 5
30 M	53.8	$\begin{gathered} 13: 13 \\ 10 / 01 / 2011 \\ \hline \end{gathered}$	< 5
1 H	43.5	$\begin{gathered} \hline 13: 28 \\ 10 / 01 / 2011 \\ \hline \end{gathered}$	< 5
3 H	16.3	$\begin{gathered} 14: 43 \\ 10 / 01 / 2011 \end{gathered}$	< 5
6 H	9.0	$\begin{gathered} \hline 16: 28 \\ 10 / 01 / 2011 \\ \hline \end{gathered}$	< 5
12 H	6.0	$\begin{gathered} 23: 58 \\ 09 / 01 / 2011 \end{gathered}$	< 5
18 H	5.4	$\begin{gathered} 05: 58 \\ 11 / 01 / 2011 \end{gathered}$	< 5
24 H	4.9	$\begin{gathered} 13: 43 \\ 10 / 01 / 2011 \end{gathered}$	<5
48 H	3.8	$\begin{gathered} \hline 12: 13 \\ 11 / 01 / 2011 \\ \hline \end{gathered}$	10-20
72 H	2.8	$\begin{gathered} \hline 20: 28 \\ 11 / 01 / 2011 \\ \hline \end{gathered}$	10-20

6514 - Brisbane River: Gregors Creek

6520 - Emu Creek: Boat Mountain

Appendix P

6520 - Emu Creek: Boat Mountain

6523 - Cressbrook Dam

Duration	Recorded Intensity	End Time	AEP
	$\mathrm{mm} / \mathrm{hr}$		1 in Y
15 M	63.2	$\begin{gathered} 12: 37 \\ 10 / 01 / 2011 \\ \hline \end{gathered}$	< 5
30 M	57.8	$\begin{gathered} 12: 52 \\ 10 / 01 / 2011 \\ \hline \end{gathered}$	<5
1 H	52.7	$\begin{gathered} 13: 22 \\ 10 / 01 / 2011 \end{gathered}$	5-10
3 H	23.3	$\begin{gathered} 15: 07 \\ 10 / 01 / 2011 \\ \hline \end{gathered}$	5-10
6 H	12.8	$\begin{gathered} 15: 22 \\ 10 / 01 / 2011 \\ \hline \end{gathered}$	<5
12 H	7.3	$\begin{gathered} 15: 22 \\ 10 / 01 / 2011 \\ \hline \end{gathered}$	<5
18 H	6.7	$\begin{gathered} 05: 52 \\ 11 / 01 / 2011 \end{gathered}$	5-10
24 H	6.3	$\begin{gathered} 15: 22 \\ 10 / 01 / 2011 \end{gathered}$	10-20
48 H	4.6	$\begin{gathered} 11: 22 \\ 11 / 01 / 2011 \end{gathered}$	20-50
72 H	3.3	$\begin{gathered} 00: 37 \\ 12 / 01 / 2011 \end{gathered}$	10-20

6529 - Saint Aubyns

Duration	Recorded Intensity	End Time	AEP
	$\mathrm{mm} / \mathrm{hr}$		1 in Y
15 M	80.8	$\begin{gathered} 00: 50 \\ 11 / 01 / 2011 \end{gathered}$	< 5
30 M	80.4	$\begin{gathered} 01: 05 \\ 11 / 01 / 2011 \end{gathered}$	10-20
1 H	59.9	$\begin{gathered} 01: 20 \\ 11 / 01 / 2011 \end{gathered}$	10-20
3 H	24.0	$\begin{gathered} 03: 35 \\ 11 / 01 / 2011 \end{gathered}$	10-20
6 H	16.3	$\begin{gathered} 05: 05 \\ 11 / 01 / 2011 \end{gathered}$	20-50
12 H	9.0	$\begin{gathered} 06: 20 \\ 11 / 01 / 2011 \end{gathered}$	10-20
18 H	6.8	$\begin{gathered} 05: 50 \\ 11 / 01 / 2011 \end{gathered}$	10-20
24 H	5.2	$\begin{gathered} 09: 05 \\ 11 / 01 / 2011 \end{gathered}$	5-10
48 H	4.3	$\begin{gathered} 06: 20 \\ 11 / 01 / 2011 \end{gathered}$	20-50
72 H	3.1	$\begin{gathered} 15: 35 \\ 11 / 01 / 2011 \\ \hline \end{gathered}$	20-50

6540 - Yarraman

6542 - Cooyar Creek: Dam Site

6550 - Bremen River: Walloon

,553 - Cressbrook Dam - Rosentretters

Duration	Recorded Intensity	End Time	$\frac{A E P}{1 \text { in } Y}$
	$\mathrm{mm} / \mathrm{hr}$		
15 M	58.0	$\begin{gathered} 12: 43 \\ 10 / 01 / 2011 \end{gathered}$	< 5
30 M	47.2	$\begin{gathered} 12: 43 \\ 10 / 01 / 2011 \end{gathered}$	< 5
1 H	43.4	$\begin{gathered} 12: 43 \\ 10 / 01 / 2011 \\ \hline \end{gathered}$	<5
3 H	20.9	$\begin{gathered} \hline 14: 13 \\ 10 / 01 / 2011 \\ \hline \end{gathered}$	< 5
6 H	11.8	$\begin{gathered} 20: 13 \\ 09 / 01 / 2011 \\ \hline \end{gathered}$	< 5
12 H	8.9	$\begin{gathered} 21: 43 \\ 09 / 01 / 2011 \\ \hline \end{gathered}$	5-10
18 H	6.4	$\begin{gathered} \hline 04: 43 \\ 10 / 01 / 2011 \\ \hline \end{gathered}$	< 5
24 H	6.8	$\begin{gathered} 13: 13 \\ 10 / 01 / 2011 \end{gathered}$	10-20
48 H	5.0	$\begin{gathered} 09: 43 \\ 11 / 01 / 2011 \end{gathered}$	20-50
72 H	3.7	$\begin{gathered} 19: 13 \\ 11 / 01 / 2011 \end{gathered}$	20-50

6556 - Lockyer Creek: Glenore Grove

6559 - Savages Crossing

Duration	Recorded Intensity	End Time	AEP
	$\mathrm{mm} / \mathrm{hr}$		1 in Y
15 M	120.4	$\begin{gathered} \hline 08: 34 \\ 11 / 01 / 2011 \end{gathered}$	5-10
30 M	116.0	$\begin{gathered} 08: 49 \\ 11 / 01 / 2011 \\ \hline \end{gathered}$	20-50
1 H	104.4	$\begin{gathered} \hline 09: 04 \\ 11 / 01 / 2011 \\ \hline \end{gathered}$	100-200
3 H	70.5	$\begin{gathered} \hline 09: 34 \\ 11 / 01 / 2011 \\ \hline \end{gathered}$	1000-2000
6 H	47.8	$\begin{gathered} \hline 12: 49 \\ 11 / 01 / 201.1 \\ \hline \end{gathered}$	> 2000
12 H	30.7	$\begin{gathered} 14: 34 \\ 11 / 01 / 2011 \end{gathered}$	> 2000
18 H	20.7	$\begin{gathered} 14: 34 \\ 11 / 01 / 2011 \\ \hline \end{gathered}$	1000-2000
24 H	15.8	$\begin{gathered} 14: 19 \\ 11 / 01 / 2011 \\ \hline \end{gathered}$	500-1000
48 H	10.1	$\begin{gathered} 14: 34 \\ 11 / 01 / 2011 \\ \hline \end{gathered}$	500-1000
72 H	7.0	$\begin{gathered} 02: 19 \\ 12 / 01 / 2011 \end{gathered}$	200-500

6571 - Warrill Creek: Harrisville

Duration	Recorded Intensity	End Time	$\frac{\mathrm{AEP}}{1 \mathrm{in} Y}$
	$\mathrm{mm} / \mathrm{hr}$		
15 M	50.4	$\begin{gathered} \hline 09: 45 \\ 10 / 01 / 2011 \end{gathered}$	< 5
30 M	39.0	$\begin{gathered} 09: 60 \\ 10 / 01 / 201.1 \\ \hline \end{gathered}$	< 5
1 H	25.2	$\begin{gathered} \hline 09: 60 \\ 10 / 01 / 2011 \\ \hline \end{gathered}$	< 5
3 H	15.5	$\begin{gathered} \hline 10: 45 \\ 10 / 01 / 2011 \\ \hline \end{gathered}$	< 5
6 H	10.4	$\begin{gathered} 12: 30 \\ 10 / 01 / 2011 \\ \hline \end{gathered}$	< 5
12 H	6.1	$\begin{gathered} \hline 13: 60 \\ 10 / 01 / 2011 \\ \hline \end{gathered}$	<5
18 H	4.3	$\begin{gathered} \hline 21: 45 \\ 10 / 01 / 2011 \\ \hline \end{gathered}$	<5
24 H	3.5	$\begin{gathered} 02: 60 \\ 11 / 01 / 2011 \\ \hline \end{gathered}$	< 5
48 H	3.3	$\begin{gathered} 15: 45 \\ 11 / 01 / 2011 \end{gathered}$	5-10
72 H	2.2	$\begin{gathered} 15: 45 \\ 11 / 01 / 2011 \end{gathered}$	<5

6574 - Caboonbah

Duration	Recorded Intensity	End Time	AEP
	$\mathrm{mm} / \mathrm{hr}$		1 in Y
15 M	67.2	$\begin{gathered} 11: 46 \\ 10 / 01 / 2011 \\ \hline \end{gathered}$	< 5
30 M	55.8	$\begin{gathered} 11: 46 \\ 10 / 01 / 2011 \\ \hline \end{gathered}$	<5
1 H	44.5	$\begin{gathered} 05: 31 \\ 11 / 01 / 2011 \\ \hline \end{gathered}$	< 5
3 H	20.9	$\begin{gathered} 07: 31 \\ 11 / 01 / 2011 \end{gathered}$	< 5
6 H	13.2	$\begin{gathered} 20: 31 \\ 09 / 01 / 2011 \end{gathered}$	< 5
12 H	10.3	$\begin{gathered} 16: 31 \\ 11 / 01 / 2011 \end{gathered}$	10-20
18 H	7.3	$\begin{gathered} 19: 46 \\ 11 / 01 / 2011 \\ \hline \end{gathered}$	5-10
24 H	7.1	$\begin{gathered} 14: 31 \\ 10 / 01 / 2011 \\ \hline \end{gathered}$	10-20
48 H	6.3	$\begin{gathered} \hline 14: 31 \\ 11 / 01 / 2011 \\ \hline \end{gathered}$	50-100
72 H	4.8	$\begin{gathered} 19: 46 \\ 11 / 01 / 2011 \\ \hline \end{gathered}$	50-100

6577 - Lockyer Creek: Gatton

6580 - Bremer River: Adams Bridge

6583 - Laidley Creek - Showground Weir

6596 - Crows Nest

6598 - Toowoomba

6604 - Toogoolawah

6606 - Woodbine West

6608 - Jimna

6617 - Little Egypt

Rainfall Intensity

-

6623 - Tarome

Duration	Recorded Intensity	End Time	$\frac{A E P}{1 \operatorname{in} Y}$
	$\mathrm{mm} / \mathrm{hr}$		
15 M	51.6	$\begin{gathered} \hline 13: 38 \\ 11 / 01 / 2011 \end{gathered}$	< 5
30 M	38.8	$\begin{gathered} \hline 13: 53 \\ 11 / 01 / 2011 \\ \hline \end{gathered}$	<5
1 H	25.9	$\begin{gathered} \hline 13: 53 \\ 11 / 01 / 2011 \\ \hline \end{gathered}$	< 5
3 H	16.8	$\begin{gathered} 15: 38 \\ 11 / 01 / 2011 \\ \hline \end{gathered}$	< 5
6 H	12.1	$\begin{gathered} \hline 14: 53 \\ 11 / 01 / 2011 \\ \hline \end{gathered}$	< 5
12 H	8.5	$\begin{gathered} \hline 19: 23 \\ 11 / 01 / 2011 \\ \hline \end{gathered}$	< 5
18 H	7.1	$\begin{gathered} \hline 16: 23 \\ 11 / 01 / 2011 \end{gathered}$	5-10
24 H	5.4	$\begin{gathered} 19: 08 \\ 11 / 01 / 2011 \end{gathered}$	< 5
48 H	3.6	$\begin{gathered} 00: 08 \\ 12 / 01 / 2011 \end{gathered}$	<5
72 H	2.7	$\begin{gathered} 19: 38 \\ 11 / 01 / 2011 \\ \hline \end{gathered}$	< 5

6636 - Wivenhoe

Duration	Recorded Intensity	End Time	AEP
	$\mathrm{mm} / \mathrm{hr}$		1 in Y
15 M	72.4	$\begin{gathered} 13: 17 \\ 11 / 01 / 2011 \end{gathered}$	< 5
30 M	56.0	$\begin{gathered} 13: 32 \\ 11 / 01 / 2011 \\ \hline \end{gathered}$	< 5
1 H	52.6	$\begin{gathered} 13: 17 \\ 11 / 01 / 2011 \\ \hline \end{gathered}$	<5
3 H	41.9	$\begin{gathered} 14: 17 \\ 11 / 01 / 2011 \end{gathered}$	50-100
6 H	38.5	$\begin{gathered} 14: 02 \\ 11 / 01 / 2011 \\ \hline \end{gathered}$	500-1000
12 H	26.8	$\begin{gathered} \hline 16: 32 \\ 11 / 01 / 2011 \\ \hline \end{gathered}$	> 2000
18 H	18.1	$\begin{gathered} \hline 19: 47 \\ 11 / 01 / 2011 \\ \hline \end{gathered}$	500-1000
24 H	13.6	$\begin{gathered} \hline 19: 47 \\ 11 / 01 / 2011 \\ \hline \end{gathered}$	200-500
48 H	8.5	$\begin{gathered} \hline 15: 17 \\ 11 / 01 / 2011 \end{gathered}$	200-500
72 H	5.9	$\begin{gathered} 23: 17 \\ 11 / 01 / 2011 \end{gathered}$	200-500

6643 - Wivenhoe Dam Tailwater

Duration	Recorded Intensity	End Time	AEP
	$\mathrm{mm} / \mathrm{hr}$		1 in Y
15 M	94.0	$\begin{gathered} \hline 09: 14 \\ 11 / 01 / 2011 \\ \hline \end{gathered}$	< 5
30 M	67.6	$\begin{gathered} \hline 13: 29 \\ 11 / 01 / 2011 \\ \hline \end{gathered}$	<5
1 H	55.8	$\begin{gathered} \hline 13: 29 \\ 11 / 01 / 2011 \\ \hline \end{gathered}$	< 5
3 H	44.8	$\begin{gathered} 13: 44 \\ 11 / 01 / 2011 \\ \hline \end{gathered}$	50-100
6 H	42.2	$\begin{gathered} 13: 59 \\ 11 / 01 / 2011 \\ \hline \end{gathered}$	$\begin{aligned} & 1000- \\ & 2000 \end{aligned}$
12 H	29.4	$\begin{gathered} 16: 29 \\ 11 / 01 / 2011 \\ \hline \end{gathered}$	>2000
18 H	19.9	$\begin{gathered} \hline 19: 29 \\ 11 / 01 / 2011 \\ \hline \end{gathered}$	$\begin{aligned} & 1000- \\ & 2000 \\ & \hline \end{aligned}$
24 H	15.1	$\begin{gathered} \hline 19: 14 \\ 11 / 01 / 2011 \\ \hline \end{gathered}$	500-1000
48 H	9.5	$\begin{gathered} \hline 14: 44 \\ 11 / 01 / 2011 \\ \hline \end{gathered}$	500-1000
72 H	6.7	$\begin{gathered} \hline 02: 59 \\ 12 / 01 / 2011 \end{gathered}$	200-500

6649 - Brisbane River: Lowood

6651 - Warrill Creek - Amberley

Rainfall Intensity Rocordod Maximum Rainfall Intensity (21:28 05:1/2011 to 18:28 12011
Wamll Creek-Amberioy

6680 - Mount Glorious

6705 - Stanley River: Woodford

6705 - Stanley River: Woodford

6708 - Stanley River: Woodford

SITE PLOTS - CRC FORGE

6511 - Mount Pechey

514 - Brisbane River: Gregors Creek

Station 6514			
Duration	Recorded Intensity	End Time	AEP
	$\mathrm{mm} / \mathrm{hr}$		1 in Y
15 M	70.0	$\begin{gathered} \hline 15: 20 \\ 09 / 01 / 2011 \\ \hline \end{gathered}$	< 5
30 M	52.6	$\begin{array}{r} 15: 35 \\ 09 / 01 / 2011 \\ \hline \end{array}$	<5
1 H	42.2	$\begin{gathered} \text { 16:05 } \\ 09 / 01 / 2011 \\ \hline \end{gathered}$	<5
3 H	30.4	$\begin{gathered} 18: 05 \\ 09 / 01 / 2011 \\ \hline \end{gathered}$	10-20
6 H	25.0	$\begin{gathered} 19: 05 \\ 09 / 01 / 2011 \\ \hline \end{gathered}$	50-100
12 H	16.0	$\begin{gathered} 22: 20 \\ 09 / 01 / 2011 \\ \hline \end{gathered}$	100-200
18 H	12.1	$\begin{gathered} 23: 35 \\ 09 / 01 / 2011 \\ \hline \end{gathered}$	100-200
24 H	10.0	$\begin{gathered} 12: 35 \\ 10 / 01 / 2011 \\ \hline \end{gathered}$	100-200
48 H	6.6	$\begin{gathered} 05: 05 \\ 11 / 01 / 2011 \\ \hline \end{gathered}$	100-200
72 H	4.8	$\begin{gathered} 20: 20 \\ 11 / 01 / 2011 \\ \hline \end{gathered}$	100-200
96 H	3.6	$\begin{gathered} 20: 20 \\ 11 / 01 / 2011 \end{gathered}$	50-100
120 H	3.2	$\begin{gathered} \hline 20: 20 \\ 11 / 01 / 2011 \\ \hline \end{gathered}$	100-200

Appendix P
6520 - Emu Creek: Boat Mountain

6523 - Cressbrook Dam

\[

\]

6526 - Helidon

6529 - Saint Aubyns

Station 6529			
Duration	Recorded Intensity	End Time	AEP
	$\mathrm{mm} / \mathrm{hr}$		1 in Y
15 M	80.8	$\begin{gathered} 00: 50 \\ 11 / 01 / 2011 \\ \hline \end{gathered}$	<5
30 M	80.4	$\begin{gathered} \hline 01: 05 \\ 11 / 01 / 2011 \\ \hline \end{gathered}$	10-20
1 H	59.9	$\begin{gathered} \hline 01: 20 \\ 11 / 01 / 2011 \\ \hline \end{gathered}$	20-50
3 H	24.0	$\begin{gathered} \hline 03: 35 \\ 11 / 01 / 2011 \\ \hline \end{gathered}$	10-20
6 H	16.3	$\begin{gathered} \hline 05: 05 \\ 11 / 01 / 2011 \\ \hline \end{gathered}$	20-50
12 H	9.0	$\begin{gathered} \hline 06: 20 \\ 11 / 01 / 2011 \\ \hline \end{gathered}$	20-50
18 H	6.8	$\begin{gathered} 05: 50 \\ 11 / 01 / 2011 \end{gathered}$	10-20
24 H	5.2	$\begin{gathered} 09: 05 \\ 11 / 01 / 2011 \\ \hline \end{gathered}$	10-20
48 H	4.3	$\begin{gathered} 06: 20 \\ 11 / 01 / 2011 \\ \hline \end{gathered}$	50-100
72 H	3.1	$\begin{gathered} 15: 35 \\ 11 / 01 / 2011 \\ \hline \end{gathered}$	20-50
96 H	2.7	$\begin{gathered} 05: 05 \\ 11 / 01 / 2011 \\ \hline \end{gathered}$	50-100
120 H	2.4	$\begin{gathered} 06: 05 \\ 11 / 01 / 2011 \\ \hline \end{gathered}$	100-200

6540 - Yarraman

Station 6542			
Duration	Recorded Intensity	End Time	AEP
	$\mathrm{mm} / \mathrm{hr}$		1 in Y
15 M	60.4	$\begin{gathered} \hline 23: 04 \\ 10 / 01 / 2011 \\ \hline \end{gathered}$	< 5
30 M	55.6	$\begin{gathered} \hline 23: 19 \\ 10 / 01 / 2011 \\ \hline \end{gathered}$	< 5
1 H	38.2	$\begin{gathered} \hline 23: 49 \\ 10 / 01 / 2011 \\ \hline \end{gathered}$	<5
3 H	22.2	$\begin{gathered} 00: 49 \\ 11 / 01 / 2011 \\ \hline \end{gathered}$	5-10
6 H	16.3	$\begin{gathered} 04: 49 \\ 11 / 01 / 2011 \end{gathered}$	10-20
12 H	9.8	$\begin{gathered} 05: 49 \\ 11 / 01 / 2011 \end{gathered}$	10-20
18 H	6.9	$\begin{gathered} 23: 49 \\ 09 / 01 / 2011 \\ \hline \end{gathered}$	10-20
24 H	5.4	$\begin{gathered} \hline 02: 04 \\ 10 / 01 / 2011 \\ \hline \end{gathered}$	5-10
48 H	5.2	$\begin{gathered} \hline 05: 49 \\ 11 / 01 / 2011 \\ \hline \end{gathered}$	50-100
72 H	3.6	$\begin{gathered} \hline 14: 49 \\ 11 / 01 / 2011 \\ \hline \end{gathered}$	50-100
96 H	3.0	$\begin{gathered} \hline 04: 49 \\ 11 / 01 / 2011 \\ \hline \end{gathered}$	50-100
120 H	2.9	$\begin{gathered} \hline 07: 34 \\ 11 / 01 / 2011 \\ \hline \end{gathered}$	200-500

Appendix P

6542 - Cooyar Creek: Dam Site
 -

6550 - Bremer River: Walloon

Station 6550			
Duration	Recorded Intensity	End Time	AEP
	$\mathrm{mm} / \mathrm{hr}$		1 in Y
15 M	86.4	$\begin{gathered} 09: 27 \\ 11 / 01 / 2011 \\ \hline \end{gathered}$	< 5
30 M	66.8	$\begin{gathered} 09: 27 \\ 11 / 01 / 2011 \\ \hline \end{gathered}$	< 5
1 H	43.5	$\begin{gathered} 09: 42 \\ 11 / 01 / 2011 \end{gathered}$	< 5
3 H	22.1	$\begin{gathered} 11: 57 \\ 11 / 01 / 2011 \end{gathered}$	<5
6 H	18.7	$\begin{gathered} 14: 57 \\ 11 / 01 / 2011 \\ \hline \end{gathered}$	10-20
12 H	11.8	$\begin{gathered} 18: 27 \\ 11 / 01 / 2011 \\ \hline \end{gathered}$	20-50
18 H	8.2	$\begin{gathered} 18: 42 \\ 11 / 01 / 2011 \end{gathered}$	10-20
24 H	6.3	$\begin{gathered} 18: 42 \\ 11 / 01 / 2011 \\ \hline \end{gathered}$	10-20
48 H	4.2	$\begin{gathered} 18: 12 \\ 11 / 01 / 2011 \\ \hline \end{gathered}$	10-20
72 H	3.2	$\begin{gathered} 18: 42 \\ 11 / 01 / 2011 \\ \hline \end{gathered}$	10-20
96 H	2.4	$\begin{gathered} 18: 42 \\ 11 / 01 / 2011 \\ \hline \end{gathered}$	10-20
120 H	2.1	$\begin{gathered} 18: 42 \\ 11 / 01 / 2011 \end{gathered}$	10-20

53 - Cressbrook Creek: Rosentretter:
Appendix P

6556 - Lockyer Creek: Glenore Grove

6559 - Savages Crossing

6568 - O'Reilly's Weir

Duration	Recorded Intensity	End Time	AEP
	$\mathrm{mm} / \mathrm{hr}$		1 in Y
15 M	83.6	$\begin{gathered} \hline 13: 21 \\ 11 / 01 / 2011 \\ \hline \end{gathered}$	< 5
30 M	68.8	$\begin{gathered} 13: 36 \\ 11 / 01 / 2011 \\ \hline \end{gathered}$	<5
1 H	56.2	$\begin{gathered} 13: 36 \\ 11 / 01 / 2011 \\ \hline \end{gathered}$	5-10
3 H	40.2	$\begin{gathered} \hline 14: 21 \\ 11 / 01 / 2011 \\ \hline \end{gathered}$	50-100
6 H	37.5	$\begin{gathered} 14: 21 \\ 11 / 01 / 2011 \\ \hline \end{gathered}$	$\begin{aligned} & 1000- \\ & 2000 \\ & \hline \end{aligned}$
12 H	27.9	$\begin{gathered} 16: 06 \\ 11 / 01 / 2011 \end{gathered}$	>2000
18 H	19.1	$\begin{gathered} 20: 21 \\ 11 / 01 / 2011 \\ \hline \end{gathered}$	>2000
24 H	14.5	$\begin{gathered} 20: 21 \\ 11 / 01 / 2011 \\ \hline \end{gathered}$	$\begin{aligned} & 1000- \\ & 2000 \end{aligned}$
48 H	9.0	$\begin{gathered} 14: 51 \\ 11 / 01 / 2011 \\ \hline \end{gathered}$	500-1000
72 H	6.3	$\begin{gathered} \hline 20: 21 \\ 11 / 01 / 2011 \\ \hline \end{gathered}$	500-1000
96 H	4.8	$\begin{gathered} \hline 20: 21 \\ 11 / 01 / 2011 \\ \hline \end{gathered}$	200-500
120 H	4.0	$\begin{gathered} 20: 21 \\ 11 / 01 / 2011 \end{gathered}$	200-500

6571 - Warrill Creek: Harrisville

Station 6571			
Duration	Recorded Intensity	End Time	AEP
	$\mathrm{mm} / \mathrm{hr}$		1 in Y
15 M	50.4	$\begin{gathered} 09: 45 \\ 10 / 01 / 2011 \end{gathered}$	< 5
30 M	39.0	$\begin{gathered} \hline 09: 60 \\ 10 / 01 / 2011 \\ \hline \end{gathered}$	< 5
1 H	25.2	$\begin{gathered} 09: 60 \\ 10 / 01 / 2011 \\ \hline \end{gathered}$	< 5
3 H	15.5	$\begin{gathered} 10: 45 \\ 10 / 01 / 2011 \\ \hline \end{gathered}$	< 5
6 H	10.4	$\begin{gathered} 12: 30 \\ 10 / 01 / 2011 \\ \hline \end{gathered}$	< 5
12 H	6.1	$\begin{gathered} \hline 13: 60 \\ 10 / 01 / 2011 \\ \hline \end{gathered}$	<5
18 H	4.3	$\begin{gathered} \hline \text { 21:45 } \\ 10 / 01 / 2011 \\ \hline \end{gathered}$	<5
24 H	3.5	$\begin{gathered} \hline 02: 60 \\ 11 / 01 / 2011 \\ \hline \end{gathered}$	< 5
48 H	3.3	$\begin{gathered} 15: 45 \\ 11 / 01 / 2011 \\ \hline \end{gathered}$	< 5
72 H	2.2	$\begin{gathered} 15: 45 \\ 11 / 01 / 2011 \\ \hline \end{gathered}$	< 5
96 H	1.7	$\begin{gathered} 15: 45 \\ 11 / 01 / 2011 \end{gathered}$	< 5
120 H	1.5	$\begin{gathered} 15: 45 \\ 11 / 01 / 2011 \end{gathered}$	< 5

6574 - Caboonbah

Station 6574			
Duration	Recorded Intensity	End Time	AEP
	$\mathrm{mm} / \mathrm{hr}$		1 in Y
15 M	67.2	$\begin{gathered} \hline 11: 46 \\ 10 / 01 / 2011 \\ \hline \end{gathered}$	< 5
30 M	55.8	$\begin{gathered} 11: 46 \\ 10 / 01 / 2011 \\ \hline \end{gathered}$	< 5
1 H	44.5	$\begin{gathered} 05: 31 \\ 11 / 01 / 2011 \\ \hline \end{gathered}$	< 5
3 H	20.9	$\begin{gathered} 07: 31 \\ 11 / 01 / 2011 \end{gathered}$	< 5
6 H	13.2	$\begin{gathered} 20: 31 \\ 09 / 01 / 2011 \\ \hline \end{gathered}$	5-10
12 H	10.3	$\begin{gathered} 16: 31 \\ 11 / 01 / 2011 \end{gathered}$	10-20
18 H	7.3	$\begin{gathered} \hline 19: 46 \\ 11 / 01 / 2011 \\ \hline \end{gathered}$	10-20
24 H	7.1	$\begin{gathered} \hline 14: 31 \\ 10 / 01 / 2011 \\ \hline \end{gathered}$	20-50
48 H	6.3	$\begin{gathered} 14: 31 \\ 11 / 01 / 2011 \\ \hline \end{gathered}$	200-500
72 H	4.8	$\begin{gathered} 19: 46 \\ 11 / 01 / 2011 \end{gathered}$	200-500
96 H	3.6	$\begin{gathered} 03: 46 \\ 12 / 01 / 2011 \\ \hline \end{gathered}$	100-200
120 H	3.4	$\begin{gathered} \hline 19: 46 \\ 11 / 01 / 2011 \\ \hline \end{gathered}$	200-500

6577 - Lockyer Creek: Gatton

Station 6577			
Duration	Recorded Intensity	End Time	AEP
	$\mathrm{mm} / \mathrm{hr}$		1 in Y
15 M	67.2	$\begin{gathered} 06: 02 \\ 11 / 01 / 2011 \end{gathered}$	<5
30 M	54.0	$\begin{gathered} 06: 17 \\ 11 / 01 / 2011 \\ \hline \end{gathered}$	< 5
1 H	34.5	$\begin{gathered} 06: 17 \\ 11 / 01 / 2011 \end{gathered}$	< 5
3 H	18.7	$\begin{gathered} 14: 32 \\ 11 / 01 / 2011 \end{gathered}$	< 5
6 H	13.3	$\begin{gathered} \hline 16: 02 \\ 11 / 01 / 2011 \\ \hline \end{gathered}$	< 5
12 H	11.0	$\begin{gathered} 16: 02 \\ 11 / 01 / 2011 \end{gathered}$	20-50
18 H	7.7	$\begin{gathered} \hline 18: 17 \\ 11 / 01 / 2011 \\ \hline \end{gathered}$	10-20
24 H	6.0	$\begin{gathered} 23: 47 \\ 11 / 01 / 2011 \end{gathered}$	10-20
48 H	4.4	$\begin{gathered} 15: 47 \\ 11 / 01 / 2011 \\ \hline \end{gathered}$	20-50
72 H	3.4	$\begin{gathered} 23: 47 \\ 11 / 01 / 2011 \end{gathered}$	20-50
96 H	2.6	$\begin{gathered} 23: 47 \\ 11 / 01 / 2011 \end{gathered}$	20-50
120 H	2.3	$\begin{gathered} 23: 47 \\ 11 / 01 / 2011 \end{gathered}$	20-50

6580 - Bremer River: Adams Bridge

83 - Laidley Creek: Showground Wei.

Station 6583			
Duration	Recorded Intensity	End Time	AEP
	$\mathrm{mm} / \mathrm{hr}$		1 in Y
15 M	74.0	$\begin{gathered} \hline 07: 08 \\ 11 / 01 / 2011 \\ \hline \end{gathered}$	< 5
30 M	66.2	$\begin{gathered} 07: 08 \\ 11 / 01 / 2011 \\ \hline \end{gathered}$	< 5
1 H	44.5	$\begin{gathered} 07: 38 \\ 11 / 01 / 2011 \\ \hline \end{gathered}$	< 5
3 H	23.1	$\begin{gathered} \hline 08: 38 \\ 11 / 01 / 2011 \\ \hline \end{gathered}$	< 5
6 H	17.4	$\begin{gathered} \hline 16: 38 \\ 11 / 01 / 2011 \\ \hline \end{gathered}$	10-20
12 H	15.1	$\begin{gathered} \hline 16: 38 \\ 11 / 01 / 2011 \\ \hline \end{gathered}$	200-500
18 H	10.6	$\begin{gathered} \hline 20: 53 \\ 11 / 01 / 2011 \\ \hline \end{gathered}$	100-200
24 H	8.5	$\begin{gathered} \hline 21: 08 \\ 11 / 01 / 2011 \\ \hline \end{gathered}$	50-100
48 H	5.4	$\begin{gathered} \hline 15: 38 \\ 11 / 01 / 2011 \\ \hline \end{gathered}$	100-200
72 H	4.1	$\begin{gathered} \hline 03: 23 \\ 12 / 01 / 2011 \\ \hline \end{gathered}$	100-200
96 H	3.0	$\begin{gathered} 03: 23 \\ 12 / 01 / 2011 \\ \hline \end{gathered}$	50-100
120 H	2.6	$\begin{gathered} 00: 08 \\ 12 / 01 / 2011 \end{gathered}$	50-100

Appendix P
6596 - Crows Nest

Station 6596			
Duration	Recorded Intensity	End Time	AEP
	$\mathrm{mm} / \mathrm{hr}$		1 in Y
15 M	58.8	$\begin{gathered} 16: 38 \\ 09 / 01 / 2011 \end{gathered}$	< 5
30 M	52.8	$\begin{gathered} \hline 05: 08 \\ 11 / 01 / 2011 \\ \hline \end{gathered}$	< 5
1 H	34.8	$\begin{gathered} 05: 23 \\ 11 / 01 / 2011 \\ \hline \end{gathered}$	<5
3 H	19.7	$\begin{gathered} \hline 17: 53 \\ 09 / 01 / 2011 \\ \hline \end{gathered}$	<5
6 H	13.9	$\begin{gathered} 20: 53 \\ 09 / 01 / 2011 \\ \hline \end{gathered}$	10-20
12 H	9.0	$\begin{gathered} \hline 23: 23 \\ 09 / 01 / 2011 \end{gathered}$	20-50
18 H	6.2	$\begin{gathered} 05: 08 \\ 10 / 01 / 2011 \end{gathered}$	10-20
24 H	4.9	$\begin{gathered} 13: 08 \\ 10 / 01 / 2011 \\ \hline \end{gathered}$	5-10
48 H	4.7	$\begin{gathered} \hline 10: 53 \\ 11 / 01 / 2011 \\ \hline \end{gathered}$	50-100
72 H	3.3	$\begin{gathered} \hline 14: 23 \\ 11 / 01 / 2011 \\ \hline \end{gathered}$	50-100
96 H	2.6	$\begin{gathered} 10: 38 \\ 11 / 01 / 2011 \end{gathered}$	20-50
120 H	2.3	$\begin{gathered} 06: 53 \\ 11 / 01 / 2011 \\ \hline \end{gathered}$	50-100

6598 - Toowoomba

[^9]6600 - Kilcoy

6604 - Toogoolawah

6606 - Woodbine West

6608 - Jimna

6610 - Kluvers Lookout

Station 6615			
Duration	Recorded Intensity	End Time	AEP
	$\mathrm{mm} / \mathrm{hr}$		1 in Y
15 M	100.8	$\begin{gathered} \hline 10: 43 \\ 11 / 01 / 2011 \\ \hline \end{gathered}$	<5
30 M	58.0	$\begin{gathered} 07: 58 \\ 11 / 01 / 2011 \\ \hline \end{gathered}$	<5
1H	36.6	$\begin{gathered} \hline 08: 13 \\ 11 / 01 / 2011 \\ \hline \end{gathered}$	< 5
3 H	24.7	$\begin{gathered} \hline 10: 43 \\ 11 / 01 / 2011 \\ \hline \end{gathered}$	<5
6 H	18.2	$\begin{gathered} \hline 10: 43 \\ 11 / 01 / 2011 \\ \hline \end{gathered}$	5-10
12 H	13.7	$\begin{gathered} \hline 18: 13 \\ 11 / 01 / 2011 \\ \hline \end{gathered}$	20-50
18 H	9.9	$\begin{gathered} \hline 18: 58 \\ 11 / 01 / 2011 \\ \hline \end{gathered}$	10-20
24 H	7.9	$\begin{gathered} \hline 19: 28 \\ 11 / 01 / 2011 \\ \hline \end{gathered}$	10-20
48 H	5.2	$\begin{gathered} \hline 18: 58 \\ 11 / 01 / 2011 \\ \hline \end{gathered}$	10-20
72 H	3.9	$\begin{gathered} \hline 19: 43 \\ 11 / 01 / 2011 \\ \hline \end{gathered}$	10-20
96 H	2.9	$\begin{gathered} \hline 19: 28 \\ 11 / 01 / 2011 \\ \hline \end{gathered}$	10-20
120 H	2.5	$\begin{gathered} \hline 19: 28 \\ 11 / 01 / 2011 \\ \hline \end{gathered}$	10-20

6617 - Little Egypt

Station 6617			
Duration	Recorded Intensity	End Time	AEP
	$\mathrm{mm} / \mathrm{hr}$		1 in Y
15 M	73.2	$\begin{gathered} 06: 19 \\ 11 / 01 / 2011 \end{gathered}$	< 5
30 M	63.2	$\begin{gathered} 06: 34 \\ 11 / 01 / 2011 \end{gathered}$	< 5
1 H	47.6	$\begin{gathered} \hline 06: 34 \\ 11 / 01 / 2011 \\ \hline \end{gathered}$	5-10
3 H	17.8	$\begin{gathered} \hline 07: 19 \\ 11 / 01 / 2011 \\ \hline \end{gathered}$	< 5
6 H	9.9	$\begin{gathered} \hline 07: 19 \\ 11 / 01 / 2011 \end{gathered}$	< 5
12 H	6.3	$\begin{gathered} 16: 04 \\ 11 / 01 / 2011 \end{gathered}$	< 5
18 H	5.0	$\begin{gathered} 07: 19 \\ 11 / 01 / 2011 \end{gathered}$	< 5
24 H	4.0	$\begin{gathered} 13: 19 \\ 11 / 01 / 2011 \end{gathered}$	< 5
48 H	2.7	$\begin{gathered} 16: 04 \\ 11 / 01 / 2011 \\ \hline \end{gathered}$	< 5
72 H	2.1	$\begin{gathered} 06: 49 \\ 12 / 01 / 2011 \\ \hline \end{gathered}$	< 5
96 H	1.6	$\begin{gathered} 06: 49 \\ 12 / 01 / 2011 \end{gathered}$	< 5
120 H	1.5	$\begin{gathered} 07: 19 \\ 11 / 01 / 2011 \end{gathered}$	<5

6619 - Mount Castle

6621 - Nukinenda

6623 - Tarome

6630 - Lyons Bridge

Duration	Recorded Intensity	End Time	AEP
	$\mathrm{mm} / \mathrm{hr}$		1 in Y
15 M	101.6	$\begin{gathered} 13: 42 \\ 11 / 01 / 2011 \\ \hline \end{gathered}$	<5
30 M	80.4	$\begin{gathered} 13: 57 \\ 11 / 01 / 2011 \\ \hline \end{gathered}$	5-10
$1 \mathrm{H}^{\circ}$	72.5	$\begin{gathered} 13: 42 \\ 11 / 01 / 2011 \\ \hline \end{gathered}$	20-50
3 H	49.6	$\begin{gathered} 13: 57 \\ 11 / 01 / 2011 \end{gathered}$	200-500
6 H	41.5	$\begin{gathered} 14: 42 \\ 11 / 01 / 2011 \\ \hline \end{gathered}$	> 2000
12 H	29.8	$\begin{gathered} 14: 57 \\ 11 / 01 / 2011 \end{gathered}$	>2000
18 H	20.0	$\begin{gathered} 20: 57 \\ 11 / 01 / 2011 \\ \hline \end{gathered}$	>2000
24 H	15.1	$\begin{gathered} 02: 57 \\ 12 / 01 / 2011 \end{gathered}$	> 2000
48 H	9.1	$\begin{gathered} 14: 57 \\ 11 / 01 / 2011 \\ \hline \end{gathered}$	> 2000
72 H	6.3	$\begin{gathered} \hline 03: 27 \\ 12 / 01 / 2011 \\ \hline \end{gathered}$	$\begin{aligned} & 1000- \\ & 2000 \\ & \hline \end{aligned}$
96 H	4.8	$\begin{gathered} 03: 27 \\ 12 / 01 / 2011 \\ \hline \end{gathered}$	500-1000
120 H	4.0	$\begin{gathered} 00: 12 \\ 12 / 01 / 2011 \end{gathered}$	500-1000

6633 - Lyons Bridge

6636 - Wivenhoe Dam

6643 - Wivenhoe Dam Tailwater

6649 - Brisbane River: Lowood

6651 - Warrill Creek - Amberley

6651 - Warrill Creek - Amberley

6680 - Mount Glorious

6705 - Stanley River: Woodford

6708 - Brisbane River: Devon Hills

Station 6708			
Duration	Recorded Intensity	End Time	AEP
	$\mathrm{mm} / \mathrm{hr}$		1 in Y
15 M	51.2	$\begin{gathered} 14: 28 \\ 09 / 01 / 2011 \end{gathered}$	< 5
30 M	43.4	$\begin{gathered} 14: 43 \\ 09 / 01 / 2011 \end{gathered}$	< 5
1H	34.5	$\begin{gathered} 14: 58 \\ 09 / 01 / 2011 \\ \hline \end{gathered}$	< 5
3 H	20.1	$\begin{gathered} 15: 13 \\ 09 / 01 / 2011 \\ \hline \end{gathered}$	< 5
6 H	16.7	$\begin{gathered} 18: 58 \\ 09 / 01 / 2011 \\ \hline \end{gathered}$	10-20
12 H	11.8	$\begin{gathered} 00: 13 \\ 10 / 01 / 2011 \end{gathered}$	20-50
18 H	10.5	$\begin{gathered} 23: 58 \\ 09 / 01 / 2011 \end{gathered}$	20-50
24 H	8.3	$\begin{gathered} 02: 43 \\ 10 / 01 / 2011 \end{gathered}$	20-50
48 H	5.5	$\begin{gathered} 04: 58 \\ 11 / 01 / 2011 \\ \hline \end{gathered}$	20-50
72 H	4.2	$\begin{gathered} 18: 43 \\ 11 / 01 / 2011 \\ \hline \end{gathered}$	50-100
96 H	3.5	$\begin{gathered} 04: 58 \\ 11 / 01 / 2011 \end{gathered}$	50-100
120 H	3.1	$\begin{gathered} \hline 11: 43 \\ 11 / 01 / 2011 \\ \hline \end{gathered}$	100-200

'11 - North Pine River: Baxters Creek

Station 6711			
Duration	Recorded Intensity	End Time	AEP
	$\mathrm{mm} / \mathrm{hr}$		1 in Y
15 M	96.8	$\begin{gathered} \hline 09: 48 \\ 11 / 01 / 2011 \end{gathered}$	< 5
30 M	85.4	$\begin{gathered} 09: 48 \\ 11 / 01 / 2011 \\ \hline \end{gathered}$	< 5
1 H	76.5	$\begin{gathered} \hline 10: 03 \\ 11 / 01 / 2011 \\ \hline \end{gathered}$	10-20
3 H	53.2	$\begin{gathered} \hline 11: 48 \\ 11 / 01 / 2011 \\ \hline \end{gathered}$	50-100
6 H	41.2	$\begin{gathered} \hline 11: 18 \\ 11 / 01 / 2011 \\ \hline \end{gathered}$	200-500
12 H	28.3	$\begin{gathered} \hline 15: 03 \\ 11 / 01 / 2011 \\ \hline \end{gathered}$	200-500
18 H	19.5	$\begin{gathered} 18: 48 \\ 11 / 01 / 2011 \end{gathered}$	100-200
24 H	14.8	$\begin{gathered} 17: 48 \\ 11 / 01 / 2011 \\ \hline \end{gathered}$	50-100
48 H	9.7	$\begin{gathered} 14: 18 \\ 11 / 01 / 2011 \\ \hline \end{gathered}$	50-100
72 H	7.0	$\begin{gathered} 15: 03 \\ 11 / 01 / 2011 \\ \hline \end{gathered}$	50-100
96 H	5.3	$\begin{gathered} 15: 18 \\ 11 / 01 / 2011 \end{gathered}$	20-50
120 H	4.7	$\begin{gathered} 15: 03 \\ 11 / 01 / 2011 \end{gathered}$	20-50

6714 - Ferris Knob

Station 6714			
Duration	Recorded Intensity	End Time	AEP
	$\mathrm{mm} / \mathrm{hr}$		1 in Y
15 M	84.4	$\begin{gathered} 10: 48 \\ 11 / 01 / 2011 \\ \hline \end{gathered}$	<5
30 M	81.4	$\begin{gathered} \hline 11: 03 \\ 11 / 01 / 2011 \\ \hline \end{gathered}$	< 5
1 H	68.3	$\begin{gathered} 11: 18 \\ 11 / 01 / 2011 \\ \hline \end{gathered}$	5-10
3 H	48.9	$\begin{gathered} 13: 18 \\ 11 / 01 / 2011 \\ \hline \end{gathered}$	20-50
6 H	28.6	$\begin{gathered} 14: 33 \\ 11 / 01 / 2011 \end{gathered}$	10-20
12 H	18.8	$\begin{gathered} 18: 48 \\ 11 / 01 / 2011 \\ \hline \end{gathered}$	10-20
18 H	14.4	$\begin{gathered} 18: 48 \\ 11 / 01 / 2011 \end{gathered}$	5-10
24 H	11.8	$\begin{gathered} 04: 18 \\ 10 / 01 / 2011 \\ \hline \end{gathered}$	5-10
48 H	9.5	$\begin{gathered} 14: 18 \\ 11 / 01 / 2011 \\ \hline \end{gathered}$	10-20
72 H	8.5	$\begin{gathered} 02: 33 \\ 12 / 01 / 2011 \end{gathered}$	20-50
96 H	6.7	$\begin{gathered} 13: 33 \\ 12 / 01 / 2011 \\ \hline \end{gathered}$	20-50
120 H	5.7	$\begin{gathered} 18: 48 \\ 11 / 01 / 2011 \end{gathered}$	20-50

6716 - Bellthorpe West

Duration	Recorded Intensity	End Time	AEP
	mm/hr		1 in Y
15 M	73.2	$\begin{gathered} 13: 49 \\ 09 / 01 / 2011 \\ \hline \end{gathered}$	< 5
30 M	59.8	$\begin{gathered} 13: 49 \\ 09 / 01 / 2011 \\ \hline \end{gathered}$	< 5
1 H	49.9	$\begin{gathered} 14: 04 \\ 09 / 01 / 2011 \\ \hline \end{gathered}$	< 5
3 H	30.4	$\begin{gathered} 16: 04 \\ 09 / 01 / 2011 \end{gathered}$	5-10
6 H	30.1	$\begin{gathered} 19: 04 \\ 09 / 01 / 2011 \end{gathered}$	50-100
12 H	20.4	$\begin{gathered} 22: 19 \\ 09 / 01 / 2011 \end{gathered}$	50-100
18 H	18.0	$\begin{gathered} 23: 04 \\ 09 / 01 / 2011 \\ \hline \end{gathered}$	50-100
24 H	14.6	$\begin{gathered} \hline 04: 34 \\ 10 / 01 / 2011 \\ \hline \end{gathered}$	50-100
48 H	10.0	$\begin{gathered} 05: 04 \\ 11 / 01 / 2011 \end{gathered}$	50-100
72 H	8.4	$\begin{gathered} 01: 34 \\ 12 / 01 / 2011 \\ \hline \end{gathered}$	100-200
96 H	6.7	$\begin{gathered} 13: 19 \\ 12 / 01 / 2011 \\ \hline \end{gathered}$	100-200
120 H	5.6	$\begin{gathered} 19: 49 \\ 11 / 01 / 2011 \end{gathered}$	100-200

Appendix P
6730 - Brisbane River: Jindalee

6733 - Bremer River: Rosewood

Station 6733			
Duration	Recorded Intensity	End Time	AEP
	$\mathrm{mm} / \mathrm{hr}$		1 in Y
15 M	78.8	$\begin{gathered} \hline 09: 27 \\ 11 / 01 / 2011 \\ \hline \end{gathered}$	< 5
30 M	72.0	$\begin{gathered} 09: 42 \\ 11 / 01 / 2011 \end{gathered}$	< 5
1 H	48.5	$\begin{gathered} 09: 57 \\ 11 / 01 / 2011 \end{gathered}$	<5
3 H	26.5	$\begin{gathered} 10: 12 \\ 11 / 01 / 2011 \\ \hline \end{gathered}$	5-10
6 H	23.9	$\begin{gathered} \hline 14: 12 \\ 11 / 01 / 2011 \\ \hline \end{gathered}$	50-100
12 H	16.1	$\begin{gathered} \hline 17: 57 \\ 11 / 01 / 2011 \\ \hline \end{gathered}$	100-200
18 H	11.0	$\begin{gathered} \hline 18: 12 \\ 11 / 01 / 2011 \\ \hline \end{gathered}$	50-100
24 H	8.4	$\begin{gathered} \hline 18: 12 \\ 11 / 01 / 2011 \\ \hline \end{gathered}$	20-50
48 H	5.1	$\begin{gathered} \hline 18: 12 \\ 11 / 01 / 2011 \\ \hline \end{gathered}$	20-50
72 H	3.8	$\begin{gathered} 18: 12 \\ 11 / 01 / 2011 \\ \hline \end{gathered}$	20-50
96 H	2.9	$\begin{gathered} 18: 12 \\ 11 / 01 / 2011 \\ \hline \end{gathered}$	20-50
120 H	2.5	$\begin{gathered} 18: 12 \\ 11 / 01 / 2011 \end{gathered}$	20-50

6739 - Purga Creek: Washpool

6748 - Brisbane River: City Gauge

6751 - Brisbane River: Mount Crosby

6754 - Brisbane River: Moggill

Station 6754			
Duration	Recorded Intensity	End Time	AEP
	$\mathrm{mm} / \mathrm{hr}$		1 in Y
15 M	50.0	$\begin{gathered} 09: 07 \\ 07 / 01 / 2011 \\ \hline \end{gathered}$	<5
30 M	41.0	$\begin{gathered} 09: 22 \\ 07 / 01 / 2011 \end{gathered}$	<5
1 H	23.6	$\begin{gathered} 11: 22 \\ 11 / 01 / 2011 \end{gathered}$	<5
3 H	12.2	$\begin{gathered} 13: 37 \\ 11 / 01 / 2011 \\ \hline \end{gathered}$	<5
6 H	9.6	$\begin{gathered} 14: 37 \\ 11 / 01 / 2011 \end{gathered}$	<5
12 H	6.1	$\begin{gathered} \hline 16: 52 \\ 11 / 01 / 2011 \end{gathered}$	<5
18 H	4.4	$\begin{gathered} 15: 07 \\ 11 / 01 / 2011 \\ \hline \end{gathered}$	<5
24 H	3.4	$\begin{gathered} 16: 52 \\ 11 / 01 / 2011 \\ \hline \end{gathered}$	<5
48 H	2.7	$\begin{gathered} 15: 07 \\ 11 / 01 / 2011 \\ \hline \end{gathered}$	<5
72 H	2.1	$\begin{gathered} 16: 52 \\ 11 / 01 / 2011 \\ \hline \end{gathered}$	<5
96 H	1.6	$\begin{gathered} \hline 16: 52 \\ 11 / 01 / 2011 \end{gathered}$	<5
120 H	1.5	$\begin{gathered} 16: 52 \\ 11 / 01 / 2011 \end{gathered}$	<5

6760 - North Pine Dam

6763 - North Pine River: Petrie

Station 6763			
Duration	Recorded Intensity	End Time	AEP
	$\mathrm{mm} / \mathrm{hr}$		1 in Y
15 M	82.8	$\begin{gathered} \hline 10: 16 \\ 10 / 01 / 2011 \\ \hline \end{gathered}$	< 5
30 M	52.0	$\begin{gathered} 10: 31 \\ 10 / 01 / 2011 \\ \hline \end{gathered}$	< 5
1 H	30.3	$\begin{gathered} 10: 31 \\ 10 / 01 / 2011 \\ \hline \end{gathered}$	< 5
3 H	17.5	$\begin{gathered} \hline 10: 16 \\ 10 / 01 / 2011 \\ \hline \end{gathered}$	< 5
6 H	12.5	$\begin{gathered} 10: 31 \\ 10 / 01 / 2011 \\ \hline \end{gathered}$	<5
12 H	8.5	$\begin{gathered} 10: 31 \\ 10 / 01 / 2011 \\ \hline \end{gathered}$	< 5
18 H	6.7	$\begin{gathered} 10: 31 \\ 10 / 01 / 2011 \\ \hline \end{gathered}$	< 5
24 H	6.2	$\begin{gathered} 10: 31 \\ 10 / 01 / 2011 \\ \hline \end{gathered}$	< 5
48 H	4.6	$\begin{gathered} 14: 16 \\ 11 / 01 / 2011 \\ \hline \end{gathered}$	< 5
72 H	3.4	$\begin{gathered} \hline 21: 46 \\ 11 / 01 / 2011 \\ \hline \end{gathered}$	<5
96 H	2.6	$\begin{gathered} \hline 21: 46 \\ 11 / 01 / 2011 \\ \hline \end{gathered}$	<5
120 H	2.4	$\begin{gathered} 12: 01 \\ 11 / 01 / 2011 \\ \hline \end{gathered}$	< 5

6766 - Lake Kurwongbah

6 . 3-South Pine River: Drapers Crossii

Station 6769			
Duration	Recorded Intensity	End Time	AEP
	$\mathrm{mm} / \mathrm{hr}$		1 in Y
15 M	84.4	$\begin{gathered} \hline 10: 15 \\ 11 / 01 / 2011 \\ \hline \end{gathered}$	<5
30 M	53.0	$\begin{gathered} 10: 30 \\ 11 / 01 / 2011 \end{gathered}$	<5
1 H	29.9	$\begin{gathered} 10: 30 \\ 11 / 01 / 2011 \end{gathered}$	< 5
3 H	18.5	$\begin{gathered} \hline 12: 45 \\ 11 / 01 / 2011 \\ \hline \end{gathered}$	< 5
6 H	13.3	$\begin{gathered} \hline 14: 15 \\ 11 / 01 / 2011 \\ \hline \end{gathered}$	< 5
12 H	8.1	$\begin{gathered} 15: 45 \\ 11 / 01 / 2011 \end{gathered}$	<5
18 H	5.9	$\begin{gathered} \hline 18: 15 \\ 11 / 01 / 2011 \\ \hline \end{gathered}$	<5
24 H	5.2	$\begin{gathered} 10: 15 \\ 10 / 01 / 2011 \\ \hline \end{gathered}$	<5
48 H	4.6	$\begin{gathered} 14: 45 \\ 11 / 01 / 2011 \\ \hline \end{gathered}$	< 5
72 H	3.6	$\begin{gathered} 01: 00 \\ 12 / 01 / 2011 \\ \hline \end{gathered}$	< 5
96 H	2.8	$\begin{gathered} 03: 45 \\ 12 / 01 / 2011 \end{gathered}$	< 5
120 H	2.5	$\begin{gathered} 03: 45 \\ 12 / 01 / 2011 \end{gathered}$	<5

6778 - South Pine River: Samford

Station 6778			
Duration	Recorded Intensity	End Time	AEP
	$\mathrm{mm} / \mathrm{hr}$		1 in Y
15 M	89.6	$\begin{gathered} 10: 20 \\ 11 / 01 / 2011 \\ \hline \end{gathered}$	<5
30 M	53.4	$\begin{gathered} 10: 20 \\ 11 / 01 / 2011 \\ \hline \end{gathered}$	< 5
1 H	31.8	$\begin{gathered} 10: 50 \\ 11 / 01 / 2011 \\ \hline \end{gathered}$	< 5
3 H	22.7	$\begin{gathered} 12: 50 \\ 11 / 01 / 2011 \\ \hline \end{gathered}$	<5
6 H	15.4	$\begin{gathered} 14: 20 \\ 11 / 01 / 2011 \\ \hline \end{gathered}$	< 5
12 H	9.6	$\begin{gathered} 14: 35 \\ 11 / 01 / 2011 \\ \hline \end{gathered}$	< 5
18 H	6.8	$\begin{gathered} 18: 05 \\ 11 / 01 / 2011 \end{gathered}$	< 5
24 H	5.5	$\begin{gathered} 09: 50 \\ 10 / 01 / 2011 \\ \hline \end{gathered}$	< 5
48 H	5.2	$\begin{gathered} 14: 35 \\ 11 / 01 / 2011 \\ \hline \end{gathered}$	5-10
72 H	4.0	$\begin{gathered} 02: 05 \\ 12 / 01 / 2011 \end{gathered}$	5-10
96 H	3.1	$\begin{gathered} 02: 20 \\ 12 / 01 / 2011 \\ \hline \end{gathered}$	< 5
120 H	2.7	$\begin{gathered} 02: 20 \\ 12 / 01 / 2011 \end{gathered}$	5-10

APPENDIX Q

Recorded height hydrographs

Appendix Q

Appendix Q

LOCKYER CREEK TO O'REILLY WEIR

Appendix Q

Appendix Q

Appendix Q

Appendix Q

MID BRISBANE RIVER - WIVENHOE TO COLLEGES CROSSING

Appendix Q

Appendix Q

Appendix Q

Appendix Q

Appendix Q

Appendix Q

Appendix Q

Appendix Q

Appendix Q

Appendix Q

LOWER BRISBANE RIVER

Appendix Q

Appendix Q

Appendix Q

APPENDIX R

Ratings

STREAM HEIGHT STATION RATINGS

Calibration of the runoff routing model is performed by comparing modelled flows with estimated recorded flows. In turn, these estimated recorded flows are derived from recorded height through the appropriate stream rating curve. Thus rating curves are critical to the modelling process and it is important that there is an appreciation of the reliability of the reliability of the height to flow relationship at each site. One method of appreciating this reliability is by comparing the highest gauged (or measured) flow with the highest estimated. recorded flow at each gauging station, sometimes termed the 'rating ratio'.

The rating reliability for the gauging stations is shown in the Table below:-

$\begin{aligned} & \text { ALERT } \\ & \text { ID } \end{aligned}$	Stream	Location	Rating Ratio (\%)
6543	Cooyar Creek	Damsite	0^{88}
6718	Brisbane River	Linville	34
6521	Emu Creek	Boat Mountain	15
6515	Brisbane River	Gregors Creek C	30
6554	Cressbrook Creek	Rosentretters	12
6527	Lockyer 'Creek	Helidon ${ }^{\text {¢ }}$	23
6566	Tenthill Creek	Tentbili	21
6584	Laidley Creek	Stowground Weir	21
6634	Lockyer Creek	Lyons Bridge	26
6631	Lockyer Crgel	Rifle Range Road	40
6560	Brisbanefliver	Savages Crossing	60
6752	Brisbafne River	Mt Crosby Weir	25
6581	Bremer River	Adams Bridge	45
6551 人	Bremer River	Walloon	?
6563.	Warrill Creek	Kalbar	39
66.52	Warill Creek	Amberley	19

RTFM Stream Height Stations - Maximum Estimated Recorded Values

ALERT ID	Stream	Location	Gauge Height (m)	Maximum Flow $\left(\mathrm{m}^{3} / \mathrm{s}\right)$	Date
6543	Cooyar Creek	Damsite	9.33	1,156	$27 / 01 / 1974$

6718	Brisbane River	Linville	$\begin{aligned} & 9.17 \\ & 11.05 \end{aligned}$	$2,698$ $4,389$ (Estimated Value from Rating Table 30)	$\begin{aligned} & 09 / 02 / 1999 \\ & 11 / 01 / 2011 \end{aligned}$
6521	Emu Creek	Boat Mountain	9.61	$1,073$ (Estimated value from Rating Table 15)	$27 / 01 / 1974$
6515	Brisbane River	Gregors Creek	$\begin{aligned} & 14.19 \\ & 14.49 \end{aligned}$	$\begin{aligned} & 6,976 \\ & 7,351 \end{aligned}$	$\begin{aligned} & 09 / 82 / 1999 \\ & 89 / 01 / 2011 \end{aligned}$
6554	Cressbrook Creek	Rosentretters	6.78	346 (Estimated \&que from Ration Table 0301	10/01/2011
6527	Lockyer Creek	Helidon	4.74	$0^{\circ} 463$	12/06/1967
6566	Tenthill Creek	Tenthill		$1,176$ (Estimated Value from Rating Table 50)	27/12/2010
6584	Laidley Creek	Showground Weir	9.19	298	02/02/2001
6634	Lockyer Creek	Lygrs Bridge	17.42	2,319	27/01/1974
6631	Lockyer Creek	Nifle Range Road	16.49	1,392	04/05/1996
6560	Brisbane River	Savages Crossing	18.49	5,575	06/02/1931
6752	Brisbane River	M + Crosby Weir	26.74	6,600	28/01/1974
6581	Bremer River	Adams Bridge	5.29 5.17	(Estimated Value from Rating Table 92) 356 (Estimated Value from Rating Table 92)	$03 / 02 / 1971$ $26 / 01 / 1974$
6551	Bremer River	Walloon	11.27	Out of range (max: GH 9.5m)	11/01/2011

6563	Warrill Creek	Kalbar	11.28	497	$16 / 03 / 1937$
6652	Warrill Creek	Amberley	11.08	2,108	$27 / 01 / 1974$

RTFM Stream Height Stations - Maximum Rated (Measured) Values

ALERT ID	Stream	Location	Gauge Helght (m)	Gauged Flow ($\mathrm{m}^{3} / \mathrm{s}$)	Date ${ }^{\text {a }}$
6543	Cooyar Creek	Damsite	4.72	208	13/024.988
6718	Brisbane River	Linville	7.15	1,487	18862/1971
6521	Emu Creek	Bóat Mountain	3.56	161	13/02/1988
6515	Brisbane River	Gregors Creek	$\begin{aligned} & 7.33 \\ & 8.76 \end{aligned}$	$\begin{aligned} & 1,149 \\ & 2.188 \end{aligned}$	$\begin{aligned} & 26 / 04 / 1989 \\ & 11 / 01 / 2011 \end{aligned}$
6554	Cressbrook Creek	Rosentrefters	3.06	<8	10/02/1999
6527	Lockyer Creek	Helidon	3.40	108	12/04/1988
6566	Tenthill Creek	Tenthill	466	247	6/05/1996
6584	Laidley Creek	Showground Weir	< 8 800	64	6/07/1988
6634	Lockyer Creek	Lyons Bridge	14.08	595	12/06/1967
6631	Lockyer Creek	Rifle Range Reggd	14.04	557	6/04/1988
6560	Brisbane River	Savages ajossing	15.95	3,361	14/01/1968
6752	Brisbane River	Mt Cressiy Weir	11.73	1,671	14/02/1999
6581	Bremer River	Adarins Bridge	4.17	173	11/02/1976
6551	Bremer River	Whalloon	7.23	388	5/06/1988
6563	Warrill Creek	Kálbar	8.80	195	10/02/1971
6652	Warrill Creels	Amberley	7.67	409	04/04/1988

Table of ratings

ALERT ID	Watercourse	Station	Updated
6776	Stanley River	Peachester	$19 / 03 / 3010$
6703	Stanley River	Woodford	$1 / 02 / 2006$
6706		Dam Site	$1 / 12 / 2010$
6543	Cooyar Creek	Linville	$19 / 03 / 2010$
6718	Brisbane River	Devon Hills	$30 / 04 / 1995$
6709	Brisbane River	Boat Mountain	$19 / 03 / 2010$
6521	Emu Creek	Gregors Creek	$19 / 03 / 2010$
6515	Brisbane River	Cressbrook Dam	$1 / 01 / 1984$
6514	Cressbrook Creek		
6524			

6554	Cressbrook Creek	Rosentretters Crossing	19/03/2010
6527	Lockyer Creek	Helidon	10/11/1987
6566	Tenthill Creek	Tenthill	1/03/2010
6578	Lockyer Creek	Gatton	30/03/1995
6584	Laidley Creek	Showground Weir	13/10/1989
6557	Lockyer Creek	Glenore Grove	1/12/2010
6631	Lockyer Creek	Lyons Bridge	30/03/1995
6634			
6569	Lockyer Creek	O'Reilly's Weir	19/03/2010
6647	Brisbane River	Lowood Pump Station	30/03/1995
6560	Brisbane River	Savages Crossing	7/04/2000
6756	Brisbane River	Burtons Bridge	1/01/1995
6757	Brisbane River	Kholo Bridge	na
6752	Brisbane River	Mt Crosby Weir	1/01/1995
6758			
6581	Bremer River	Adams Bridge	17/03/2010
6737	Weston Creek	Kuss Road	Ina
6734	Bremer River	Rosewood	Δ na
6551	Bremer River	Walloon	$1 / 01 / 1996$
6743			
6563	Warrill Creek	Kalbar Weir	30/03/1995
6572	Warrill Creek	Harrisville 0^{\prime}	na
6652	Warrill Creek	Amberley C°	1/12/2010
6654			
2168	Bremer River	Ipswich	na
6755	Brisbane River	Moggill C	na
6731	Brisbane River	Jindalee	na
6749	Brisbane River	City, Gauge	na

Key locations shown highlighted

Rating Curve 2 - Sensor 6776

40.58, 6.42

Rating Curve 2 - Sensor 6703

$24.52,0.37$

Rating Curve 2 - Sensor 6543

$7644,22,5.00$

$594,34,39,43$

6709 - Brisbane River at Devon Hills

Rating Curve 1 - Sensor 8709

424.95. 5.89

Rating Curve 2 - Sensor 6521

$72,30,4,48$

Rating Curve 1 - Sensor 6524

52.20. 771,45

Rating Curve 50-Sensor 6566

Rating Curve 1 - Sensor 6578

Rating Curve 23 - Sensor 6584

Rating Curve 2 - Sensor 6557

Rating Curve 1-Sensor 6634

Note: This station is affected by backwater during Wivenhoe Dam releases.

Rating Curve 4 - Sensor 6569

Rating Curve 1 - Sensor 6647

6560 - Brisbane River at Savages Crossing

Rating Curve 87 - Sensor 6560

Discharge (cumecs)

Rating Curve 1 - Sensor 6758

6581 - Bremer River at Adams Bridge

Rating Curve 90 - Sensor 6581

Rating Curve 2 - Sensor 6551

6563 - Warrill Creek at Kalbar Weir

Rating Curve 75 - Sensor 6563

Rating Curve 3 - Sensor 6652

,
ation runs

RUN 2
DATE: THURSDAY 6 JANUARY 2011
TIME: 08:00

Stream gauge	Recorded		Modelled		Difference	
	Peak flow ($\mathrm{m}^{3} / \mathrm{s}$)	Flood volume (ML)	Peak flow ($\mathrm{m}^{3} / \mathrm{s}$)	Flood volume (ML)	Peak flow ($\mathrm{m}^{3} / \mathrm{s}$)	Flood volume (ML)
Gregors Creek	117	13,381	357	(1),847	240	2,466
Woodford	4	1,998		125	3	-1,874
Lyons Bridge	44	12,257	95	4,860	52	-7,397
Walloon	38	480	716	6,426	77	5,946
Amberley	26	6,084	-203	5,471	177	-612
Estimate to date and time of run						
Somerset			387	21,292		
Wivenhoe		\%	303	9,015		
Total Event Estimate						
Somerset			387	30,827		
Wivenhoe			303	49,176		

0

Run 2: 08:00 Thursday 6 January 2011

BremerRiver at Walloon
08:00 on 6 January 2011

Appendix S
Somerset Dam Estimated Inflow
$08: 00$ on 6 January 2011

Run 2: 08:00 Thursday 6 January 2011
RUN 5
DATE：FRIDAY 7 JANUARY 2011
TIME：02：00

DATE：FRIDAY 7 JANUARY 2011
TIME：02：00

APPENDIX T

Rainfall station temporal patterns

(6)

APPENDIX T

Rainfall station temporal patterns

Temporal patterns for selected stations in the table below are located in the subcatchment of those shown in the map and are plotted below to demonstrate the difference between sub-catchment and station intensities and patterns.

ALERT ID	Station	Latitude	Longitude
6514	Gregors Creek-P	-26.9800	152.4040
6542	Cooyar Creek	-26.7417	152.1367
6556	Glenore Grove	-27.5242	152.4081
6598	Toowoomba	-27.5114	151.9536
6649	Lowood-P	-27.4900	152.5930
6680	Mt Glorious P	-27.3220	152.7470
6716	West Bellthorpe	-26.8230	152.6780

Page 3 of 8

Page 5 of 8

Page 8 of 8

APPENDIX U

Wivenhoe Dam Hydrology Reports

The reports contained in the following listing can be used to show that a flood event similar in magnitude and circumstances to the January 2011 Flood Event would be expected to result in urban damage below Moggill if both Wivenhoe Dam and Somerset Dam are operated under their current full supply levels.

When examining these reports it is important to understand that the January 2011 Flood Event is defined by its peak flow of $12000 \mathrm{~m}^{3} / \mathrm{s}$ and its volume of $2,650,000$ megalitres. The AEP of the event cannot be generally be reconciled across all of the listed reports for the following three reasons:

- The accepted techniques for estimating design rainfall and flood AEP information have been changed on five occasions since 1977. Modelling techniques have also changed and this also impacts on AEP estimations.
- Across the listed reports the implied AEP for the January 2011 Flood Event ranges between 1 in 200 and 1 in 2000.
- The January 2011 Flood Event is represented by two individuablfoods, with peak inflows from each flood greater than $10000 \mathrm{~m}^{3} / \mathrm{s}$, separated b b $\$ 30$ hours. The probability of two such flood peaks occurring within 36 houss of each other is considered to be appreciably uncommon and would impact on the AEP of the event.
- An event with a hydrograph similar to the January 2011 Flood Event has not been modeled in any report listed. This is because reports consider idealised storms and historical events and an event similar in nature to the January 2011 Flood Event has never been recorded.

Co-ordinators General Department (1971)F Hure Brisbane Water Supply and Flood Mitigation, Report on Proposed Dam on Xhe Brisbane River at Middle Creek or alternatively at Wivenhoe and Flood Mitigation for' B_{f} isbane and Ipswich, Queensland Co-ordinator Generals Department, June 1971

SMEC (1975), Brisbane River Flood Investigations Final Report, Snowy Mountains Engineering Corporationfor the Cities Commission, November 1975.

Co-ordinators Geacral Department (1977), A Comprehensive Evaluation of the Proposed Wivenhoe Damon the Brisbane River, Queensland Co-ordinators General Department, June 1977.

IWSC (4977), Wivenhoe Dam Assessment of Yields and Flood Magnitudes, Irrigation and Water 'Supply Commission, Surface Water Branch Hydrology Report 143005.PR, September 1077.

QWRC (1983), Wivenhoe Dam Design Flood Study, Queensland Water Resources Commission, Water Resources Division, Hydrology Report 143005.PR/3, May 1983.

BCC and QWRC (1985), Hydrology Report for Manual of Operational Procedures for Flood Mitigation for Wivenhoe Dam and Somerset Dam. Brisbane City Council and Queensland Water Resources Commission, January 1985.

DNR (1993a), Brisbane River Flood Hydrology Report - Design Flood Estimation.
Department of Natural Resources, Report Number 8a, 8b, 8c and 8d, March 1993.

DNR (1993b), Brisbane River Flood Hydrology Report - Downstream Flooding. Report Number 13, August 1993.

DPI, Water Commercial (1995), Wivenhoe Dam Design Report, Queensland Department Primary Industries, Water Commercial, September 1995.

Gutteridge Haskins and Davey Pty Ltd (1997), Wivenhoe Dam Report on the Seffy Review (Draft), April 1997.

Sinclair Knight Merz and Hydro Consulting Hydro Electric Corporation(2000), Preliminary Risk Assessment Wivenhoe, Somerset and North Pine Dams, March 2000.

AGSO - Geoscience Australia in conjunction with the Burequ of Meteorology (2001), Natural Hazards and the risks they pose to South East Queensland.

SKM (2003) Report, Further Investigations of Hydrology and Hydraulics Incorporating Dam Operations and CRC Forge Rainfall Estimated (Draft), August 2003.

Independent Review Panel (2003), ReVliew of Brisbane River Flood Study. Report to Brisbane City Council, Independent Review Panel, September 2003.

Wivenhoe Alliance (2004) Design Discharges and Downstream Impacts of Wivenhoe Dam Upgrade, Wivenhoe Alliapoe Report Number Q1091, February 2004, Brisbane.

SunWater (2006), Assessment of the Flood Impacts of Raising the Full Supply Level in Wivenhoe Dan? SunWater Report G-70001-04-01, March 2006

SunWater (2007), Assessment of Wivenhoe Dam Flood Impacts, SunWater Report Decêmber 2007.

Seqwater (2009), Somerset-Wivenhoe Interaction Study, October 2009.
(
$(1$

EXECUTIVE SUMMARY

Somerset Dam and Wivenhoe Dam are located in the Brisbane River Basin. The Dams are dual-purpose storages that provide urban water supplies (including drinking water) to South East Queensland as well as flood mitigation benefits to areas impacted by flood flows along the Brisbane River below Wivenhoe Dam.

In the 25 days prior to Thursday 6 January 2011, above-average levels of rainfall were received in the Dam Deleted: four weeks catchment areas and the Dams successfully operated as flood mitigation dams on a number of occasions during this period. Further rain fell in the Dam catchments on Thursday 6 January 2011, leading to another mobilisation of Seqwater's Flood Operations Centre The rainfall continued in various parts of the Brisbane River Basin until Wednesday 12 January 2011, resulting in the largest inflows into both Dams ever recorded. During this time, and for a period following the peak of the floods, the Dams were operated as flood mitigation storages in accordance with The Manual of Operational Procedures for Flood Mitigation at Wivenhoe Dam and Somerset Dam (Revision 7) ("the Manual"). The Manual defines the objectives and procedures for 15 operating Somerset Dam and Wivenhoe Dam during flood events. An understanding of the Manual is important when reading this Report.

The January 2011 Flood Event, which impacted the Dams between Thursday 6 January 2011 and Wednesday 19 January 2011, can be categorised, as a large (Annual Exceedance Probalifity of 1 in 100) to rare (Annual Exceedance Probability of 1 in 2,000 years) event as defined by Australian Rainfall and Runoff (Book 6) (AR\&R). Studies associated with the design and operation of Wivenhoe Dajt that date back to 1971 indicate a flood of this magnitude would be expecied to result in urban damage below Moggill. The Wivenhoe - Somerset Interaction Study, which was prepared to support the 2009 review of the Manual, is the most recent investigation undertaken that supports this expectation.

Deleted: is
Deleted: that
Deleted: defined
Deleted: in the range of la
Deleted: 1 in 100
Deleted: years
Deleted: in accordance with
Deleted: ,
Deleted: that
Deleted: II

Flood events that impact Somerset Dam and Wivenhoe Damapecaused by rainfall events that vary in intensity, duration and distribution over a catchment area exceeding $7,000 \mathrm{~km}^{2}$ above the Dams. When

mackground

 making decisions about releasing water from the Dams during flood events, consideration is also given to rain falling in Brisbane River catchment areas not controlled by the Dams. These catchment areas, which include the Lockyer Creek and Bremer River catchments, cover an area in the order of $7,000 \mathrm{~km}^{2}$ and rain falling in these catchments will also vary in intensity, gutation and distribution. Accordingly, the Manual must account for an infinite number of flood event scenarios;The current ability of the Bureau of Meteorology to (BoM) to provide rainfall forecasts for the Dam catchment areas is not sufficiently accurate tanake operational decisions of releases from the Dams. A degree of uncertainty exists in all weather orecasts, particularly rainfall forecasts, and the longer the forecast lead times the greater the degree of uncertainty of the forecast

As it is not possible toptovide a specific procedure for Dam operation during every possible flood event, the Manual takes the aboroach of providing objectives and strategies to guide operational decision-making during a flood event. Thia objective followed and strategy chosen at any point in time depends on the actual water
levels in the Eqarfis ${ }_{2}$ as well as flood modelling predictions based on the best observed rainfall forecast rainfall

Deleted: level of forecasting technology does not make it possible for the Bureau of Meteorology
Deleted: completely accurate
Deleted: further forward in time forecasts are provided
Deleted: there is Deleted: and and streaph flow information available at the time.

It is siot possible to predict the range of objectives and strategies that will be used during the course of a flood evedt, before or at any time during the event, prior to the event peak. Objectives and strategies change as Gfood events progress, as rainfall is received in the catchment and as forecast rainfall amounts change. For $\Sigma_{\text {small floods, objectives and strategies relate to minimising flood impacts in rural areas, while as the scale of }}$ the flood increases, the emphasis changes to protecting urban areas and maintaining the structural safety of the Dams.

The primary objectives of the Manual ${ }_{1}$ in order of importance ${ }_{2}$ are:

- Ensure the structural safety of the Dams;
- Provide optimum protection of urbanised areas from inundation;
- Minimise disruption to rural life in the valleys of the Brisbane and Stanjey Rivers;
- Retain the storage at Full Supply Level (FSL) at the conclusion of the flood event;
- Minimise impacts to riparian flora and fauna during the drain down phase of the flood event.
| While ensuring the Dams are operated during flood events wwithin these objectives, Seqwater's duty of care to the public is also a primary consideration when making flood releases from the Dams. Every attempt is made
....- Deleted: always operating to ensure public roads are closed prior to inundation by Dam ouflows and that authorities are provided with enough time to prepare for community isolations and to undertake evacuations. These actions are in accordance with draft Communication Protocol prepared by the Deparlment of Environment and Resource Management to to ensure information is effectively communicated to the public during flood events impacting the Dams. Every attempt is also made to ensure urban damage is minimised and that Dam outlows with the ${ }_{\square}$ potential to contribute to urban damage are detayed until it is apparent no other options are available withours) risking the safety of the Dams.

It is also important to note that, under the Manual's current operating rules, bath Somerset Dam and Wivenhoe Dam are expected to fail during the Probable Maximum Flood, if such an event ever gecurs.

Significance of the January 2011 Flood Event

The January 2011 Flood Event has been defined as a large to rare event by AR\&R Nhe Institution of Engineers Australia (Engineers Australia) national guidelines for the estimation of fodesign flood characteristics The flood level classifications adopted by the BoM define the Event as a majer flood. Relevant statistics that demonstrate this are:

- Rainfall recorded in the catchment area above Wivenhoe Dam indigates the catchment average rainfall intensity for the 72 -hour period to Tuesday 11 January 2011 19 19000 had an Annual Exceedance Probability (AEP) between 1 in 100 and 1 in 200 , The catehnent average rainfall intensity for the 120 hour period to Tuesday 11 January 2011 at 19:00 also had an AEEP between 1 in 100 and 1 in 200 At some individual rainfal stations within the Brisbane River chlohment, rainfall estimates beyond the credible limit of extrapolation (AEP of 1 in $2,00 Q$ were recorded for durations between 6 hours and 48 hours.
- On the morning of Tuesday 11 January 2011 Water levels in Wivenhoe Dam began rising rapidy in response to very heavy localised rainfall in ind area immediately upstream of the Dam. At the time, the BoM radar indicated this rain was located in an area which did not have any real time rain gauges. Post flood analysis suggests the rainfall required to reproduce this rise could exceed an AEP of 1 in 2,000 and may be well into the extreme categgory. Rainfall of this intensity and duration over the Wivenhoe Dam lake area at such a critical stage of the Flood Event was unprecedented.
- The volume of total inflowinto Wivenhoe Dam during the Event was $2,650,000 \mathrm{ML}$. This volume has been calculated to be almost (youble (190%) the comparable volume of inflow from the January 1974 flood event, and comparable with the flood of 1893.
- The ninlow int Wow enhoe Dain during the Event is characterised py two distinct flood peaks, with each peak separated by about 30 hours. The maximum flow rate at the first peak is estimated to be around 200% of the comparable flow rate calculated from the January 1974 event, while the maximum flow rate at the secorid peak is estimated to be approximately 230% of the comparable flow rate from the January 1974 event (Source of January 1974 flow: Brisbane River and Pine River Flood Study, October 1994, Report No. 23a).

The peak water level recorded at many gauges in the Brisbane River, including the Brisbane City gauge exceeded the major flood level.

Operations during the January 2011 Flood Event

1. During the January 2011 Flood Event, operational decisions were made in accordance with the Manual. Dam outflows contributing to downstream flooding were delayed until it was apparent no other option was available, without risking the safety of Wivenhoe Dam.
2. Two distinct flood peaks entered Wivenhoe Dam during the Event. The first flood into Wivenhoe Dam was similar in nature and magnituge to the comparable flood flows of the January 1974 event. The combined mitigation effect of Somerset and Wivenhoe Dams ensured this first flood did not result in urban damage below Moggill, however, achieving this result did cause significant filling of the Dams' flood storage compartments.
3. The second flood was also similar in nature and magnitude to the comparable flood flows of the Januak ${ }^{\text {a }}$...... Deleted: g 1974 event. Rainfall which occurred directly on and near the Wivenhoe Dam lake area contributed to the second flood. Post flood analysis suggests the intensity of this rainfall could have exceeded an AEPROf 1 in 2,000 and may be well into the extreme category. The location of this rainfall on and near thepam also reduced avallable mitigation options.
4. Due to the level to which the flood compartments were filled by the first flood, the second tlood could not

	Deleted: separate
	Deleted: January 2011 Flood g

	Deleted: g
	Deleted: Contributing to the eecond flood was r

Rainfall forecasts in the eafly stages of the Event did not support flood releages being made from Wivenhoe Dam, greater than those that actually occurred. An increase to flood releases in the later stages of the Event (prior to the morning of Tuesday 11 January 2011) had the potential toditcrease urban damage, due to the possible southward movement of the prevailing weather system. Hadthe rainfall on Tuesday 11 January 2011 largely fallen in catchments downstream of the Dam, the topsition to an operating strategy to protect the safety of the Dam may have been avoided ${ }_{s}$ however, urban (a) aage would have likely increased under this scenario, due to a lack of the mitigation effects that wouldfave been provided by the Dam.

Given the current level of forecasting technology available, there was an extremely high degree of difficulty in predicting the actual quantity, intensity and spatiod distribution of the Event rainfall. This resulted in a high level of uncertainty in predicting the likely Darm maflows in advance of rainfall on the ground and is demonstrated by the three-day and five_day forecast rainfall model results.

The available recorded data shows , fhe vanuary 2011 . Flood Event was unprecedented in the history of Somerset and Wivenhoe Dams and rivals the largest floods in the recorded flood history of the region. However, the successful operation of the Dams as flood mitigation storages is considered to have had a major effect on reducing the flood darmages in the areas downstream of the Dams.

Flood mitigathe benefits of Somerset Dam and Wivenhoe Dam

Wivenhoe Dam provided clear and greatly significant flood mitigation benefits during the January 2011 Flood
Event ${ }_{x}$ as demonstrated below:

- Figure 9.1.2 demonstrates the significant mitigation benefits of Wivenhoe Dam during this Flood Event. Whe peak of the oufflow from the Dam was approximately 40% lower than the peak of the inflow, meaning That just below the Dam, the maximum hourly flow rate in the Brisbane River was reduced by around 40%.

\square

The significant conclusions drawnfram the information contained in this Report include:

- During the January 2011 food Event, Somerset Dam and Wivenhoe Dam were operated in accordance with The Manual of QReritional Procedures for Flood Mitigation at Wivenhoe Dam and Somerset Dam (Revision 7).
- The data collgctor and flood modeling systems used to support decisions made during the Event performed well and assisted informed decision-making, in accordance with the Manual.
- BoM ralinfall forecasts did not support the additional release of flood water early in the Event.
- Durng the Event, Seqwater followed the Department of Environment and Resource Management's draft Communications Protocol, which was compiled after the October 2010 flood event. This Protocol was developed to ensure effective communication between local, State and Commonwealth agencies impacted by the release of lloodwater from the Dams.
- The January 2011 Flood Event was an extremely large and rare flood event. The combined effects of Somerset Dam and Wivenhoe Dam did reduce flood damages downstream ${ }_{1}$ however, they could not fully mitigate the impacts of the Event without putting the safety of the Dams at risk.
- Studies associated with the design and operation of Wivenhoe Dam dating back to 197 indicate a flood of the magnitude of the January 2011 Flood Event would be expected to result in urban damage below Moggill.
- The combined effects of Somerset Dam and Wivenhoe Dam provided clear and significant flood mitigation

Deleted; that
Deleted: e
Deleted: ,
Deleted: that
Deleted: greatly
Deleted: \mathbb{T}

TABLE OF CONTENTS

Report

Executive summary X
1 Introduction X
1.1 Preface
1.2 Meaning of terms
1.3 Background
1.4 Wivenhoe Dam
1.5 Somerset Dam
1.6 Operating Somerset Dam in conjunction with Wivenhoe Dam
... -
2 Flood event summary X
2.1 Summary of the January 2011 Flood Event

\qquadFlood event descriptionX
3 Event mobilisation and staffing X
3.1 Catchment conditions at Event commencement4
3.2 Event mobilisation3.3 Qualifications of staff on duty9
3.4 Flood Operations Centre staffing

\qquad
4 Flood Event procedures X
4.1 Introduction
4.2 Flood Operations Centre preparedness
O4.3 Flood Operations Centre mobilisation
4.4 Flood Operations Centre operations.ह\%
4.5 Somerset Dam and Wivenhoe Dam preparedness
4.6 Somerset Dam and Wivenhoe Dam modsilisation
4.7 Somerset Dam and Wivenhoe Dancoperations
5 Data collection system performanee X
5.1 Background
5.2 Field station description
5.3 Network maintenance
6 Event data X
6.1 Introduction
6.2 Forecast rainfall
6.3 Event rainfall totals
6.4 Event rainfall temporal patterns
6. Event water levels
6.6 Dam inflows and outflows
6.7 Other data sources
7 Flood model validity and performance X
7.1 Background
7.2 Model description
7.3 Model performance during the Event
8 Preliminary assessment of Event magnitude
8.1 Introduction
8.2 Rainfall depth and intensity comparison
8.3 Rainfall Intensity Frequency Duration analysis
8.4 Catchment rainfall IFD analysis
8.5 Comparison of flood volumes
8.6 Comparison of flood levels
8.7 Flood frequency analysis
8.8 Design flood comparisons
8.9 Impact of intense rainfall occurring on Tuesday 11 January 2011
8.10 Wivenhoe Dam and Somerset Dam flood mitigation in Brisbane City
8.11 Conclusion.
9 Dam inflow and flood release details X
9.1 Wivenhoe Dam
9.2 Somerset Dam
9.3 Inflow Volumes
10 Flood management strategies and manual compliance X
10.1 Manual objectives.
10.2 Wivenhoe Dam flood mitigation strategies10.3 Somerset Dam flood mitigation strategies10.4 Wivenhoe Dam - Manual compliance
10.5 Somerset Dam - Manual compliance
11 Event communication processes X
Flood event review. X
12 Review of data collection systems X
12.1 Review of data collection system derformance during the Event
12.2 Future of the data collection system
13 Review of Flood Operations Gentre personnel and staffing X
13.1 Flood Operations Engineers13.2 Flood Officers
14 Review of Damsite personnel and staffing X
15 Review of flood modelling systems X
15. Review of system performance during the Event
15.2 Future of the RTFM
16 Review of the Manual's objectives and strategies X
16.1 The Manual
16.2 Manual objectives
16.3 Manual strategies
17 Review of Wivenhoe Dam Full Supply Level X
18 Review of agency interaction X

TABLE OF CONTENTS

Flood event outcomes X
19 Report conclusions X
20 Report recommendations X

TABLE OF CONTENTS

Appendices

Appendix 1
Appendix A - Model Results X
Appendix B - Flood Volume Summary X
Appendix C-Quantitative Precipitation Forecasts
Appendix D - Catchment Rainfall x
Appendix 2Appendix E-Situation Reports. X
Appendix F - Communication Protocol Technical Situation Reports. X
Appendix G - Severe Weather Warnings X
Appendix H - Flood Event Notification Email X
Appendix I - Flood Readiness Checklists X
Appendix J - Forecast rainfall comparison X
Appendix 3
Appendix K - 3-Day Assessments and Model Results X
Appendix L - Flood Operations Directives X
Appendix M - Flood Event Log X
Appendix N - Flood Operations Engineers Resumes X
Appendix O-Hourly Rainfall Tables X
Appendix P - Rainfall Intersity Frequency Duration X
Appendix 4 X
Appendix $Q \&$ Rẹcorded Height Hydrographs
Appendix R - Ratings X
Appendix S - Model Calibration Runs X
Appendix T-Rainfall Station Temporal Patterns X
Appendix U - Wivenhoe Dam Hydrology Reports X

List of tables and figures

Executive summary

Flood mitigation benefits of Somerset Dam and Wivenhoe Dam
Figure 9.1.2 - Wivenhoe Dam inflow and release summary for the January 2011 Flood Event
1 Introduction
1.4.1 Wivenhoe Dam infrastructure - arrangement of radial gates
1.4.2 Submergence flows for bridges
1.5.1 Somerset Dam infrastructure - arrangement of radial gates, sluice gates and regulator valves
1.6.1 Wivenhoe/Somerset Operating Target Line.

3 Event mobilisation and staffing
3.1.1 Outflow from three separate flood events, commencing December 2010
3.4.1 Flood Operations Centre staffing - Flood Operations Engineers
3.4.2 Flood Operations Centre staffing - Flood Officers.
3.4.3 Flood Operations Centre staffing - Somerset Dam and Wivenhoe Dam Operatis

Flood Event procedures

4.1.1 Relationship between the Flood Procedure Manual and The Manustof Operations Procedures for Flood Mitigation at Wivenhoe Dam and Somerset Dam

4.1.2 Location of controlled hardcopies of the Seqwater Flood Proeedure Manual

Data collection system performance

5.2.1 Seqwater rainfall station network as at January 20. 1
5.2.2 Seqwater water level network as at January 2011
5.2.3 Rainfall gauges marked out of action or suspect at Flood Event commencement
5.2.4 Water level gauges marked out of action suspect at Flood Event commencement
5.2.5 Additional rainfall gauges marked ontof action or suspect during the Flood Event.
5.2.6 Additional water level gauges madked out of action or suspect during the Flood Event
5.2.7 Number of readings received fiom each rainfall and water level gauge in the ALERT network

Event data

6.2.1 Actual and forecastrainfall comparison (BoM QPF)
6.2.2 Actual and forecast rainfall comparison (BoM ACCESS model).
6.3.1 Daily rainfath totals by station for the duration of the January 2011 Flood Event
6.3.2 Rainfall in the 24 hours to 09:00, Wednesday 5 January 2011
6.3.3 Rainfatly in the 24 hours to 09:00, Thursday 6 January 2011
6.3.4 Rainfall in the 24 hours to 09:00, Friday 7 January 2011
6.3.5 Rainfall in the 24 hours to 09:00, Saturday 8 January 2011
6.3.6 Rainfall in the 24 hours to 09:00, Sunday 9 January 2011
$6,3$. In 7 Rainfall in the 24 hours to 09:00, Monday 10 January 2011
6.3:8 Rainfall in the 24 hours to 09:00, Tuesday 11 January 2011
6.3.9 Rainfall in the 24 hours to 09:00, Wednesday 12 January 2011
6.3.10 Rainfall in the 24 hours to 09:00, Thursday 13 January 2011
6.3.11 Rainfall in the six days to 09:00, Thursday 13 January 2011
6.3.12 Daily rainfall throughout the total Wivenhoe Dam catchment (excluding Somerset Dam catchment)
6.3.13 Catchment rainfall in the eight days to 09:00, Thursday 13 January 2011
6.3.14 Stanley River average hourly rainfalls
6.3.15 Upper Brisbane River average hourly rainfalls
6.3.16 Middle Brisbane River average hourly rainfalls
6.3.17 Lockyer Creek average hourly rainfalls
6.3.18 Bremer River average hourly rainfalls
6.3.19 Lower Brisbane River average hourly rainfalls
6.3.20 Significant hourly rainfall totals
6.4.1 Hourly rainfall totals recorded between 03:00 and 15:00, Tuesday 11 January 2011
6.5.1 Peak heights recorded at automatic gauging stations during the January 2011 Flood Event
6.5.2 Gauge height, Stanley River at Woodford
6.5.3 Gauge height, Somerset Dam
6.5.4 Gauge height, Brisbane River at Gregors Creek
6.5.5 Gauge height, Wivenhoe Dam, 6-20 January 2011
6.5.6 Gauge height, Wivenhoe Dam 11-13 January 2011
6.5.7 Gauge height, Lockyer Creek at Lyons Bridge
6.5.8 Gauge height, Brisbane River at Savages Crossing
6.5.9 Gauge height, Bremer River at Walloon
6.5.10 Gauge height, Warrill Creek at Amberley
6.5.11 Gauge height, Bremer River at Ipswich
6.5.12 Gauge height, Brisbane River at Moggill
6.5.13 Gauge height, Brisbane River at Port Office
6.5.14 Gauge height, Brisbane River at Whyte Island
6.6.1 Summary inflows and outflows for Somerset and Wivenhoe Dams
6.6.2 Somerset Dam water levels, January 2011 Flood Event
6.6.3 Wivenhoe Dam water levels, January 2011 Flood Event
Flood model validity and performance
7.2.1 RTFM Regions

\qquad
7.2.2 RTFM Region statistics
7.2.3 Region runoff-routing parameters
7.2.4 Upper Brisbane River inflow to Wivenhoe Dam
7.3.1 Region loss rate estimates at 5 January 2011.
7.3.2 Region loss rates (final) January 2011
7.3.3 Preserved model runs, January 2011 Flood Event.
7.3.4 Model run naming convention 5
7.3.5 Comparison of model estimates
7.3.6 Model run peak flow and flood volume values
Preliminary assessment of Eventmagnitude
8.1.1 Annual Exceedance Probability (AEP)
8.2.1 Queensland Rainfall (nin), December 2010
8.2.2 Comparison of daily Gatchment average rainfalls (mm); January 1974, February 1999 and January2011
8.2.3 Comparison of rainfall totals for selected durations (mm); January 1974, February 1999 and January2011
8.2.4 Comparison of Somerset Dam catchment rainfall patterns (mm/hr); January 1974, February 1999 andJanuary 2011
8.2.5 Conrparison of Wivenhoe Dam catchment rainfall patterns ($\mathrm{mm} / \mathrm{hr}$); January 1974, February 1999 and January 2011
8.3.1. Rainfall stations IFD analysis
$8 \leqslant 2$ Highest AEP rainfall intensities, January 2011 Flood Event
8,3.3 Rainfall intensity, Gregors Creek
8.3.4 Rainfall intensity, Cooyar Creek
8.3.5 Rainfall intensity, Glenore Grove
8.3.6 Rainfall intensity, Toowoomba
8.3.7 Rainfall intensity, Lowood
8.3.8 Rainfall intensity, Bellthorpe West
8.4.1 Rainfall intensity, Somerset Dam
8.4.2 Rainfall intensity, Wivenhoe Dam (excluding Stanley River)
8.4.3 Rainfall intensity, Wivenhoe Dam (including Stanley River)
8.5.1 Recent and historical event flood volumes in the Brisbane River at Wivenhoe Dam
8.6.1 January 2011 peak water levels compared with other historical floods
8.7.1 Flood frequency analysis, Linville
8.7.2 Flood frequency analyșis, Gregors Creek
8.8.1 Wivenhoe Alliance report, design inflow and outflows
8.9.1 Impact of scaled rainfall on the upper Brisbane River inflow to Wivenhoe Dam
8.9.2 Recalculated inflows to Wivenhoe Dam
8.10.1 Comparison of modelled flood scenarios
8.10.2 Impact of Somerset and Wivenhoe Dams at Brisbane Port Office, showing estimated flow
8.10.3 Impact of Somerset and Wivenhoe Dams at Brisbane Port Office, showing peak height
8.10.4 Duration of flooding above the flow threshold.

Dam inflow and flood release details

9.1. Wivenhoe Dam inflow and release data for the January 2011 Flood Event
9.1.2 Wivenhoe Dam inflow and release summary for the January 2011 Flood Event
9.2.1 Somerset Dam inflow and release data for the January 2011 Flood Event
9.2.2 Somerset Dam inflow and release summary for the January 2011 Flood Event
9.3.1 Event inflow volume,
9.3.2 Total Event inflow volume.

Flood management strategies and Manual compliance

10.2.1 Somerset Dam operating conditions for flood strategy S2.
10.2.2 Strategy S2, Wivenhoe / Somerset Operating Target Line \qquad
10.3.1 Wivenhoe Dam operating strategies for the January 2011 Flood Fvent, in compliance with the Manual \qquad
10.4.1 Somerset Dam levels as tracking against the Wivenhoed Somerset Operating Target Line for the January 2011 Flood Event
10.4.2 Somerset Dam operating strategies for the January 2011 Flood Event, in compliance with the Manual
10.4.3 Wivenhoe / Somerset Operating Target Line throughout the January 2011 Flood Event. \qquad

Event communication

11.1.1 Timing of information provided by Equater to BoM and Brisbane City Council around floodwater releases

1 INTRODUCTION

1.1 Preface

Given the potential significant impact on downstream populations and properly, it is imperative Somerset and Wivenhoe Dams are operated during flood events in accordance with clearly defined and pre-determined procedures. The current procedures are contained in Revision 7 of The Manual of Operational Procedures for Flood Mitigation at Wivenhoe Dam and Somerset Dam ("the Manual") that was gazetted in January 2010. The Manual is an approved flood mitigation manual under the Queensland Water Supply (Safety and Reliability) Act 2008. An understanding of the Manual is important when reading this Report.

The Manual requires the owner of Somerset and Wivenhoe Dams (currentiy Seqwater) to prepare a report after each flood event impacting the Dams. A flood event is defined as a situation where either Somerset and or Wivenhoe Dams exceed their Full Supply Level (FSL) and flood water releases are made. The reportmust contain details of the procedures used during the flood event, the reasons why procedures were used nㅠㅇ other pertinent information. Seqwater must forward the report to the Director-General of the Departpent of
 Environment and Resource Management (DERM) within six weeks of the completion of the floode ment.

This document and its associated volumes comprise the required report relating to the Jangaty 2011 Flood
Event, which jmpacted Somerset and Wivenhoe Dams commencingon Thursday 6 Japuary 2011 and concluding on Wednesday 19 January 2011. It is due for submission by Wednesdax 2 March 2011.

1.2 Meaning of terms

In this report, the following terms are defined as below:
"Act" means the Water Supply (Safety and Reliability) Act 2008;
"AEP" means annual exceedance probability, the probability "a specified event being reached or exceeded
Deleted: n
in any one year. This may be expressed as a ratiq (e.g. 1 in Y) or a percentage;

Deleted:
Deleted: ing
Deleted: that
Deleted: ed
Deleted: ed
Deleted: I I

"Agency" includes a person, a local government arde department of state government within the meaning of the Acts interpretation Act 1954;
"AHD" means Australian Height Datum;
| "ALERT" means Automated Locale valuation in Real Time System a system of monitoring and displaying
 rainfall and water level data. It isq combination of field stations, communications networks and data collection software;
"AMTD" means the Adepted Middle Thread Distance, which is the distance along the centre line of the

| "Chief Executive" means the Director-General of the Deparment of Environment and Resource

Management or nominated delegate;
"Controlled Document" means a document subject to managerial control over its contents, distribution and
storage. It may have legal and contractual implications;
"Dams" means Somerset Dam and Wivenhoe Dam;
| "Dam Crest Flood" means the flood event which, when routed through the storage with the storage initially at Full Supply Level, results in the still water level in the storage reaching the lowest point in the dam embankment, excluding wind and wave effects:
"Dam Supervisor" means the senior on-site officer at Somerset or Wivenhoe Dam as the case may be;
"DERM" means the Queensland Government department, the Department of Environment and Resource Management;
"Duty Flood Operations Engineer" means the Senior Flood Operations Engineer or Flood Operations Engineer rostered on duty to be in charge of Flood Operations at the Dams;
"EL" means elevation in metres Australian Height Datum;
"Enviromon" is the Bureau of Meteorology data collection software used to collect and display rand li and water level data; "ERRTS" means Event Reporting Radio Telemetry System;

"Flood Event" is a situation where the Duty Flood Operations Engineer expects the Water level in either of the Dams to exceed the Full Supply Level;
| "FLOOD Col" is the data collection software used in the Flood Operations centre to collect and display \qquad Deleted; Flood rainfall and water level data;
| "FLOOD .Ops" is the modelling software used in the Flood Opera, Deleted: Flood catchments;
\mid "Flood 'Operations Centre" means the office locationsesed by Flood Operations Engineers during a Flood \qquad Deleted: centre Event to manage the Event;
"Flood Operations Engineer" means a personxdesignated to direct flood operations at the Dams in accordance with Section 2.4 of the Manual
"Flood Operations Engineers" means the collective group of persons who individually have designation as either a Flood Operations Engineer or a Senior Flood Operations Engineer:

Flood Operations Manager' means the Flood Operations Engineer responsible for the overall management of the Flood Operations Centre leading up to or during a Flood Event.

Comment [MSOffice1] John correct
"FSL" or "Full Supply Level" means the level of the water surface when the reservoir is at maximum operating levels excluding periods of flood discharge;
"Gauge" When referred to in (m) means river level referenced to AHD or a local datum, and when referred to in $\left(\mathrm{m}^{3} / \mathrm{g}\right)$ means flow rate in cubic metres per second;

> "Rि" means Intensity Frequency Duration and refers to the statistical analysis of rainfall intensities;
> "Manual" or "Manual of Operational Procedures for Flood Events at Wivenhoe Dam and Somerset Dam" means the current version (Revision 7) of the Manual;
> " $\mathrm{m}^{3} / \mathrm{s}$ " means a rate of water flow being one cubic metre of water per second or 1,000 litres of water per second;
"OOA" means 'out of action' in relation to the operation of a rainfall or river height gauge that provides \qquad Formatted: Font color: Auto catchment data;

"Operating Target Line" means the Wivenhoe/Somerset Operating Target Line from Strategy S2 of the Manual;

"Power Station" means the Wivenhoe pumped storage hydro-electric power station associated with
Wivenhoe Dam and Splityard Creek Dam;
"Protocol" means draft Communication Protocol prepared by DERM to to ensure information is effectively communicated to the public during flood events impacting Somerset Dam and Wivenhoe Dam.
"QPF" means Quantitative Precipitation Forecast provided by the Bureau of Meteorology and is an estimate of the predicted rainfall in millimetres, usually in the next 24 hours;
| "RTFM" means Real Time Flood Model and is a combination of Flood_Col, Flood_Ops and other ancillaty) software;
"SD" means State Datum, which is a level height datum that is different from AHD.
"Senior Flood Operations Engineer" means a person designated in accordance with Sestion 2.3 of the Manual under whose general direction the procedures in the Manual must be carried oft;
"Seqwater" means the Queensland Bulk Water Supply Authority trading as Sequater;
"URBS" means Unified River Basin Simulator.

Note: Dam levels in this document represented as metres (m) are tmetres Australian Height Datum (m AHD).

1.3 Background

The primary objectives of the procedures containedinathe Manual in order of importance ${ }_{1}$ are:

1. Ensure the structural safety of the Dams;
2. Provide optimum protection of urbanised areas from inundation;
3. Minimise disruption to rural life in the valleys of the Brisbane and Stanley Rivers;
4. Retain the storage at Full Supply Level (FSL) at the conclusion of the flood event;
5. Minimise impacts to riparfah flora and fauna during the drain down phase of the flood event.

In meeting these objeglives, the Dams must be operated to account for the potential effects of closely spaced flood events. Normaloperating procedures require stored floodwaters to be emptied from the Dams within seven days of the flood event peak passing through the Dams. During flood events, Somerset Dam and Wivenhoe Daphare operated in conjunction to maximise the overall flood mitigation capabilities of the two Dams. 1
Wivenhoe Dam is a dual_purpose storage facility that provides urban water supplies (including drinking water)
to South East Queensland, as well as flood mitigation benefits to areas impacted by flood flows along the
Brisbane River below the Dam. Depending on the origin, magnitude and spatial extent of the flood, Wivenhoe
Dam can be operated in a number of ways to reduce flooding downstream of the Dam. Maximum overall flood
mitigation can be achieved by operating Wivenhoe Dam in conjunction with Somerset Dam.
The capacity of the urban water supply compartment that relates to Wivenhoe Dam's FSL is $1,165,000 \mathrm{ML}$............. Deleted:
The reservoir volume above the FSL that is used as temporary flood storage is $1.450,000 \mathrm{ML}$. How much of
this flood storage compartment is utilised during a flood event depends on the initial reservoir level below the FSL, the magnitude of the flood being regulated and the procedures adopted.

Radial gates and an auxiliary spillway are the primary infrastructure used to release water during flood events at Wivenhoe Dam. The arrangement of the radial gates is shown in Figure 1.4.1.

Figure 1.4 .1 - Whenoe Dam infosinuture - anengement of radiol gates
An auxiliary spillway was constructed in 2005 às part of an upgrade to improve Wivenhoe Dam's flood adequacy The auxiliary spillway consists of a three bay fuse plug spillway at the right abutment In association with other constructions,ạthe Dam, the spillwavgives the Dam Crest Flood an AEP of approximately 1 in 100,000 years:

Deleted; the
Deleted: immunity
Deleted: is

Once a flood event is declargi, the magnitude of the event is assessed by predicting:

- The maximum storage levels in Somerset and Wivenhoe Dams;
- The peak flow rate at the Lowood gauge, excluding Wivenhoe Dam releases;
- The peakeflow rate at the Moggill gauge, excluding Wivenhoe Dam releases.

Accordng'to the Manual the spillway gates are not to be opened for flood control purposes prior to the \qquad resenioir level exceeding 67.25 m .

The strategies contained in the Manual require significant control over Dam releases to be exercised, as well as knowledge of flows into the Brisbane River from both Lockyer Creek and the Bremer River, below Wivenhoe Dam.
in small floods, releases are controlled to ensure the combined flow from Lockyer Creek and Wivenhoe Dam is less than the limiting values contained in the strategies, to delay the submergence of bridges and to minimise disruption to rural life in the Brisbane and Stanley River valleys. Figure 1.4 .2 shows the location of bridges impacted by Dam releases and the approximate river flow rate at which they are closed to traffic.

* Note: Colleges Crossing is also affected by tides
egure 14 . - submergence finve for bidges

During larger floods, releases from Wivenhoe Dam are controlled to protect urbanised areas from inundation. The releases arelcóntrolled so the combined flows from Wivenhoe Dam, Lockyer Creek and the Bremer River are either mindisised or kept below the threshold level for urban damage which is $4,000 \mathrm{~m}^{3} / \mathrm{s}$ at Moggill.

Deleted: the
Deleted: is

(
In largeflood events, releases from Wivenhoe Dam are also controlled to ensure the structural safety of the Damisnot put at risk of failure.
15 Somerset Dam Deleted: \mathbb{T}

1.5 Somerset Dam

Somerset Dam is able to be operated in a number of ways to regulate the flood level of Stanley River. Somerset and Wivenhoe Dams are to be operated in conjunction to optimise the flood mitigation benefits downstream of Wivenhoe Dam. Radial gates, sluice gates and regulator valves are the primary infrastructure used to release water during flood events at Somerset Dam. The arrangement of this infrastructure is shown

\cdot

1.6_Operating Somerset Dafitin conjunction with Wivenhoe Dam

The strategies used to operate Somerset'Dam during a flood event are intended to maximise the benefits of the flood storage capabilities of the parm while protecting the structural safety of both Somerset and Wivenhoe
| Dams. To achieve this, a Wivenhoe/Somerset Operating Target Line (Figure 1.6.1) is used to set a goal for balancing the use of the flogostorage in each Dam.

The Wivenhoe/Somersely perating Target Line was selected based on the following factors:

- Equal minimisation of flood level peaks in both Dams in relation to their associated faliure levels;
- Minimisationof flows in the Brisbane River downstream of Wivenhoe Dam;
- Consideration of the time needed at the onset of a flood event to properly assess the magnitude of the flood, event and the likely impacts. This is to ensure the likely optimal strategy to maximise the flood fikigation benefits of the storages can be selected.

The target point on the Operating Target Line at any point in time is based on the maximum storage levels in Somerset and Wivenhoe Dams, using the best forecast rainfall and stream flow information available at the time. Gate operations enable the progressive movement of the duty point towards the target line. It is not necessarily possible to adjust the duty point directly towards the target line in a single gate operation.

OPERATING TARGET LINE

2.1 Summary of the January 2011 Flood Event

The following summary must be read in conjunction with The Manual of Operational Procedures for Flood Mitigation at Wivenhoe Dam and Somerset Dam (Revision 7) ("the Manual"). It provides a detailed summary of the operation of Somerset and Wivenhoe Dams during the January 2011 Flood Event. Each table below covers a period of the Event during which one of the following occurred:

- There was a transition or change to the flood operation strategy used, as defined by the Manual;
- There was a period of stability during which no gate operations from either Somerset Dam or Wivenhoe Dam were directed;
- There was a period of sustained gate operations (either opening or closing) at either Somerset Dam pr Wivenhoe Dam.

Each table also provides a summary of relevant background information and a summary of the information that was used to make decisions during the period covered by the table. This information incinges:

- Details of the time period;
- Relevant background information from the period leading up to and during the pedif
- Changes in Dam conditions during the period;
- Rainfall information (inciuding forecast rainfall) and model results availéduring the period;
- The strategy used and/or adopted during the period.

The source data for the information shown in the tables below ead be found in the following Appendices of this Report:

- Appendix $\mathrm{A}-$ Model results
- Appendix B - Flood volume summary
- Appendix C - Quantitative Precipitation Forecasts (QPF)
- Appendix D - Catchment rainfall
- Appendix E-Situation reports
- Appendix G - Severe weathes Warnings
- Appendix H - Flood Eyent notification email
- Appendix L - Flood Operations directives
- Appendix M-abod Event log

Note: Dam leyeis in this document represented as metres (m) are in metres Australian Height Datum. (m AHD)

January 2011 Flood Event-Period 1 of 20

January 2011 Flood Event - Period 2 of 20

Date/time	Background
Commenced Friday 07 Jan 2011 02:00	Strategy W1B and Strategy S2 - Transitioned from Strategy W1A to W1B due to the Wivenhoe lake level exceeding 67.50 m .
Completed Friday 07 Jan 2011 09:00	- Transitioned from Strategy W1B to W1C once the Wivenhoe lake level exceeded 67.75 m . - Colleges Crossing was inundated by natural river flows during this period.

Total rainfall from
08:00 on 6 Jan
2011 to the end of
this period:

- Wivenhoe Dam 64mm;
- Somerset Dam 60mm;
- Lockyer Creek 57 mm ;
- Bremer River 60 mm .

Wivenhoe Dam level rose from 67.52 m to 67.75 m over the seven-hour period.
Somerset Dam level rose from 99.55 m to 99.65 m , over the seven-hour period.

Rainfall and model results

- Catchment average rainfalls during this period were:
- Wivenhoe Dam 11 mm ;
- Somerset Dam 16 mm
- Lockyer Creek 4mm;
- Bremer River 6 mm .
- Forecast 24 hour catchment average rainfall at 10:00 on Gyon 2011 was 25 mm .
- Estimated peak Wivenhoe Dam level: 68.2 m (excluding forecast) 68.5 m (itholviding forecast).
- Estimated peak Somerset Dam level: 998m (excluding forecast); 100.2 m (including forecast)

Estimated total Dam inflow: 242,000ML (excluding forecast); $380,000 \mathrm{ML}$ (including forecast).

- Estimated peak flow at Lowood excluding Wivenhoe Dam releases: $470 \mathrm{~m}^{3} / \mathrm{s}$ (excluding forecast); $670 \mathrm{~m}^{3} / \mathrm{s}$ (including forecast).
- Estimated peak flow at Moggill excluding Wivenhoe Dam releases: $570 \mathrm{~m}^{3} / \mathrm{s}$ (excluding forecast) $970 \mathrm{~m}^{3} / \mathrm{s}$ (including forecast).
- Estimated peak Wivenhoe Dam outflow: $1,220 \mathrm{~m}^{3} / \mathrm{s}$ (excluding forecast); $1,250 \mathrm{~m}^{3} / \mathrm{s}$ (including forecast).

Strategy
Strategy W1B and Strategy S2 (Lake level greater than 67.50 m , maximum release $380 \mathrm{~m}^{3} / \mathrm{s}$)

- Endeavoured to keep Burtons Bridge trafficable by limititing combíned flow from Wivenhoe Dam and Lockyer Creek to a maximum of $430 \mathrm{~m}^{3} \mathrm{~s}$:.
- Peak inflows into the Brisbane River from Lockyer Creek were estimated to be in the Lockyer Creek were estimated to be in the sufficient to inundate Burtons Bridge.
- Lake level was not expected to reach 67.75 m (Strategy W1C) for at least six hours. Lake level may not exceed 68.5 m
- Water was held in Wivenhoe Dam in an attempt to keep Burtons Bridge trafficable in accordance with Strategy W1B.
- In accordance with Strategy S2, the crest gates at Somerset Dam were raised to enable uncontrolled discharge and the low level regulators and sluices at Somerset Dam were kept closed.

January 2011 Flood Event - Period 3 of 20

January 2011 Flood Event - Period 4 of 20

Date/time	Background
Commenced Friday 07 Jan 2011 15:00	Transition from Strategy W1D to W1E to W3; and Strategy S2 Wivenhoe Directives \#1 to \#4. Somerset Directives \#1 to \#3.

Completed
Saturday
08 Jan 2011
14:00

Dam conditions
Total rainfall from 0800 on 6 Jan 2011 to the end of this period:

- Wivenhoe Dam 92mm;
- Somerset Dam 95 mm ;
- Lockyer Creek 72 mm ;
- Bremer River 72 mm .
Wivenhoe Dam level rose from 68.03 m to 68.61 m over the 23-hour period.
Somerset Dam levet rose from 99 , 4 mito 100.44 m oventhe 23-hourperiod

Rainfall and model results
Strategy

- Catchment average rainfalls during thi period were:
- Wivenhoe Dam 3mm;
- Somerset Dam 5mm;
- Lockyer Creek 1 mmo
- Bremer River 1man.
- Forecast 24-hour catchment average rainfall at 10:000,8 Jan 2011 was 40 mm .
- Estimated peak Wivenhoe Dam level: 68.7 m (exclloding forecast); 68.7 m (exclinding forecast);
- Estrincted peak Somerset Dam level: 100.5 m (excluding forecast); 400.6 m (including forecast).

Estimated total Dam inflow: 420,000ML (excluding forecast); $662,000 \mathrm{ML}$ (including forecast).

- Estimated peak flow at Lowood excluding Wivenhoe Dam releases: $530 \mathrm{~m}^{3} / \mathrm{s}$ (excluding forecast); $530 \mathrm{~m}^{3} / \mathrm{s}$ (including forecast).
- Estimated peak flow at Moggill excluding Wivenhoe Dam releases: $770 \mathrm{~m}^{3} / \mathrm{s}$ (excluding forecast);
$940 \mathrm{~m}^{3} / \mathrm{s}$ (including forecast).
This first peak was estimated to have occurred at 05:00 on 8 Jan 2011.
- Estimated peak Wivenhoe Dam outflow: $1,480 \mathrm{~m}^{3} / \mathrm{s}$ (excluding forecast); $1,540 \mathrm{~m}^{3} / \mathrm{s}$ (including forecast).
- This flow was significantly greater than the calculated natural peak that excluded Wivenhoe Dam releases.

Strategy W3 and Strategy S2 (Lake level greater than 68.50 m ,

 maximum release $4,000 \mathrm{~m}^{3} / \mathrm{s}$)- Inflows from Lockyer Creek into the Brisbane River had inundated all bridges downstream of the Dam, with the exception of the Mt Crosby Weir Bridge and Fernvale Bridge.
- The strategy transitioned from W1 to W3 as it became apparent Wivenhoe Dam level was likely to exceed 68.5 m and Strategy W2 couldn't be applied.
- Strategy W3 required the flow at Moggill to be lowered to $4,000 \mathrm{~m}^{3} / \mathrm{s}$ as soon as possible after the naturally occurring peak at Moggill (excluding Wivenhoe Dam releases). This was already achieved.
- Strategy W3 also required lower leve Manual objectives to be considered. Therefore consideration was given to minimising disruption to downstream rural life and endeavouring to keep Mt Crosby Weir Bridge and Fernvale Bridge trafficable. There was also awareness Wivenhoe Dam outflows were already more than doubling the natural peak fiow at Moggill.
- Due to rainfall on the ground, it was apparent the Somerset Dam level would exceed 100.45 m . Accordingly, two sluice gates were opened during this period to allow Dam levels to move towards the Operating Targe Line in accordance with Strategy S2.

January 2011 Flood Event - Period 5 or 20

Date/time	Background
Commenced Saturday 08 Jan 2011 14:00 Completed Sunday 09 Jan 2011 01:00	Strategy W3 and Strategy S2 - Releases maintained from both Wivenhoe and Somerset Dams to ensure Mt Crosby Weir Bridge and Fernvale Bridge remained trafficable. - No change to gate settings over this period. Wivenhoe Dam discharge was $1,240 \mathrm{~m}^{3} / \mathrm{s}$. All rural bridges below the Dam, with the exception of the Mt Crosby Weir Bridge and Fernvale Bridge, were flooded.

Dam conditions

Total rainfall from
08:00 on 6 Jan
2011 to the end of
this period:

- Wivenhoe Dam 100 mm ;
- Somerset Dam

111 mm ;

- Lockyer Creek 75 mm ;
- Bremer River 75 mm .
Wivenhoe Dam level rose very slightly from 68.61 m to 68.63 m
over the 13-hour
period.
Somerset Dam level fell from
100.44 m to
100.32 m ofer the

13-houkpriod.

Rainfall and model results
Strategy

- Catchment average rainfalls during this Strategy W3 and Strategy S2 period were:
- Wivenhoe Dam 8mm;
- Somerset Dam 16 mm ;
- Lockyer Creek 3mm;
- Bremer River 3mm
- Forecasted 24 -hour catshment average rainfall at 16:00 on 8yan 2011 was 40 mm .
- Estimated peak Wivenhoe Dam level: 68.7 m (excluditing forecast); 68.9 m (exdeduding forecast).
- Estimated peak Somerset Dam level: 100.5 m (excluding forecast); 6100.6m (including forecast).

Estimated total Dam inflow: $457,000 \mathrm{ML}$ (excluding forecast); $697,000 \mathrm{ML}$ (including forecast).

- Estimated peak flow at Lowood excluding Wivenhoe Dam releases: $530 \mathrm{~m}^{3} / \mathrm{s}$ (excluding forecast); $530 \mathrm{~m}^{3} / \mathrm{s}$ (including forecast).
- Estimated peak flow at Moggitl excluding Wivenhoe Dam releases: $770 \mathrm{~m}^{3} / \mathrm{s}$ (excluding forecast) $840 \mathrm{~m}^{3} / \mathrm{s}$ (including forecast).
This first peak was, estimated to have occurred at 05:00 on 8 Jan 2011 .
- Estimated peak Wivenhoe Dam outflow: $1,480 \mathrm{~m}^{3} / \mathrm{s}$ (excluding forecast); $1,520 \mathrm{~m}^{3} / \mathrm{s}$ (including forecast). This flow was significantly greater than the calculated natural peak that excluded Wivenhoe Dam releases.

(Lake level greater than 68.50 m , maximum

 release $4,000 \mathrm{~m}^{3} / \mathrm{s}$)- Strategy W3 required the flow at Moggill to be lowered to $4,000 \mathrm{~m}^{3} / \mathrm{s}$ as soon as possible after the naturally occurring peak at Moggill (exctuding wrentoe Dam reteases)." This was already achieved.
- Strategy W3 also required lower level Manual objectives to be considered. Therefore, with lake levels rising slightly (Wivenhoe Dam) and falling (Somerset Dam) consideration during this period remained on minimis disruption to downstream rural life and endeavouring to keep Mt Crosby Weir Bridge and Fernvale Bridge trafficable.
- Wivenhoe Dam outlows were more thandoubling the natural peak flows at Moggill. Increasing releases from Wivenhoe Dam to produce a flow rate at Moggill of up to $3,000 \mathrm{~m}^{3} / \mathrm{s}$ would have meant transitioning back to operating Strategy W1 in around 18 hours from this time Therefore increasing Dam releases could not be justified given th resuiting impacts such a flow would have downstream, especially on localised flooding in Brisbane.
- With the Somerset Dam level still expected to exceed 100.45 m , and the level in Wivenhoe Dam remaining relatively static, releases: from Somerset Dam continued. Closing of the sluices would have resulted in Dam levels quickly moving under the Operating Target Line requiring sluice re-opening within a short period

Deleted: <\#>There was aiso awareness Wivenhoe Dam outflows were already more than doubling the natural peak
flow at Moggill. Increasing the Wivenhoe Dam release to produce a flow at Moggill of up to $3,000 \mathrm{~m}^{3} / \mathrm{s}$ during this period would have moved the operating strategy back to W1 in around 18 hours. This approach was not justifiable at the time given the impacts of such a flow down the river system that included localised flooding in Brisbane. 9
Formatted: Font color: Red
Deleted: is

January 2011 Flood Event - Period σ of 20

Date/time	Background	Dam conditions	Rainfall and model results	Strategy
Commenced Sunday 09 Jan 2011 01:00 Completed	Strategy W3 and Strategy S2 Wivenhoe Directives \#5 to \#7. - Releases increased marginally from Wivenhoe Dam to account for the passing of the Lockyer	Total rainfall from 08:00 on 6 Jan 2011 to the end of this period: - Wivenhoe Dam	- Catchment average rainfalls during this period were: - Wivenhoe Dam 12mm; - Somerset Dam 35mm; - Lockyer Creek 1mm;	Strategy W3 and Strategy S2 (Lake level greater than 68.50 m , maximum release $4,000 \mathrm{~m}^{3} / \mathrm{s}$) - Strategy W3 required the flow at Moggill to lowered to $4,000 \mathrm{~m}^{-3} / \mathrm{s}$ as soon as possible

Completed
Sunday
09 Jan 2011
08:00 for the passing ofthe accoun Creek peak while ensuring Mt Crosby Weir Bridge and Fernvale Bridge remained trafficable.

- Wivenhoe Dam discharge increased from $1,240 \mathrm{~m}^{3} / \mathrm{s}$ to $1,334 \mathrm{~m}^{3} / \mathrm{s}$ between 01:00 and 05:00 during this period.
- There were no changes to Somerset Dam gate settings over this period.
- All rural bridges below the Dam, with the exception of the Mt Crosby Weir Bridge and Fernvale Bridge, were flooded.
- Wivenhoe Dam 112 mm ;
- Somerset Dam $146 \mathrm{~mm} ;$
- Lockyer Creel 76 mm ;
- Bremer River 75 mm .
Wivenhoe Dam level fell from 68.63 m to 68.56 m over the seven-hour period.
Somerset Dam level fell from 100.32 m to 100.28 m overspe seven-hout period.

Catchment average rainfalls during this

- Wivenhoe Dam 12mm;
- Somerset Dam 35mm
- Bremer River Omm.
- Forecast 24 -hour catchment average rainfall at 16:00 on gyan 2011 was 40 mm .
- Estimated peak Jivivenhoe Dam level: 68.7 m (exsluding forecast) 69.3 m (itcturding forecast).
- Estimated peak Somerset Dam level: 100.5 m (excluding forecast); 101.0 m (including forecast).
- Estimated total Dam inflow: $569,000 \mathrm{ML}$ (excluding forecast); $814,000 \mathrm{ML}$ (including forecast).
- Estimated peak flow at Lowood excluding Wivenhoe Dam releases: $530 \mathrm{~m}^{3} / \mathrm{s}$ (excluding forecast); $530 \mathrm{~m}^{3} / \mathrm{s}$ (including forecast).
- Estimated peak flow at Moggill excluding Wivenhoe Dam releases: $770 \mathrm{~m}^{3} / \mathrm{s}$ (excluding forecast); $780 \mathrm{~m}^{3} / \mathrm{s}$ (including forecast),
This first peak was estimated to have occurred at 05:00 on 8 Jan 2011
- Estimated peak Wivenhoe Dam outflow: $1,500 \mathrm{~m}^{3} / \mathrm{s}$ (excluding forecast); $1560 \mathrm{~m}^{3}$ / (excluding forecast),
This fow is significantly greater than the calculated natural peak that excluded Wivenhoe Dam releases.

Strategy W3 required the flow at Moggill to
lowered to $4,000 \mathrm{~m}^{-3} / \mathrm{s}$ as soon as possible after the naturally occurring peak at Moggil (excluding Wivenhoe Dam releases). This was already achieved.

- Strategy W3 aiso required lower level Manual objectives to be considered. Therefore, with lake levels falling at both dams,
consideration during this period remained on minimising disruption to downstream rural life and endeavouring to keep Mt Crosby Wei Bridge and Fernvale Bridge trafficable.
- Wivenhoe Dam outflows were more thardoubling the natural peak flows at Moggill. Increasing releases from Wivenhoe Dam to produce a flow rate at Moggill of up to $3,000 \mathrm{~m} / \mathrm{s}$ would have meant transitioning back to operating Strategy W1 in around 18 hours from this time. Therefore, increasing Dam releases could not be justuified given the resulting impacts such a flow would have downstream, especially on localised flooding in Brisbane.
- With the Somerset Dam level still expected to exceed 100.45 m , and the level in Wivenhoe Dam falling, releases from Somerset Dam continued. Closing of the sluices would have resulted in dam levels quickly moving under the Operating Target Line requiring sluice reopening within a short period, particularly given the rainfall-that occurred in the Somerset Dam catchment during this period

Deleted: 6

Formatted: Buliets and

 Numbering
Deleted: <\# There was also

 awareness Wivenhoe Dam outflows were already more than doubling the natural peak flow at Moggill. Increasing the Wivenhoe Dam release to produce a flow at Moggill of up to $3,000 \mathrm{~m}^{3} / \mathrm{s}$ during this per would have moved the operating strategy back to $\mathrm{W} /$ approach was not juctifia the time given the impacts of the time given the impact system that included localised flooding in Brisbane. ${ }^{\text {If }}$
Formatted: Font color: Red

Deleted; is

Deleted: 5

January 2011 Flood Event - Period 7 of 20

Date/time Background

Commenced Strategy W3 and Strategy S2
 Sunday
 09 Jan 201
 Somerset Directives \#4 to \#5.

08:00
Completed
Sunday
09 Jan 2011
14:00

- Releases increased marginally from Wivenhoe Dam to account for the passing of the Lockyer Creek peak while ensuring Mt Crosby Weir Bridge and Fernvale Bridge remained trafficable.
- Wivenhoe Dam discharge increased from $1,334 \mathrm{~m}^{3} / \mathrm{s}$ to $1,386 \mathrm{~m}^{3} / \mathrm{s}$.
- Somerset Dam sluice gates opened progressively over this period to allow Dam levels to move towards the Operating Target Line in accordance with Strategy S2.
- All rural bridges below the Dam with the exception of the Mt Crosby Weir Bridge and Fernvale Bridge, were flooded.

Dam conditions
Total rainfall from 08:00 on 6 Jan
2011 to the end of this period:

- Wivenhoe Dam 146mm;
- Somerset Dam $199 \mathrm{~mm} ;$
- Lockyer Creek 94mm;
- Bremer River 90 mm .
Wivenhoe Dam level rose very slightly from 68.56 m to 68.58 m over the six-hour period.
Somerset Dam level rose from 100.28 m to 100.47 m ofer the six-hourperiod.

Rainfall and model results
Strategy

- Catchment average rainfalls during this period were:
- Wivenhoe Dam 34mm;
- Somerset Dam 53mm;
- Lockyer Creek 18mm;
- Bremer River 15mm
- Forecast 24-hour catchnent average rainfall at 10:00 on gyan 2011 was 50 mm .
- Estimated peakivivenhoe Dam level 70.0 m (exsluding forecast) 71.3 m (ifochding forecast).
- Estimated peak Somerset Dam level: 100.7 m (excluding forecast);
. 10.1 m (including forecast).
2.E

Estimated total Dam inflow: $804,000 \mathrm{ML}$ (excluding forecast); $1,108,000 \mathrm{ML}$ (including forecast).

- Estimated peak flow at Lowood excluding Wivenhoe Dam releases: $530 \mathrm{~m}^{3} / \mathrm{s}$ (excluding forecast); $690 \mathrm{~m}^{3} / \mathrm{s}$ (including forecast).
- Estimated peak flow at Moggill excluding Wivenhoe Dam releases: $770 \mathrm{~m}^{3} / \mathrm{s}$ (excluding forecast); $770 \mathrm{~m}^{3} / \mathrm{s}$ (excluding forecast); This first peak was estimated to hav This first peak was estimated to haved at 05:00 on 8 Jan 2011.
- Estimated peak Wivenhoe Dam outflow: $1,490 \mathrm{~m}^{3} / \mathrm{s}$ (excluding forecast); $1,560 \mathrm{~m}^{3} / \mathrm{s}$ (including forecast). This flow was significantly greater than the calculated natural peak that excluded Wivenhoe Dam releases.

Strategy W3 and Strategy S2

 rease $4,000 \mathrm{~m}^{3} / \mathrm{s}$)- At 11:00, using the BoM rainfall forecasts, an assessment (see Appendix K) showed the. lower limit of three day forecast inflow to be similar to the October 2010 flood event, with the upper limit similar to the February 1999 flood event. This assessment supported fonsideration remaining on minimising disruption to downstream rural liffe and endeavouring to keep Mt Crosby Weir Bridgè and Fernvale Bridge trafficable as this, was. the approach used during both the October. 2010 the February 1999 flood events
- However by $14: 00$, it was noted that the estimated total Dam inflow of 1,108,000ML (including forecast) - had never previously been exceeded on a full dam, with the previous largest volumes being $870,000 \mathrm{ML}$ in April 1989 and 925,000 in February 1999. Although the inflow estimate of $1,108,000 \mathrm{ML}$ was based on a forecast, it resulted in an expectation that if rainfall continued there may be a need within the next six hours to transition to a situation where minimising disruption to downstream rural life was no longer considered. This would result in the closure of all bridges between the Dam and Moggill the closure of the Brisbane Valley. Highway and the further isolation of rural communities.
- With Dam levels under the Operating Targef Line at the end of this period, releases continued from Somerset Dam.

Formatted: Table sub heading
Formatted: Bullets and Numbering
Deleted: I
Deleted: three day
Formatted: Font color: Black
Deleted: erefore, during this period, Deleted: ed Deleted: Deleted: This Deleted: T Deleted: on a full Dam -.

Deleted: , and the closure of Brisbane Valley Highway
Deleted: \#With lake levels rising at both Dams and heavy rain being experienced in the Dam catchments, consideration was given to transitioning from minimising disruption to downstream rural life to protecting urban areas from inundation.I

January $201 /$ Flood Event-Period 8 of 20

Date/time	Background
Commenced	Strategy W3 and Strategy S2
Sunday	During this period, releases
09 Jan 2011	continued from both Dams at a
14:00	level that ensured Mt Crosby Weir
Completed	Bridge and Fernvale Bridge
Sunday	remained trafficable. Gate settings
09 Jan 2011	were unchanged and the Wivenhoe
19:00	Dam discharge was $1,411 \mathrm{~m}^{3} / \mathrm{s}$.

- Due to rainfall on the ground and the modelled rapid lake level rises a decision was made to focus on protecting urban areas from inundation at 19:00.
- Councils, the Dam Safety Regulator and Seqwater's CEO were notified of the decision soon after 19:00. The ramifications of the decision were that the new estimated peak impact properties and begin to impact properties and begin damage urban areas below Moggill. Brisbane City Council
damage tables indicated at flows of damage tables indicated at flows o $3,000 \mathrm{~m}^{3} / \mathrm{s}$, damage costs would exceed $\$ 5.0$ million and 2,600 properties would be impacted in some way. The level of impact would increase significantly as flows increased and thereforedtre focus was on minimising the fiow at Moggill.
- A decision was made áat ${ }^{4} \dot{9}: 00$, to staff the Flood Operations Centre with at least two Dity Engineers at all times untik peak of the Event had occurred.

Dam conditions
Total rainfall from
08:00 on 6 Jan 2011

Somerset Dam level. rose from 100.47m 101.43 m over tre five-hour perica)

Rainfall and model results

- Catchment average rainfalls during this period were:
- Wivenhoe Dam 62mm;
- Somerset Dam 106mm
- Lockyer Creek 22man
- Bremer River 6man.
- Forecast 24 -hour catchment average rainfallat $16: 00$ on 9 Jan 2011 was 65 mm .
- Estimated beyak Wivenhoe Dam level: S
72.167 excluding forecast); 73.9 (including forecast).
- Fstimated peak Somerset Dam Y level:
102.3 m (excluding forecast);
103.0 m (including forecast).
- Estimated total Dam inflow: $1,272,000 \mathrm{ML}$ (excluding forecast); $1,712,000 \mathrm{ML}$ (including forecast).
- Estimated peak flow at Moggill excluding Wivenhoe Dam releases:
$770 \mathrm{~m}^{3} / \mathrm{s}$ (excluding forecast); $1,940 \mathrm{~m}^{3} / \mathrm{s}$ (including forecast). This first peak was estimated to have occurred at 05:00 on 8 Jan 2011.
- Estimated peak flow at Moggill including Wivenhoe Dam releases:
$3,300 \mathrm{~m}^{3} / \mathrm{s}$ (excluding forecast); $4,400 \mathrm{~m}^{3} / \mathrm{s}$ (including forecast).

Strategy

Strategy W3 and Strategy S2

 (kake level greater than 68.50 m , maximum release $4,000 \mathrm{~m}^{3} / \mathrm{s}$)- Lake levels were starting to rise quickly at both dams and combined with heavy rain in the Dam catchments during this period, it was decided at the end of the period to no longer consider minimising disruption to downstream rural life and to focus only on protecting urban areas from inundation.
- Towards the end of this period, it also became apparent Moggill was likely to experience a second naturally occurring peak on
10 Jan 2011 or later. The Manual required the flow at Moggill to be minimised prior to this peak occurring. This requirement competed with the need to protect urban areas by not allowing the Wivenhoe Dam to reach a level that invoked Strategy W4. It was decided the best course of action was to increase releases as quickly as possible to the limit of nondamaging flows at Moggill. However, before this could occur, Councils needed to be advised, bridges needed to be closed and actions needed to be taken to prepare rural communities for isolation and urban areas below Moggill for river flows approaching $3,500 \mathrm{~m}^{3} / \mathrm{s}$.
- With Dam levels under the Operating Target Line during this period, releases continued from Somerset Dam.

January 2011 Flood Event - Period 9 of 20

January 2011 Flood Event, Period 10 of 20

Date/time	Background	Dam conditions	Rainfall and model results	Strategy
Commenced Monday 10 Jan 2011 01:00 Completed Monday 10 Jan 2011 09:00	Strategy W3 and Strategy S2 Wivenhoe Directives \#8 to \#10. - Gates opened continuously at Wivenhoe Dam for eight hours in accordance with standard gate opening sequence at a rate of 0.5 m of individual gate opening per hour. - Wivenhoe Dam discharge increased from $1,473 \mathrm{~m}^{3} / \mathrm{s}$ to $2,015 \mathrm{~m}^{3} / \mathrm{s}$. All rural bridges below the Dam were flooded. - Further gate openings at Wivenhoe Dam were paused at 09:00 in an attempt to allow the Lockyer Creek and Bremer River peaks to pass Moggill, and to restrict Brisbane River flows at Moggill to $3,500 \mathrm{~m}^{3} / \mathrm{s}$. This was achieved following discussions with Brisbane City Council that advised a flow of $3,500 \mathrm{~m}^{3} / \mathrm{s}$ at Moggill would fully submerge 322 properties and impact 7,000 properties. - No gate movements occurred at Somerset Dam during this period, with Dam levels plotting under the Operating Target time. This meant the only gate movements allowable at , Somerset Dam under Strategy S2 would be openizges and this did not happen tolimit further rises in Wivenhoe Dam.	Total rainfall from 08:00 on 6 Jan 2011 to the end of this period: - Wivenhoe Dam 244mm; - Somerset Dam 373mm; - Lockyer Creek 143mm; - Bremer River 120 mm . Wivenhoe Dam level rose from 69.97 m to 71.56 m over the eight-hour period. Somerset Dam level rose from 102.54 m to 103.08 m overthe eight-hourperiod.	- Catchment average rainfalls during this period were: - Wivenhoe Dam 12 mm ; - Somerset Dam 30mm; - Lockyer Creek 12 mm ; - Bremer River 18mm - Forecast 24 hour catchenent average rainfall at 16:00 on gyan 2011 was 65 mm . - Estimated peak Wivenhoe Dam level: 72.9 m (excuiding forecast); 74.5 m (including forecast). - Esfincated peak Somerset Dam clevel: 103.1m (excluding forecast); 103.5 m (including forecast). - Estimated total Dam inflow: $1,531,000 \mathrm{ML}$ (excluding forecast); $1,985,000 \mathrm{ML}$ (including forecast). - Estimated peak flow at Moggill excluding Wivenhoe Dam releases: $1,090 \mathrm{~m}^{3} / \mathrm{s}$ (excluding forecast); $2,090 \mathrm{~m}^{3} / \mathrm{s}$ (including forecast). This second peak was estimated to occur at 16:00 on 10 Jan 2011. - Estimated peak flow at Moggill including Wivenhoe releases: $3,420 \mathrm{~m}^{3} / \mathrm{s}$ (excluding forecast); $4,680 \mathrm{~m}^{3} / \mathrm{s}$ (including forecast).	Strategy W3 and Strategy S2 (Lake level greater than 68.50 m , maximum release $\left.4,000 \mathrm{~m}^{3} / \mathrm{s}\right)$ - Consideration was given to protecting urban areas from inundation and minimising urban damage. - Due to advice received from Brisbane City Council that a flow of $3,500 \mathrm{~m}^{3} / \mathrm{s}$ at Moggill would fully submerge 322 properties and impact 7,000 properties, an attempt was made to remain below this flow level. - The approach in the Manual which states the intent of Strategy W3 is to limit the flow in the Brisbane River at Moggill to less than $4,000 \mathrm{~m}^{3} / \mathrm{s}$, was adopted. Advice received from Brisbane City Council that the upper limit of non-damaging floods was below the $4,000 \mathrm{~m}^{3} / \mathrm{s}$ stated in the Manual was noted and taken into account in the decision making processes. - With Dam levels under the Operating Target Line during this period, releases continued from Somerset Dam. - Although there was full awareness of the rainfall forecasts and associated potential flood impacts, the strategy was not to release flows that would cause high level urban inundation until it was certain it could not be avoided. Model resuits continued to indicate this may be possible.

January 2011 Flood Event-Period 11 of 20

January 2011 Flood Evenl Period 10 of 20 .

Date/time	Background	Dam conditions	Rainfall and model results	Strategy
Commenced Monday 10 Jan 2011 01:00 Completed Monday 10 Jan 2011 09:00	Strategy W3 and Strategy S2 Wivenhoe Directives \#8 to \#10. - Gates opened continuously at Wivenhoe Dam for eight hours in accordance with standard gate opening sequence at a rate of 0.5 m of individual gate opening per hour. - Wivenhoe Dam discharge increased from $1,473 \mathrm{~m}^{3} / \mathrm{s}$ to $2,015 \mathrm{~m}^{3} / \mathrm{s}$. All rural bridges below the Dam were flooded. - Further gate openings at Wivenhoe Dam were paused at 09:00 in an attempt to allow the Lockyer Creek and Bremer River peaks to pass Moggill, and to restrict Brisbane River flows at Moggill to $3,500 \mathrm{~m}^{3} / \mathrm{s}$. This was achieved following discussions with Brisbane City Council that advised a flow of $3,500 \mathrm{~m}^{3} / \mathrm{s}$ at Moggill would fully submerge 322 properties and impact 7,000 properties. - No gate movements occurred at Somerset Dam during this period, with Dam levels plottings under the Operating Target the. This meant the only gate movements allowable at Somerset Dam under Strategy S2 would be openings and this did not happen to jimit further rises in Wiventoe Dam.	Total rainfall from 08:00 on 6 Jan 2011 to the end of this period: - Wivenhoe Dam 244mm; - Somerset Dam 373 mm ; - Lockyer Creek 143 mm ; - Bremer River 120 mm . Wivenhoe Dam level rose from 69.97 m to 71.56 m over the eight-hour period. Somerset Dam level rose from 102.54 m to 103.08 m overtbie eight-houpperiod.	- Catchment average rainfalls during this period were: - Wivenhoe Dam 12mm; - Somerset Dam 30mm; - Lockyer Creek 12mm; - Bremer River 18 mm - Forecast 24 hour catcament average rainfall at 16:00 on gyan 2011 was 65 mm . - Estimated peak Dovivenhoe Dam level: 72.9 m (exoluding forecast); 74.5 m(i) cluding forecast). - Esfinmated peak Somerset Dam cevel: 103.1m (excluding forecast); 103.5 m (including forecast). - Estimated total Dam inflow: $1,531,000 \mathrm{ML}$ (excluding forecast); $1,985,000 \mathrm{ML}$ (including forecast). - Estimated peak flow at Moggill excluding Wivenhoe Dam releases: $1,090 \mathrm{~m}^{3} / \mathrm{s}$ (excluding forecast); $2,090 \mathrm{~m}^{3} / \mathrm{s}$ (including forecast). This second peak was estimated to occur at 16:00 on 10 Jan 2011. - Estimated peak flow at Moggill including Wivenhoe releases: $3,420 \mathrm{~m}^{3} / \mathrm{s}$ (excluding forecast); $4,680 \mathrm{~m}^{3} / \mathrm{s}$ (including forecast).	Strategy W3 and Strategy S2 (Latke level greater than 68.50 m , maximum release $4,000 \mathrm{~m}^{3} / \mathrm{s}$) - Consideration was given to protecting urban areas from inundation and minimising urban damage. - Due to advice received from Brisbane City Council that a flow of $3,500 \mathrm{~m}^{3} / \mathrm{s}$ at Moggill would fully submerge 322 properties and impact 7,000 properties, an attempt was made to remain below this flow level. - The approach in the Manual which states the intent of Strategy W3 is to limit the flow in the Brisbane River at Moggill to less than $4,000 \mathrm{~m}^{3} / \mathrm{s}$, was adopted. Advice received from Brisbane City Council that the upper limit of non-damaging floods was below the $4,000 \mathrm{~m}^{3} / \mathrm{s}$ stated in the Manual was noted and taken into account in the decision making processes. - With Dam levels under the Operating Target Line during this period, releases continued from Somerset Dam. - Although there was full awareness of the rainfall forecasts and associated potential flood impacts, the strategy was not to release flows that would cause high level urban inundation until it was certain it could not be avoided. Model results continued to indicate this may be possible.

January 2011 Flood Event-Period 11 of 20

Date/time	Backgro	Dam condition	Rainfall and model results	Stra
Commenced Monday 10 Jan 2011 09:00	Strategy W3 and Strategy S2 - Gate settings at Wivenhoe Dam did not change over this period. Wivenhoe Dam discharge was $2,087 \mathrm{~m}^{3} / \mathrm{s}$. All rural bridges below the Dam were flooded. - At 15:00, the attempt to restrict Brisbane River flows at Moggill to $3,500 \mathrm{~m}^{3} / \mathrm{s}$ was abandoned due to rainfall in the Dam catchments. A new target of $4,000 \mathrm{~m}^{3} / \mathrm{s}$ was set in accordance with the Manual, on the basis that Strategy W3 intends to limit the flow in the Brisbane River at Moggill to less than $4,000 \mathrm{~m}^{3} / \mathrm{s}$ and minimise urban damage. - Gate movements at Somerset Dam did not change during this period, with Dam levels plotting under the Operating Target Line. This meant the only gate movements allowable at Somerset Dam under Strategy S2 was openings and this was not done to limit further rises in Wivenhoe Dam.		- Catchment average rainfalls during this period were: - Wivenhoe Dam 3amm; - Somerset Dam 34mm; - Lockyer Creek 27 mm ; - Bremer River 29mm, - Forecast 24 hour catchment average rainfall at 10:00 on (0) 2011 was 75 mm . - Estimated peark livenhoe Dam level: 73.6 m (excluding forecast); 75.2 m (ithcurding forecast). - Estimated peak Somerset Dam level: 103.4 m (excluding forecast); 603.7 m (including forecast). Estimated total Dam inflow: $1,708,000 \mathrm{ML}$ (excluding forecast); $2,162,000 \mathrm{ML}$ (including forecast). - Estimated peak flow at Moggill excluding Wivenhoe Dam releases: $1,500 \mathrm{~m}^{3} / \mathrm{s}$ (excluding forecast); $2,570 \mathrm{~m}^{3} / \mathrm{s}$ (including forecast). This second peak was estimated to occur at 20:00 on 10 Jan 2011. - Estimated peak flow at Moggill including Wivenhoe Dam releases: $3,910 \mathrm{~m}^{3} / \mathrm{s}$ (excluding forecast); $5,180 \mathrm{~m}^{3} / \mathrm{s}$ (including forecast). Strategy W3 and Strategy S2 (luake level greater than 68.50 m , maximum release $4,000 \mathrm{~m}^{3} / \mathrm{s}$) - Consideration focused on protecting urban areas from inündation and minimising urban damage. 2.... It was decided at 15:00 to attempt to remain..... below a target flow of around $4,000 \mathrm{~m}^{3} / \mathrm{s}$ at Moggill. - Continued to follow the approach in the Manual which states the intent of Strategy W3 is to limit the flow in the Brisbane River at Moggill to less than $4,000 \mathrm{~m}^{3} / \mathrm{s}$. - With Dam levels under the Operating Target Line during this period, releases continued from Somerset Dam. - Although there was full awareness of the rainfall forecasts and associated potential flood impacts, the strategy was not to release flows that would cause high level urban inundation until it was certain it could not be avoided. Model results continued to indicate this may be possible.	
Completed Monday 10 Jan 2011 15:00				

Ianuary 2011 Flood Event, Period 12 of 20

January 2011 Flood Event - Period 13 of 20

Date/tim	ckground	am condition	Rainfall and model resul
Commenced Monday 10 Jan 2011 20:00	Strategy W3 and Strategy S2 - Gate openings at Wivenhoe Dam were paused at 20:00 in an attempt to restrict flows at Moggill to close to $4,000 \mathrm{~m}^{3} / \mathrm{s}$. There were no changes to gate settings at Wivenhoe Dam over this period. The Dam discharge was $2,726 \mathrm{~m}^{3} / \mathrm{s}$. - In accordance with the Manual, a target flow of $4,000 \mathrm{~m}^{3} / \mathrm{s}$ at Moggill was set on the basis of Strategy W3 to limit the flow in the Brisbane River at Moggill to less than $4,000 \mathrm{~m}^{3} / \mathrm{s}$. However, Brisbane City Council damage tables indicated this would still impact 5,325 properties and cause damage exceeding $\$ 47.0$ million.	Total rainfall from 08:00 on 6 Jan 2011 to the end this period:	- Catchment average rainfalls during this period were: - Wivenhoe Dam 44mm; - Somerset Dam 22mm; - Lockyer Creek 12mmi - Bremer River 14 mfi . - Forecast 24 -hour catehment average rainfall aty $6: 00$ on 10 Jan 2011 was 38 mm. - Estimated páak Wivenhoe level: 74.1 m (exclưding forecast); 74.9 mificluding forecast). - Estinitated peak Somerset level: ${ }^{4} 102.5 \mathrm{~m}$ (excluding forecast); 703.7 m (including forecast). Estimated total dam inflow: 2,016,000ML (excluding
Completed Tuesday 11 Jan 2011 04:00		- Wivenhoe Da 323 mm ; - Somerset Da 437 mm ; - Lockyer Creek	
		- Bremer River 167 mm . Wivenhoe Dam level rose from 73.06 m to 73.40 m over the eight-hour	

- At 17:32, initial advice was provided about a significant flash flood originating in the Lockyer Creek headwaters. Details were received at 20:00. The focus was on developing strategies to manage these potential flows, however, as any strategy would involve significantly reducing outflows from Wivenhoe Dam, the strategies were not adopted.
- During this period the plotted dam levels drifted just abovesthe Operating Target bine? This lead to a decision at 04.00 to start closing down releasessfrom Somerset Dam to limit furthe herises in Wivenhoe Dam.

Strategy
Strategy W3 and Strategy S2
(Lake level greater than 68.50 m , maximum release $4,000 \mathrm{~m}^{3} / \mathrm{s}$)

- Consideration focused on protecting urban areas from inundation and minimising urban damage. The target maximum flow at Moggill remained $4,000 \mathrm{~m}^{3} / \mathrm{s}$. The approach in the Manual which states the intent of Strategy W3 is to limit the flow in the Brisbane River at Moggiil to less than $4,000 \mathrm{~m}^{3} / \mathrm{s}$, continued to be followed.
- Model results showed a peak level in the Dam Model results showed a peak level in the Dam
close to 74.0 m was possible, but appeared increasing unlikely.
- With Dam levels moving above the Operating Target Line during this period, it was decided to begin closing down releases from Somerset Dam to limit further rises in Wivenhoe Dam
- Although there was full awareness of the rainfall forecasts and associated potential flood impacts the strategy was not to release flows that would cause high level urban inundation until it was certain it could not be avoided. Model results continued to indicate this may be possible however, as rainfall continued, the strategy was reviewed each hour. At 21:00 the Dam Safety Regulator was asked for permission to exceed a level of 74.0 m in Wivenhoe Dam for a short level of 74.0 m in Wivenhoe Dam for a shor perrat (maxi provided the safoty of the Dam Strategy W4, provided the safety of the Dam could be guaranteed. This was conside continued rainfall.

January 2011 Flood Event - Period 14 of 20

Date/time Background \quad Dam conditions

Commenced
 Tuesday

11 Jan 2011
04:00
Completed
Tuesday
| 11 Jan 2011 08:00

Transition from Strategy W3 to Strategy W4; and Strategy S2 Wivenhoe Directive \#12.
Somerset Directive \#6.

- Extreme intense rainfall (estimated after the Event to possibly exceed 1 in 2000 year intensities) commenced on and close to the Wivenhoe Dam lake area during this period. If the centroid of this rainfall was located further east or south, it may have been possible to avoid transition to Strategy W4.
- Because the extreme intense rainfall was occurring on and close to the Dam rather than in the northern areas of the Dam catchment, response time was minimised and quick action was needed to protect the safety of the Dam. Accordingly, at 08:00, a decision was made to transition to Strategy W4. Significant urban damage was not to be avoided and the Dam Safety Regulator, Seqwater's CEO and the Councils were advised.
- Gate settings were not changer at Wivenhoe Dam over thifi period. Wivenhoe Dam diș charge was $2,832 \mathrm{~m}^{3} / \mathrm{s}$.
- Sluice gate openingsat Somerset Dam were reduced from five to Dam were reduce from five to two as the potted dam lev had drifted . Cl st above the

Dam conditions
Total rainfall from 08:00 on 6 Jan2011 to the end of this period:

- Wivenhoe Dam 356 mm ;
- Somerset Dam
$483 \mathrm{~mm} ;$
- Lockyer Creek 240 mm ;
- Bremer River 183 mm .
Wivenhoe Dam
level rose from 73.40 m to 73.70 m over the four-hour period.
Somerset Dam level rose from 103.23 m to 103.46 m overtbe four-hour pexiod.

Rainfall and model results

- Catchment average rainfalls during this period were:
- Wivenhoe Dam 33mm;
- Wivenhoe Dam (local) 78 mm
- Somerset Dam 46mm;
- Lockyer Creek 54mm
-Bremer.River 16 mr f
- Forecast 24-hour catchtment average rainfall at 16:00 बत110 Jan 2011 was 38 mm .
- Estimated poakWivenhoe level: 74.5 m (excluding forecast) 75.1 m ((jincluding forecast).
- Estindted peak Somerset Dam cevel:
t- 103.9 m (excluding forecast); 104.2 m (including forecast).
- Estimated total Dam inflow: 2,210,000ML (excluding forecast); $2,460,000 \mathrm{ML}$ (including forecast).
- Estimated peak flow at Moggill including Wivenhoe Dam releases: $5,870 \mathrm{~m}^{3} / \mathrm{s}$ (excluding forecast).

Strategy

Strategy W4 and Strategy S2

(Lake level predicted to exceed 74.00 m , no нiaximum release rate)

- At 08:00, model results showed restricting the peak level in the Dam close to 74.0 m was no longer possible due to the high intensity rainfall experienced over this period.
- At 08:00 it was decided to transition to Strategy W4 and the Dam Safety Regulator, Seqwater's CEO and Councils were advised. It was now apparent significant urban damage resulting from releases from Wivenhoe Dam could not be releases from Wivenhoe Dam could not be (estimated after the Event to exceed 1 in 500 (estimated after the Event to exceed 1 in 500
year intensities) that commenced on and close year intensities) that commenced on and clo
to the Wivenhoe Dam lake area during this to the Wivenhoe Dam lake area during this period.
- As Dam levels moved above the Operating Target Line during this period, releases from Somerset Dam were progressively closed down to limit further rises in Wivenhoe Dam (sluices were closed down at hourly intervals in accordance with the Manual).

January 2011 Flood Event-Period 15 of 20

January 2011 Flood Event P Period 16 or 20
Date/time
Commenced
Tuesday
11 Jan 2011

13:00
Completed
Tuesday
11 Jan 2011 19:00

Strategy W4 and Strategy S2 Wivenhoe Directive \#12 to \#14.

- Extreme rapid lake level rises in Wivenhoe Dam continued during this period. The QPF issued at 16:00 was for a catchment average rainfall of 75 mm over the next 24 hours.
- Gates were opened continuously at Wivenhoe Dam for six hours in accordance with Strategy W4 and the standard gate opening sequence at an average rate of 4.5 m of individual gate opening per hour.
- Wivenhoe Dam discharge was increased from $4,250 \mathrm{~m}^{3} / \mathrm{s}$ to $7,464 \mathrm{~m}^{3} / \mathrm{s}$. Significant damage to urban areas below Moggill could not be avoided. Estimated peak inflow during this period exceeded $12,000 \mathrm{~m}^{3} / \mathrm{s}$.
- No sluice releases were made from Somerset Dam to limit increases in Wivenhoe Dam in accordance with Strategy S2.

Dam conditions
Total rainfall from 08:00 on 6 Jan
2011 to the end of this period:

- Wivenhoe Dam 397 mm ;
- Somerset Dam 610 mm ;
- Lockyer Creek 325 mm ;
- Bremer River 278 mm .

Wivenhoe Dam

 level rose from 74.39 m to 74.97 m over the six-hour period.Somerset Dam level rose from 103.83 m to 104.60 m overthe six-hour pertrod.

Rainfall and model results

- Catchment average rainfalls during this period were:
- Wivenhoe Dam 15 mm ;
- Wivenhoe Dam (local) 35 min
- Somerset Dam 40mm;
- Lockyer Creek 38mm
- Bremer River 41 mrn \qquad
Forecast 24-hour catchrent average rainfall at 16:00 snly Jan 2011 was 75 mm . Howevet catchment average rainfalls totatsthis period were:
- Wienhoe Dam 8 mm ;
- Wuivenhoe Dam (local) 13 mm
- Somerset Dam 19mm;
- Lockyer Creek 9mm; Bremer River 8 mm
portion of the extremely intense rainfall in the Dam catchment fell in an un-gauged area (e.g. on the dam lake area) making it difficult for the model to accurately predict lake level rises.
- Estimated peak Wivenhoe Dam level: 75.0 m (excluding forecast) 75.2 m (including forecast)
- Estimated peak Somerset Dam level: 105.2 m (excluding forecast); 105.2 m (excluding forecast);
105.9 m (including forecast).
- Estimated total dam inflow: 2,659,000ML (excluding forecast); $3,289,000 \mathrm{ML}$ (including forecast).

Strategy

Strategy W4 and Strategy S2

(kake level predicted to exceed 74.00 m , no maximum release rate)

- The strategy was to protect the structural safety of the Dam.
- The Manual requires actions under Strategy W4 to ensure Wivenhoe Dam gate openings occur in accordance with standard sequences until the storage level of Wivenhoe Dam begins to fall.
- The lake level in both Dams continued to rise during this period. A Dam operator relayed Wivenhoe Dam gauge board readings to the Flood Operations Centre every 30 minutes. All four Duty Engineers were present in the Flood Operations Centre and decisions were made every half hour upon receipt of the gauge board readings.
- With Dam levels above the Operating Target Line during this period no sluice releases were made from Somerset Dam to limit further rises in Wivenhoe Dam.
- The water level in Wivenhoe Dam peaked at 19:00 on 11 Jan 2011 at 74.97 m .
January 2011 Glood Event period 170120

January 2011 Flood Event - Period 18 of 20

Date/time	Background	Dam conditions
Commenced	Strategy W4 and Strategy S2	Total rainfall from

Tuesday
11 Jan 2011
21:00
| Completed
Wednesday
12 Jan 2011
08:00

Strategy W4 and Strategy S2 Wivenhoe Directive \#25 to \#34.

- During this period, Wivenhoe Dam gates were closed as quickly as possible without causing rises in the lake level. This was done to reduce urban
flood impacts downstream. This flood impacts downstream. This decision was made in an attempt to minimise urban damage below Moggill (an objective that must be considered under this strategy).
- Gates were closed continuously at Wivenhoe Dam for 11 hours in accordance with the standard gate closing sequence, at an average rate of just over 3.6 m of individual gate opening per hour.
- Wivenhoe Dam discharge was decreased from $7,464 \mathrm{~m}^{3} / \mathrm{s}$ to $2,547 \mathrm{~m}^{3} / \mathrm{s}$. All rural bridges below the dam remained flooded and significant damage to urban areas below Moggill had occurred.
- No sluice releases were made from Somerset Dam in accordance with Strategy

Rainfall and model results

- Catchment average rainfalls during this period were:
- Wivenhoe Dam 1 mm
- Somerset Dam 3mm;
- Lockyer Creek 2 m ,
- Bremer River 1m
- Forecast 24 -hour catchment average rainfall at 16:00 on TYan 2011 was 75 mm .
- Wivenhoe Daŕ level peaked at: 74.97 m aर $19: 00$ on 11 Jan 2011.
- Somerset Dam level peaked at: 105.1 hat 06:00 on 12 Jan 2011
- Estinated total Dam inflow: $-2,650,000 \mathrm{ML}$.

Total rainfall from 08:00 on 6 Jan 2011 to the end of this period:

- Wivenhoe Dam 399 mm ;
- Somerset Dam 613 mm ;
- Lockyer Creek 328 mm ;
- Bremer River 279 mm .
Wivenhoe Dam level fell from 74.97 m to 74.78 m over the 11 -hour period.
Somerset Dam level rose from 104.78 m to 105.11 m overthe 11-hour peried.

Strategy
Skrategy W4 and Strategy S2
(L) ake level predicted to exceed 74.00 m , no maximum release rate)

- The strategy was to protect the structural safety of the Dam.
- The Manual requires actions under Strategy W4 to ensure Wivenhoe Dam gate openings occur in accordance with standard sequences until the storage level of Wivenhoe Dam begins to fall.
- As the lake level was falling slightly, a decision was made to quickly reduce releases from Wivenhoe Dam to as low a level as possible, to minimise urban damage below Moggill. This was considered permissible as the Manual states tha rapid closure of radial gates is permissible when there is a requirement to reduce downstream flooding.
- It was calculated that reducing to a discharge of $2,547 \mathrm{~m} / \mathrm{s}$ from Wivenhoe Dam would:
- Not increase the downstream flood peak;
- Not cause the water level in Wivenhoe Dam to rise and;
- Allow the Dam to be drained back to FSL in seven days, in accordance with the Manual
- With Dam levels above the Operating Target Line during this period, no sluice releases were made from Somerset Dam to limit further rises in Wivenhoe Dam.

January 2011 Flood Event - Period 19 of 20

Date/time	Background
Commenced	Transition from Strategy W4 to the
Wednesday	Drain Down Phase
12 Jan 2011	Somerset Directives \#8 to \#9.

08:00
Completed
Thursday
13 Jan 2011
12:00

Dam conditions
 Total rainfall from 08:00 on 6 Jan 2011 to the end of

 this period:- Wivenhoe Dam 401 mm ;
- Somerset Dam

619 mm ;

- Lockyer Creek

330 mm ;

- Bremer River 280 mm .

Wivenhoe Dam

 level fell from 74.78 m to 74.61 m over the 28 -hour period.Somerset Dam level fell from 105.11 m a 0 103.9@riover the 28-hotroperiod.

Rainfall and model results

- Catchment average rainfalls during this period were:
- Wivenhoe Dam 2 mm
- Somerset Dam 6mm
- Lockyer Creek 2mint
- Bremer River $1 \mathrm{~m}^{2} \mathrm{~F}$.
- Forecast 24-houreatchment average rainfall at 10:00 on $12 \mathrm{Jan} 201 \mathrm{~T}^{\mathrm{Was}} 10 \mathrm{~mm}$

Strategy

rain Down Phase

Stored floodwaters emptied from the Dam in seven

 days)- During this period the strategy transitioned from Strategy W4. The target was to protect the structural sáfety of thẽ dâm to the Drain Down Phase of the Event.

Deleted: 6

- Once the Drain Down Phase commenced, the target was to release stored floodwaters from the Dam within seven days of the flood peak passing through the dams, while controlling downstream impacts. Considerations impacting the duration and timing of the Drain Down Phase in this instance included:
- Causing no renewed increases in river levels below the Dam (except where they were unavoidable due to tidal influences);
- Maintaining an adequate release rate to ensure temporary pumps providing water supplies to the Lowood area could continue to operate.
- Minimising bank slumping impacts along the river, particularly in key areas such as Coronation Drive (as requested by Brisbane City Council);
- Re-opening Brisbane Valley Highway and key rural bridges as quickly as possible;
- Achieving FSL in the Dams at the conclusion of the Event.

January 2011 flood Event, Period 20 ol 20

Dateftime	Background
Commenced	Drain Down Phase
Thursday	Wivenhoe Directives \#35 to \#6
13 Jan 2011	Somerset Directives \#10 to \#13

13 Jan 2011
12:00
Completed
Wednesday
19 Jan 2011
12:00 and Bremer River subside. Downstream impacts were

Dam conditions
Total rainfall from
08:00 on 6 Jan
2011 to the end of
this period:

- Wivenhoe Dam 415 mm ;
- Somerset Dam Somerset
- Lockyer Creek

Lockyer
$337 \mathrm{~mm} ;$

- Bremer River 288 mm .

Wivenhoe Dam level fell from 74.61 m to 66.89 m over the six-day period.
Somerset Dama
level fell from
$103.96 m+699.00 \mathrm{~m}$
over thedix-day over the

Rainfall and model results

- Catchment average rainfalls during this six day period were:
- Wivenhoe Dam 14mm
- Somerset Dam 7mm
- Lockyer Creek 7mm.
- Bremer River Eme. controlled to ensure that, at no time during this phase, downstream water levels rose, except if impacted by tidal influences.
- During this period, stored flood water in Somerset Dam was drained into Wivenhoe Dam in accordance with the drain down target of seven days.
Importance was placed on opening the D'Aguilar Highway as soon as possible.

3 EVENT MOBILISATION AND STAFFING

3.1 Catchment conditions at Event commencement

In addition to the two floods occurring during the 2011 Flood Event, in the 25 days leading up to the January 2011 Flood Event, three separate flood events impacted Somerset and Wivenhoe Dams. Flood releases were made from Wivenhoe Dam on all but five of those days. The total outflow from the three additional events was around $690,000 \mathrm{ML}$. and the details of these events are outlined in Table 3.1.1 following:

During these events, requests were received from Councils and residents, either isolated or adversely impacted by bridge closures downstream of the Dam, to curtail releases as soon and as quilickly as possible.
This was a significant issue at the time, because bridge closures had occurred over the ttaditional \qquad
Christmas/New Year holiday period, including closures on Christmas and New Yearss) However, releases during these events were always made in accordance with the Manual.

Less than four days separated the end date of Event 3 and the commencespent of the January 2011 Flood Event. Due to the rainfall that had occurred in the Dam catchments throwghout December 2010, at the start of the January 2011 Flood Event, the catchment conditions were near saturation. The catchment was highly responsive, with the initia loss varying between 0 and 30 mm . 6 endinuing loss rates were also unusually low. Because the degree of catchment saturation increased as the kyent progressed, very high levels of run-off generation were experienced throughout the Event.

1

\qquad Deleted: This meant that any significant drain down of Somerset and Wivenhoe Dams during this period was impossible without causing significant bridge inundation downstream of the Dam and without exceeding minor flood levels in the lower Brisbane River. These actions were also not able to be justified by the Manual, particularly as Section 8.3 states the following in relation to Wivenhoe Dam: 11 "The spillway gates are not to be opened for flood control purposes prior to the reservoir level exceeding EL 67.25." This issue is also discussed in Section 17.0. II Finally,

Formatted: Font color: Red
Delated: d
Deleted: at the start of the
January 2011 Ftood Event
Formatted: Highlight
Deleted: T
Deleted:
Formatted: Highlight
Deleted: $\mathbb{}$

3 EVENT MOBILISATION AND STAFFING

 (contimisect)
3.2 Event mobilisation

There was no significant rainfall in the 24 hours to 09:00 on Wednesday 5 January 2011, however, in the 24 hours to 08:00, Thursday 6 January 2011, catchment average rainfall totals were: \qquad

- Wivenhoe Dam 28mm;
- Somerset Dam 21 mm ;
- Lockyer Creek 23mm;
- Bremer River 23mm.
| This rainfall was sufficient to trigger event mobilisation $07: 42$ Thursday 6 January 2011, using Strategies W1A and S2. Based on the rainfall at that time and subsequent model runs, the Somerset lake level was ${ }^{2}$ forecast to peak at 99.7 m (excluding forecast) and 100.0 m (including forecast). The Wivenhoe lake lever was forecast to peak at 68.3 m (excluding forecast) and 68.4 m (including forecast),

Deleted: ,
Deleted: which occurred
Deleted: on
Deleted:
Deleted:

The following actions were undertaken as soon as mobilisation occurred:

24/7 staffing commenced at the Flood Operations Centre. with at least one Duty Flood Operations Engineer and at least one trained Flood Officer present (minimum two persons) Deleted:

- 24/7_staffing commenced at the Dams, with at least two trained Dam Operators present;
- The Flood Operations Engineers were called back early from annual leave to assist with the management of the Event.

Staffing of the Flood Operations Centre and the Dams continued ont this basis until event demobilisation at 12:00, Wednesday 19 January 2011. During critical periods, balfour Flood Operations Engineers were present in the Flood Operations Centre and were actively involved in flood event decision-making processes.
These Engineers generally lived in the Flood Operations Centre building during the critical 96 hours of the Event, as did a number of the trained Flood Officers. e_{5}

Deleted: on
Deleted:
Deleted:
Deleted:
Deleted:

3.3 Qualifications of suffer duty

Flood Operations Engineers

The four Flood Operations Engineers approved by the Chief Executive to direct the operations of Somerset and Wivenhoe Dams during flood events are:
.....- Deleted:

- Flood Operatlońs Engineer $2 i$
- Flood Operations Engineer 3 :
- Flogdoperations Engineer 4.

Deleted: The approved Engineers all hold a current Certificate of Registration as

1. Knowledge of design principles related to the structural, geotechnical and hydraulic design of large dams, and s,

1 2. At least a total of five years suitable experience, having demonstrated their expertise in at least two of the following areas:

- Investigation, design or construction of major dams;
- Operation and maintenance of major dams;
- Hydrology with particular reference to flooding, estimation of extreme storms, water management or Registered Professional Engineer of Queensland, as Engineer of Queensland,
well as tertiary degrees in engineering.
- Applied hydrology with particular reference to flood forecasting and/or flood forecasting systems.

Flood Operations Engineers 1,2 and 3 are three of the most experienced and expert Engineers in the

one	Deleted: e
	Deleted: e
	Feleted: Australia
	Formatted: Font coior: Red

It should also be noted that the Flood Operations Engineers managed flood operations activitiessat North Pine Dam in coniunction with the January 2011 Flood Event which impacted Somerset Dam and Wivenhoe Dam. Preliminary indications, based on the North Pine Dam Emergency Action Plan, show fhe flood event impacting North Pine Dam was in the extreme range (AEP greater than 1 in 2.000).

Flood Officers
Nine Flood Officers, trained in Flood Operations Centre duties, assisted inflie Flood Operations Centre during the Event.

1. Flood Officer 1 ;
2. Flood Officer 2;
3. Flood Officer 3;
4. Flood Officer 4;
5. Flood Officer 5;
6. Flood Officer 6;
7. Flood Officer 7;
8. Flood Officer 8;
9. Flood Officer 9 .

Dam Operators

Thirteen Dam Operalostrained in Flood Operations Centre duties, operated Somerset and Wivenhoe Dams during the Event.

1. Dam Opadator 1;
2. Dampperator 2;
3. Darapoperator 3;

4, Yam Operator 4;
5. Dam Operator 5;
6. Dam Operator 6;
7. Dam Operator 7;
8. Dam Operator 8 ;
9. Dam Operator 9 ;
10. Dam Operator 10;
11. Dam Operator 11;
12. Dam Operator 12;
13. Dam Operator 13

3.4 Flood Operations Centre staffing

Flood Operations Centre staffing details for the duration of the Event are recorded in Tables 3.41, 3.42 and 3.43 below. Each table has been compiled in accordance with the confirmed Event Roster.

3 EVENT MOBILISATION AND STAFFING

Shift start times	Shift finish times	Wivenhoe Dam Operators	Somerset Dam Operators
Thu 06/01/2011 07:00	Thu 06/01/2011 19:00	Dam Operator 10 Dam Operator 11	Dam Operator 2 Dam Operator 13
Thu 06/01/2011 19:00	Fri 07/01/2011 07:00	Dam Operator 7 Dam Operator 6	Dam Operator 4 Dam Operator 6
Fri 07/01/2011 07:00	Fri 07/01/2011 19:00	Dam Operator 10 Dam Operator 11	Dam Operator 2 Dam Operator 13
Fri 07/01/2011 19:00	Sat 08/01/2011 07:00	Dam Operator 7 Dam Operator 6	Sh Operator 4 Dam Operator 8
Sat 08/01/2011 07:00	Sat 08/01/2011 19:00	Dam Operator 10 Dam Operator 12	Dam Operator 2 Dam Operator 3
Sat 08/01/2011 19:00	Sun 09/01/2011 07:00	Dam Operator 7 Dam Operatois	Dam Operator 4 Dam Operator 1
Sun 09/01/2011 07:00	Sun 09/01/2011 19:00	Dam Operator 10 Dam Operator 12	Dam Operator 2 Dam Operator 13
Sun 09/01/2011 19:00	Mon 10/01/2011 07:00 Qam Operator 7		Dam Operator 4 Dam Operator 1
Mon 10/01/2011 07:00	Mon 10/01/2011 19:00	Dam Operator 10 Dam Operator 12	Dam Operator 2 Dam Operator 13
Mon 10/01/2011 19:00	Tue 11/01/2014 07:00	Dam Operator 7 Dam Operator 9	Dam Operator 4 Dam Operator 1
Tue 11/01/2011 07:00	Tue 11/01/2011 19:00	Dam Operator 10 Dam Operator 12 Dam Operator 7 from 14:00	Dam Operator 2 Dam Operator 13
Tue 11/01/2011 19: 6	Wed 12/01/2011 07:00	Dam Operator 7 Dam Operator 6	Dam Operator 4 Dam Operator 1
Wed 12/01/2011 07:00	Wed 12/01/2011 19:00	Dam Operator 10 Dam Operator 12	Dam Operator 2 Dam Operator 13
Wed $12701 / 2011$ 19:00	Thu 13/01/2011 07:00	Dam Operator 7 Dam Operator 6	Dam Operator 4 Dam Operator 1
Thu 13/01/2011 07:00	Thu 13/01/2011 19:00	Dam Operator 10 Dam Operator 12	Dam Operator 2 Dam Operator 13
Thu 13/01/2011 19:00	Fri 14/01/2011 07:00	Dam Operator 7 Dam Operator 6	Dam Operator 4 Dam Operator 1
Fri 14/01/2011 07:00	Fri 14/01/2011 19:00	Dam Operator 10 Dam Operator 11	Dam Operator 2 Dam Operator 13
Fri 14/01/2011 19:00	Sat 15/01/2011 07:00	Dam Operator 7 Dam Operator 5	Dam Operator 4 Dam Operator 1

4 FLOOD EVENT PROCEDURES

4.1 Introduction

Seqwater has prepared a Flood Procedure Manual that assigns responsibilities to Seqwater personnel for flood event preparation, mobilisation and operation, in relation to Seqwater's Dams, including Somerset and Wivenhoe Dams.

The relationship between the Flood Procedure Manual and The Manual of Operational Procedures for Flood Mitigation at Wivenhoe Dam and Somerset Dam (the Manual) is outlined in Figure 4.1.1.

Figure 4.1.1-Felailonship beiveen the Flood Procedure Nantal
We Wandai of Operations Frocedines for Food Mitigation ai
Wivenhoe Dam ano Somersei Dam
The Flood Procedure Manual is an internal documentand is registered in Seqwater's internal document control system (Qpulse). Controlled hardcopies are? ssued to the following personnel:

The issue date for the current Flood Procedure Manual is January 2010.

4 FLOOD EVENT PROCEDURES

4.2 Flood Operations Centre preparedness

Prior to the January Flood Event, Flood Operations Engineer 2 was designated the Flood Operations Manager in accordance with the requirements of the Seqwater Flood Procedure Manual. In conjunction with Flood Operations Engineer 1 (a Senior Flood Operations Engineed) Flood Operations Engineer 2 was responsible for the overall management of the Flood Operations Centre leading up to the Event and ensured:

- A Flood Operations Engineer and three Flood Officers were on close call at all times, and ready to attend the Flood Operations Centre if called;
- Sufficient Flood Operations Engineers and Flood Officers were available to staff the Flood Operations Centre if a flood event was declared;
- Contact details for Flood Operations Engineers and Flood Officers were up-to-date;
- Current copies of the following documents were available in the Flood Operations Centre:
- The Manual;

Deleted: The Manual of

- Wivenhoe Dam - Emergency Action Plan
- Somerset Dam - Emergency Action Plan.
- The following facilities were available in the Flood Operations Centre:
- The data collection and modelling systems required to manage flood quents at Somerset and Wivenhoe Dams:
- Suficient stationery and forms: \qquad
- Landline telephone, mobile telephone, satellite telephone, Seqwater radio network, facsimile and email communication systems
- Power systems and back-up power systems required to ensure computer system reliability during the Flood Event.

As defined by the Seqwater Flood Procedure Manual, the role and responsibilities of the Flood Operations \qquad

Deleted: it should be noted

 that the role of tManager are completely separate to the roles and respogsibilities of Flood Operations Engineers. However a single person can hold both roles at any point in timen

Deleted: as defined by the Seqwater Flood Procedure Manual
When one of the Flood Operations Engineers is on call, this person is referred to as the Duty Flood Operations Engineer. There is always a single designated Duty Flood Operations Engineer on call 24 hours a day, seven days a week.

When on call, the Duty Flood Opertions Engineer (one of the four Flood Operations Engineers described in
Section 3.3kensured they:

- Were contactable at all times by telephone;
- Had constant aocess to facilities that provided appropriate real-time monitoring of dam and catchment conditions;
- Were abte-to travel to the Flood Operations Centre in two hours to direct the mobilisation and operation of the Ełodd Event, without compromising the safety of the Dams or the intent of the Manual;
- Asircoming Duty Flood Operations Engineer, organised the handover from the current duty staff;
- As outgoing Duty Flood Operations Engineer, prepared a status summary sheet for Somerset and Wivenhoe Dams;
- Contacted the Flood Operations Manager if any issues arose with the potential to adversely impact the operations of Flood Operations Centre.

When on call, the nine Flood Officers (described in Section 3.3) ensured they:

- Were contactable at all times by telephone;
- Reported to the Duty Flood Operations Engineer if at any time while being on call they became unfit for duty;
- Were able to travel to the Flood Operations Centre within two hours of being called;
- Attended the close call handover meetings organised by the Duty Flood Operations Engineers.

4.3 Flood Operations Centre mobilisation

The Seqwater Flood Procedure Manual requires the Duty Flood Operations Engineer to declare a flood event and mobilise the Flood Operations Centre, if the Duty Flood Operations Engineer considers it likely the FSL of Somerset Dam or Wivenhoe Dam will be exceeded as a result of rainfall occurring in the Dam catchments and flood releases are likely. The Flood Operations Centre is mobilised as soon as a flood event is declared. Flood Operations Engineer 2 was the Duty Flood Operations Engineer who declared the January 2011 Flood Event by email at 07:42, Thursday 6 January 2011 (see Appendix H)

When the Flood Operations Centre was mobilised, the Duty Flood Operations Engineer ensured the following actions were undertaken:

- Notified the Senior Flood Operations Engineers of the mobilisation;

Deleted: When on call, Senior Flood Operations Engineer or Flood Operations Engineer is referred to as the Duty Flood Operations Engineer. There is always a single Duty Flood Operations Engineer on call at all times, 24 hours a day, seven days a week. $1 /$

Deleted: also
Deleted: . This occurred
Deleted: on

- Commenced recording significant events in the Event Log;

Deleted: that

- Contacted the required Flood Officers to commence duty at the Flood Operations Cefte;
- Contacted the Seqwater Operations Coordinator responsible for Somerset Dam and Wivenhoe Dam, and \mid provided instructions to send Dam gperations staff to the Dams. The Operalions Coordinator was also advised of the expected duration of the Flood Event to allow time to organise'suitable staffing arrangements for the duration of the Event;
- Established 09:00 on Sunday 2 January 2011 as the start time for the Event for the purposes of modelling predictions;
- Established a suitable directory structure within the computenthetwork to manage the Flood Event data
- Examined and cleaned all rainfall and stream_flow datavor the Event prior to use in the flood modelling systems;
- Derived inflow hydrographs for:
- Wivenhoe Dam;
- Somerset Dam;
- Lockyer Creek catchment
- Bremer River catchment.
- Examined these derived inflowtydrographs across a variety of appropriate rainfall scenarios;
- inputted the derived inflowhydrographs for Somerset Dam, Wivenhoe Dam, Lockyer Creek catchment and

Bremer River catchment Into Somerset and Wivenhoe Dams operations spreadsheet and ran this \qquad Deleted: and Somerset program;

- Determined gate operations strategies for Somerset and Wivenhoe Dams based on the resulting data from the operations'spreadsheet and in accordance with the strategies outlined in the Manual;
- Advise CABrisbane City Council, Ipswich City Council and Somerset Regional Council of the gate operations strafiegies to allow roads to be closed prior to inundation;
- Drected gate operations at the Dams as appropriate by instructing the Dam Supervisors by email and facsimile of gate movements. Instructions were also given verbally by telephone prior to written instructions being released;
- Advised Seqwater's Dam and Source Operations Manager of gate operations by providing a copy of ail Flood Operations Directives and regular updates including advice of longer-term strategies to manage the Flood Event. This allowed Seqwater to provide appropriate flood event advice to the public and other stakeholders, including the Queensland Water Commission and the Water Grid Manager;
- Advised the Bureau of Meteorology, Brisbane City Council and the Dam Safety Regulator of the gate operations strategies ${ }_{+}$and actual and projected water releases from Wivenhoe Dam.

4.4 Flood Operations Centre operations

During the Flood Event, the four Flood Operations Engineers worked closely together to ensure the following took place, in accordance with the Flood Procedure Manual:

- Suitable staffing arrangements were in place for the Flood Operations Centre and the impacted Dams for the duration of the Flood Event;
- Staff working in the Flood Operations Centre during the Event signed the Flood Event Shift Log at the start and end of a shift. However, because a number of staff were living in the building housing the Flood Operations Centre during the Event, some sign on and sign off details were not properly recorded. This has been recognised as an area for improvement for future flood events.

During the Flood Event, the Senior Flood Operations Engineer set the overall strategy for the managrenent of the Flood Event in accordance with the Manual. The Duty Flood Operations Engineers directed the operations of the Flood Control Centre, in accordance with the overall strategy. In situations whele two or more Flood Operations Engineers were on duty simultaneously, these duties were shared eqtally. The Duty Flood Operations Engineers ensured the following actions took place during the Event, in 马actordance with the Flood Procedure Manual:

- All significant events were recorded in the Event Log;
- The integrity of the ALERT System was maintained;
- Flood releases from the Dams were in accordance with the Manual and the RTFM was used to support the decision-making processes around the releases;

- Software issues impacting on the operation of the ALERT System were identified and resolved \qquad
- All notifications specified in the Flood Manuals and Emergency Action Plans were recorded in the Event Log;
- Accurate plots of headwater levels were maintained for each of the Dams;
- Appropriate handovers took place at the end ofeach shift to ensure incoming Officers had the following information:
- Reservoir storage elevations at each Dam;
- Radial gate, sluice gate andregulator valve openings at each Dam
- Flood release proceduresiofeng applied and the reason for their selection;
- Status of compliance with the Flood Manuals and Emergency Action Plans;
- Status of the comnumication systems;
- Status of the datagathering network;
- Status of copputer systems and Flood Modelling Systems;
- Any areas of concern associated with the management of the Flood Event;
- Areas tín which the discretion has been exercised, in accordance with the Flood Manuals.
- Flood Qfficers on duty in the Flood Operations Centre undertook all duties as directed by the Duty Flood Operations Engineer;
- Brifbane City Council, Ipswich City Council and Somerset Regional Council were contacted as appropriate
§lo allow roads to be closed prior to inundation and for any necessary arrangements to be made for community isolation and/or necessary evacuations. (The Manual allows for immediate releases to be initiated if the safety of a Dam is at risk. However, in accordance with, Seqwater's duty of care to public safety when making Dam releases, every attempt is made to close impacted roads prior to inundation by
 water outflows from gate operations, and to make appropriate arrangements for community isolation and evacuations due to the risk to public safety.):
- Gate operations were directed at the Dams as appropriate, by instructing the Dam Supervisors by email and facsimile about gate movements. Instructions were also explained verbally by telephone prior to the written instructions being released;
- Seqwater's Dam and Source Operations Manager was advised of all gate operations through the provision of a copy of all Flood Operations Directives and regular updates, including advice of longer term strategies
to manage the Flood Event. This allowed Seqwater to provide appropriate flood event advice to the public and other stakeholders, including the Queensland Water Commission and the Water Grid Manager;
- The Bureau of Meteorology, Brisbane City Council and the Dam Safety Regulator were advised of the gate operation strategies and actual and projected water releases from Wivenhoe Dam.

As the Flood Ejent progressed, a number of potential issues arose. These included, the potential for the Flood Operations Centre to lose mains power, and a break-down of the communication link between the main (Turbot Street) and back-up (George Street) Flood Operations Centre, The procedures above helped in addressing these potential issues. Key personnel were notified of the critical nature of the function of the Flood Operations Centre, including. ENERGEX and the building managers from both the Turbot Street and George Street locations. Mains power and telephone communication was maintained at the Flood Operations Centre, throughout the Event however, the back-up Centres did operate under stand-by power for the period the Côe was flood-effected.

Both the main and,back-up, Flood Operations Centre are connected to an un-interrupted powers sapply, and emergency standby power facilities to ensure they can continue to operate under flood event coriditions System functions were not impacted during this Flood Event, however, a problem did atlse with the hack-up Linux PC (NAAMAH) which houses the redundant Real Time Flood Model (RTFM) system. Some file corruption errors where noted in daily routine system checks. These were attributed to a failure of the file mifroring process that ensures back-up copies of the data in the main Flood operations Centre PC (NOAH) are captured on the gack-up.PC (NAAMAH). This problem was quickly rectified byre-booting, the back-up,PC.

Ut was noted that during the Flood Event, when ALERT data captured ID the RTFM was compared against equivalent data captured in Envirumon, FLOOD-Col appeared to hatye received less data for some sensors. This issue will be investigated further as the reason could relate to a number of factors including data transmission, data reception and data filtering processes. The differences were not necessary significant however the reason for this anomaly requires further invegtigation \qquad 5^{2}
During the Event. she email server in the Flood Operitions Centre exceeded its size limit(6MB) requiring the working space to be freed to allow, emall trafficto fiow again. This jssue arose due to a combination of the volume of email traffic,during certain periods of the Event and also the size of some of the emails being transmitted. A routine clearing of the email server's working area solved this problem and actions will be taken to ensure it does not continue to diappen in the roll-out of new Flood Operations Centre IT environment

Landline phones and facsimiles atsomerset Dam and Wivenhoe Dam were also дnavailable for periods of time due to impacts arising from the flood, event. However, lines of communication were maintained between between the Flood Operations Centre and the, Dams through, the use of satellite phones, two-way radio, mobile phones, and emaib

Seqwater's corporate communications, were also impacted due to flooding in the CBD which resulted in parts of the city being disconnected from mains power. Seqwater's corporate computer systems were unavailable for a period during this time, however, this did not impact the functioning of the main or hack-up Flood Operations Centre. numberin
Deleted: f...e....arose including...o...in... ...s...... [1] Deleted: II
Deleted: were addressed through the procedures outlined above and the respective building managers and Energex were were aware of the critical nature of the function of the FOC....The ...main FOC loceted in Turbot Street...did not loose mains power or telephone communications e...whilst ... B... faciitity, located in George Street...did...resort to...a... by the flood ... [2]

4.5 Somerset Dam and Wivenhoe Dam preparedness

Prior to the Flood Event, the Seqwater Operations Coordinator responsible for Somerset and Wivenhoe Dams ensured the following actions took place, jn accordance with the Flood Procedure Manual:

- At least two Dam Operators were on close call for both Somerset Dam and Wivenhoe Dam at all times;
- Sufficient Dam Operators were available to staff Somerset Dam and Wivenhoe Dam should a major flood pevent be declared;

Deleted: F
Deleted: E
Deleted:
Deleted:

- Current copies of the following documents were available at Somerset Dam and Wivenhoe Dam:
- The Manual of Operational Procedures for Flood Mitigation for Wivenhoe Dam and Somerset (Jam (Revision 7):
- Emergency Action Plan;
- Standing Operating Procedures;
- Operation and Maintenance Manual.
- The following facilities were available at Somerset Dam and Wivenhoe Dam:
- Sufficient stationery and forms:
- Landline telephone, mobile telephone, satellite telephone, Seqwater radiontetwork, facsimile and email communication systems;
- Power systems and back-up power systems to ensure computer systems and communication systems were able to operate reliability during the Flood Event
- All preventive maintenance work was undertaken at both Dams.iflaccordance with the Dam Operation and Maintenance Manuals.
- The flood release infrastructure and associated back-upsystems at both Dams was kept operationally ready;
- While on close call, Dam Operators ensured:
- They were contactable at all times bytelephone;
- - In the event of being "unfit for duty", athey reported to the Duty Flood Operations Engineer currentiy \qquad Deleted: ; on close call;
- They were able to travel to the they were assigned to within two hours of being called.

4 FLOOD EVENT PROCEDURES

4.6 Somerset Dam and Wivenhoe Dam mobilisation

Following notification the Flood Event had been declared, the Seqwater Operations Coordinator responsible for Somerset Dam and Wivenhoe Damensured the following actions were completed, in accordance with the \qquad Deleted: , Flood Procedure Manual:

- The Principal Engineer Dam Safety was notified of the mobilisation;
- Significant events were recorded in the Event Log;
- The Dam Operators on close call were contacted and directed to travel to the Dams. Two Dam Operators were directed to each site and at least two Dam Operators remained on duty at all times during the Event;
- During each shift, a Dam Operato was nominated to be the Dam Superviso for the purposes of managing the Flood Event.

	Deleted: s
	Deleted: ere
	Deleted: s

As each Dam Supervisor arrived at their assigned Dam, the Dam Supervisor completed the followith actions, in accordance with the Flood Procedure Manual:

- Checked communication existed with the Flood Operations Centre;
- Commenced recording significant events in the Event Log;
- Completed the Flood Readiness Checklist contained in the Flood Procedurevinanual (see Appendix i); \qquad
- Undertook \emptyset ood gperations as directed by the Flood Operations Centre

4.7 Somerset Dam and Wivenhoe Dam operations

As the Flood Event commenced, the Dam Supervisor at Somerset Dam and Wivenhoe Dam ensured the following actions took place, in accordance with the Flood Procedure. Manual. At the beginning of each shitt, a new Dam Supervisor was appointed.

- All significant events were recorded in the Event Log;
- Flood releases were undertaken in accordance with directions provided by the Flood Operations Centre;
- All notifications required by the Manuals and Emergency Action Plans were made;
- Handovers at the end of each shift were conducted to ensure incoming Officers were aware of:
- Reservoir storage elevations at each Dam;
- Radial gate, sluice gate and regulator valve openings at each Dam;
- Status of the communication systems;
- Any areas of concern associated with the management of the Flood Event.
- The Duty Flood Operations Engineer was advised of any issues arising during the Evept, with the potential to adversely impact flood operations.
(Note: During the Event, Wivenhoe Dam experienced a temporary loss of pyains power, however, this did not impact Dam operations because the on-site, standby diesed generator provided full power during this time. Two other separate back-up power systems were also available to ensure the continued operation of the radial gates if needed.)

Page 5: [1] Deleted	24/02/2011 2:31:00 PM

f

$$
\text { Page 5: [1] Deleted } \overparen{ }
$$

e

Page 5: [1] Deleted	24/02/2011 2:34:00 PM

arose including
Page 5: [1] Deleted D $_{\text {D }}$.

0
Page 5: [1] Deleted
in

Page 5: [1] Deleted
24/02/2011 2:35:00 PM
Page 5: [1] Deleted D $_{\text {D }}$.
s

Page 5: [1] Deleted

24/02/2011 2:39:00 PM
se

Page 5: [2] Deleted

were addressed through the procedures outlined above and the respective building managers and Energex were were aware of the critical nature of the function of the FOC.

Page 5; [2] Deleted

24/02/2011 2:43:00 PM
The

Page 5: [2] Deleted

main FOC located in Turbot Street

$$
\begin{aligned}
& \text { Page 5: [2] Deleted } \\
& \text { 24/02/2011 2:43:00 PM } \\
& \text { did not loose mains power or telephone communications }
\end{aligned}
$$

Page 5: [2] Deleted
e

Page 5: [2] Deleted	24/02/2011 2:43:00 PM
whilst	

Page 5: [2] Deleted

B

Page 5: [2] Deleted

24/02/2011 2:43:00 PM
facility, located in George Street
Page 5: [2] Deleted did

Page 5: [2] Deleted

24/02/2011 2:44:00 PM
resort to

Page 5: [2] Deleted

a

Page 5: [2] Deleted
24/02/2011 2:44:00 PM
by the flood

Page 5: [3] Deleted	25/02/2011 3:02:00 PM

FOC
Page 5: [3] Deleted $\int_{\text {D }}$.
have
Page 5: [3] Deleted $\int_{\text {I }}$.

U

Page 5: [3] Deleted	2011 3:02:00 PM

P

Page 5: [3] Deleted	25/02/2011 3:02:00 PM

S

ge 5. [3] Deleted	

(UPS)

Page 5; [3] Deleted

25/02/2011 3:03:00 PM
and so they can cope with this event should it arise

Page 5: [4] Deleted

25/02/2011 3:03:00 PM
Nos

Page 5: [4] Deleted	25/02/2011 3:03:00 PM
were impacted	

```
Page 5; [4] Deleted
Page 5: [4] Deleted

\section*{Page 5: [4] Deleted}

25/02/2011 3:06:00 PM
FOC

Page 5: [4] Deleted
25/02/2011 3:06:00 PM
B

\section*{Page 5: [4] Deleted}

25/02/2011 3:06:00 PM
FOC

\section*{Page 5: [4] Deleted}

25/02/2011 3:07:00 PM
a

\section*{Page 5: [4] Deleted}
of
\begin{tabular}{|c|c|}
\hline Page 5: [4] Deleted & 25/02/2011 3:07:00 PM \\
\hline B & \\
\hline Page 5: [4] Deleted & 25/02/2011 3:07:00 PM \\
\hline
\end{tabular}

\section*{Page 5: [5] Deleted}

25/02/2011 3:09:00 PM
During the flood event i
Page 5: [5] Deleted

\section*{Page 54 [6] Deleted}

25/02/2011 3:19:00 PM
needs further investigation

\section*{Page 5: [7] Deleted}

25/02/2011 3:10:00 PM
, and it

\section*{Page 5: 71 Deleted}

25/02/2011 3:10:00 PM
but

\section*{Page 5: [7] Deleted}

25/02/2011 3:21:00 PM
it is considered worthy to examine this issue further to identify the reason for this anomaly

\section*{Page 5: [8] Deleted}

25/02/2011 3:22:00 PM
Other incidents that occurred during the event include the


\section*{Page 5: [8] Deleted}

25/02/2011 3:22:00 PM ing
Page 5: [8] Deleted \(\int_{\text {l }} \int_{\text {l }}\)

25/02/2011 3:22:00 PM
and

\section*{Page 5: [8] Deleted}

25/02/2011 3:22:00 PM
enable
\begin{tabular}{|c|c|}
\hline Page 5: [8] Deleted & 25/02/2011 3:22:00 PM \\
\hline
\end{tabular} E

25/02/2011 3:23:00 PM
problem
\begin{tabular}{|c|c|}
\hline Page 5: [8] Deleted & 25/02/2011 3:23:00 PM \\
\hline from & \\
\hline
\end{tabular}

\section*{Page 5: [8] Deleted}

\section*{Page 5; [8] Deleted}
generated
\begin{tabular}{|c|c|}
\hline Page 5: [8] Deleted & 25/02/2011 3:23:00 PM \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Page 5: [8] Deleted & 25/02/2011 3:24:00 PM \\
\hline
\end{tabular}

E

The

\section*{Page 5: [8] Deleted}

25/02/2011 3:27:00 PM
cleansing

> Page 5: [8] Deleted
> 25/02/2011 3:27:00 PM
> of the Email server ensured that this

\section*{Page 5: [8] Deleted}

25/02/2011 3:28:00 PM
did not prevail. This issue will be resolved

\section*{Page 5: [8] Deleted}

\section*{Page 5: [9] Deleted}

25/02/2011 3:28:00 PM
and Somerset Dam

\section*{Page 5: [9] Deleted}
unavailability
\begin{tabular}{|c|c|}
\hline Page 5: [9] Deleted & 25/02/2011 3:29:00 P \\
\hline
\end{tabular}
at various times throughout the
Page 5. [9] Deleted

Redundancy of c
\begin{tabular}{|c|c|}
\hline Page 5: [9] Deleted & 25/02/2011 3:30:00 PM \\
\hline
\end{tabular}
lines enabled contact to be maintained
\begin{tabular}{|c|c|}
\hline Page 5: [9] Deleted & 25/02/2011 3:30:00 PM \\
\hline d & \\
\hline Page 5: [9] Deleted & 25/02/2011 3:30:00 PM \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Page 5. [9] Deleted & \(2 / 2011\) 3:30:00 PM \\
\hline
\end{tabular}

E

\section*{Page 5: [9] Deleted} 25/02/2011 3:30:00 PM
ensured communications were maintained at all times
\begin{tabular}{|c|c|}
\hline Page 5: [10] Deleted & 25/02/2011 3:30:00 PM \\
\hline
\end{tabular}

C

\section*{Page 5. [10] Deleted}

25/02/2011 3:30:00 PM
within Seqwater
affected

Page 5: [10] Deleted
when the flood impacted

\section*{Page 5: [10] Deleted}

25/02/2011 3:31:00 PM
and parts of the CBD were
\begin{tabular}{|c|c|}
\hline Page 5; [10] Deleted & 25/02/2011 3:32:00 PM \\
\hline
\end{tabular}
but
\begin{tabular}{|c|c|}
\hline Page 5; [10] Deleted & 25/02/2011 3:32:00 PM \\
\hline
\end{tabular}
on
\begin{tabular}{|c|c|}
\hline Page 5: [10] Deleted & 25/02/2011 3:32:00 PM \\
\hline
\end{tabular}

B

\section*{Page 5: [11] Deleted}
foo
24/02/2011 4:38:00 PM
ing the Flood Operations Centre with the
Page 5: [12] Deleted
24/02/2011 4:38:00 PM
ed out for a short period of time however,
Page 5: [13] Deleted \(\quad\) foo \(\quad, \quad\) 24/02/2011 4:38:00 PM
stand-by power was connected.

\subsection*{5.1 Background}

A real time flood monitoring and forecasting system has been established to monitor rainfall and water levels
in the Dam catchments and to provide adequate a accurate and timely information for informed decision: \(^{\prime}\) making.

Field stations consisting of rainfall and water level gauges \(\mu s e\) the Event Reporting Radio Telemetry System (ERRTS) to communicate data to the Flood Operations Centre. More than one gauge may be located at an individual field station. Water level gauges are often located at the Department of Environment and Resource Management (DERM) gauging stations, DERM is responsible for the maintenance of the water level gauges and Seqwater for the ERRTS equipment.

Rainfall gauges consist of a standard tipping bucket. Water level gauges vary in type and model but incture shaft encoders, wet pressure transducers and dry pressure transducers. At a rainfall gauge, an event \% defined as the tip of the bucket. At a water level rainfall gauge \({ }_{2}\) an event is defined as an incremeptalincrease or decrease in water level.


When an event is triggered at a gauge, data is transmitted via VHF radio through a series of redundant radio repeaters to the Flood Operations Centre and pther data collection centres. Each sigh phas anique
\(\qquad\) computer hardware platforms serial port via a decoder. It is then time stamped read decoded, accepted or rejected, filtered, validated and then stored in a gauge database in the Centre's FLOOD-Col and Enviromon databases. Redundant base stations at Mineral House and the Land Certte'in Brisbane's CBD are synchronised with the Flood Operations Centre datapase,

The FLOOD-Col and Enviromon databases contain gauge detafgincluding:

- Gauge name;
- ALERT number;
- Type of gauge;
- Calibration information;
- Alarm thresholds;
- Rating curve information, if appicable.

Both ELOOD-Col and Envirohon allow filtered gauge datato be viewed in either a text or graphical format. Information that can be viewed or edited includes height, discharge, rainfall pluviographs, rainfall hyetographs, lake levels and Dam volumes, and applications are also available for viewing groups of gauges.

The combination of ERRTS field stations, rainfall gauges and water level gauges, radio network and data collection softwere is referred to as an ALERT system. ALERT, pr Automated Local Evaluation in Real Time System, has become a standard for food warning systems in Australia and the United States of America, and is widely used by the Bureau of Meteorology (BoM) and other flood warning agencies throughout the worid.
EOOD-Ops is the modelling soflware used to analyse and produce forecast runoff. It extracts data from the QOOD-Col database, calculates areal rainfals and generates hydrographs of runoff. Model parameters can be adjusted and forecast rainfall included as an option. Results can be displayed and imported into gate operation models. The ALERT system, FLOOD-Ops and ancillary software make up the Real Time Flood Model (RTFM).

\section*{5 DATA COLLECTION SYSTEM PERFORMANCE}

\subsection*{5.2 Field station descriptions}

Seqwater operates 75 rain gauges and 71 river gauge field stations within and around the Brisbane River Basin. Of these 146 sites, 129 operate under the ALERT system and the remaining 17 operate as telephone telemeter gauging stations, but are not directly available in the operational suite.

Manual gauge board readings are faken at Somerset and Wivenhoe Dams to confirm the ALERT data received from these sites. These manual observations form the basis of gate operations.

In addition to the Seqwater owned and operated network, the Flood Operations Centre also has access to Enviromon, which collects data from an additional 225 rain gauges and nearly 200 water level gauges throughout South East Queensland

Locations of the rainfall stations are shown in Figure 5.2 .1 and the Seqwater water level network is shown in Figure 5.2.2.




Figure 5.2.2-5 - sequtervater ievelnetworas at denuarzoni
Prior to the January 2011 Flood Event, four out of 75 rain gauges ( \(95 \%\) avalability) and six out of 71 river

In many instances, more than one gauge is located on an individual station site to allow for the periodic nonoperation of individual gauges. Accordingly, due to this in-built network redundancy, the presence of these non-operational gauges did not impact on data quality during the Event.


\footnotetext{
Table 5.2.3-- Remfallgages mank wu of ahon or susped af Food Even commencement
}

\section*{5 DATA COLLECTION SYSTEM PERFORMANCE}


\section*{5 DATA COLLECTION SYSTEM PERFORMANCE}


\section*{5 DATA COLLECTION SYSTEM PERFORMANCE}
| For the duration of the Flood Event, just over 130,000 individual observations, 32,000 rainfall readings and neariy 100,000 water level readings were received from the ALERT network in the Flood Operations Centre. This provides an indication of the system load that is required to be managed during the Event.

\author{

}

Table 5.2 .7 below shows the number of readings received from each rainfall and water level gauge.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & .7 below shows the & & angs & & & gaug & & \multirow[t]{2}{*}{Formatted: Header distance from edge: 1.25 cm , Footer distance from edge: 0.5 cm , Col \#1 width: \(7.12 \mathrm{~cm}, \mathrm{Col} \# 1\) spacing: 1.27 cm , col \#2 width: 7.12 cm , Not Force equal column width} \\
\hline \begin{tabular}{l}
Alert \\
ID
\end{tabular} & Station name & Gauge type & Number of readings & Alert ID & Station name & Gauge type & Number of readings & \\
\hline 6500 & Mt Giorious AL-B & RN & 128 & 6617 & Little Egypt AL & RN & 341 & \\
\hline 6511 & Mt Pechey AL & RN & 430 & 6619 & Mt Casile AL & RN & 583.0 & \\
\hline 6514 & Gregors Ck AL-P & RN & 548 & 6621 & Nukinenda AL & RN & 449 & \\
\hline 6517 & Gregors Ck AL-B & RN & 2 & 6623 & Tarome AL-P & RN & \[
391
\] & \\
\hline 6520 & Boat Mountain AL & RN & 462 & 8630 & Lyons Br AL-B & RN & 839 & \\
\hline 6523 & Cressbrook Dam AL & RN & 442 & 6633 & Lyons Br AL-P & QN & 614 & \\
\hline 6526 & Helidon AL & RN & 57 & 6636 & Wivenhoe Dam HW & RN & 605 & \\
\hline 6529 & St Aubyns AL & RN & 443 & & ALE & & & \\
\hline 6540 & Yarraman AL & RN & 472 & 6641 & Wivenhoe fart TW ALERT-B & RN & 515 & \\
\hline 6542 & Cooyar Ck AL & RN & 489 & 6643 & Wivenhoe Dam TW & RN & 648 & \\
\hline 6550 & Walloon AL-P & RN & 416 & & ALERT-P & & & \\
\hline 6553 & Rosentretters Br AL & RN & 400 & 6846 & lowood AL-B & RN & 538 & \\
\hline 6556 & Glenore Grove AL & RN & 456 & 6649 & Lowood AL-P & RN & 552 & \\
\hline 6559 & Savages Crossing & RN & 655 & 6551 & Amberley AL-P & RN & 406 & \\
\hline & AL & & & 6853 & Amberley AL-B & RN & 389 & \\
\hline 6562 & Kalbar Weir AL & RN & 336 & 6680 & Mt Glorious AL-P & RN & 980 & \\
\hline 6565 & Tenthill AL & RN & 81 人 & 6690 & Mt Mee AL-P & RN & 769 & \\
\hline 6568 & O'Reillys Weir AL & RN & 527 & 6701 & Mk Mee AL-B & RN & 676 & \\
\hline 6571 & Harrisville AL & RN & 308 & 6702 & Woodford AL-B & RN & 652 & \\
\hline 6574 & Caboonbah AL & RN & 484 & 6705 & Woodford Al-P & RN & 688 & \\
\hline 6577 & Gatton AL & RALY & 447 & 6708 & Devon Hills AL & RN & 523 & . \\
\hline 6580 & Adams Br AL & RN & 437 & 6711 & Baxters Ck AL & RN & 687 & \\
\hline 6583 & Showground Weik & RN & 513 & 6714 & Ferris Knob AL & RN & 587 & \\
\hline 6590 & Somerset Dam HW ALERT-B & RN & 532 & 6716 & West Belithorpe AL & RN & 802 & \\
\hline 6593 & Somerser'Dam HW & RN & 567 & 6717 & Linville AL & RN & 479 & \\
\hline & ALERTP & & & 6730 & Jindalee AL & RN & 343 & \\
\hline 6596 & Crows Nest AL & RN & 463 & 6733 & Rosewood Al & RN & 480 & , \\
\hline 6598 & Toowoomba AL & RN & 443 & 6736 & Kuss Rd Al & RN & 106 & \\
\hline 6600 & Kilcoy AL & RN & 551 & 6739 & Washpool AL & RN & 292 & \\
\hline V6601 & Mt Binga AL & RN & 498 & 6742 & Walloon AL-B & RN & 410 & \\
\hline 6602 & Top of Brisbane AL & RN & 221 & 6748 & Brisbane City AL & RN & 382 & \\
\hline 6603 & Blackbutt AL & RN & 543 & 6751 & Mit Crosby AL & RN & 313 & \\
\hline 6604 & Toogoolawah AL & RN & 491 & 6754 & Moggill AL-P & RN & 306 & \\
\hline 6606 & West Woodbine AL & RN & 330 & 6774 & Wilsons Peak AL-P & RN & 1 & \\
\hline 6607 & Lindfield AL & RN & 688 & 6775 & Peachester AL & RN & 133 & \\
\hline 6608 & Jimma AL & RN & 469 & 2168 & Ipswich AL & WL & 1763 & Deleted: RV \\
\hline 6610 & Kluvers Lkt AL & RN & 698 & 6515 & Gregor Ck AL-P & WL. & 1799 & Deleted: RV \\
\hline 6615 & Thornton AL & RN & 390 & 6521 & Boat Mountain AL & W, & 2177 & Deleted: RV \\
\hline
\end{tabular}

\section*{5 DATA COLLECTION SYSTEM PERFORMANCE}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Alert ID & Station name & Gauge type & Number of readings & Alert ID & Station name & Gauge type & Number of readings \\
\hline 6524 & Cressbrook Dam AL & \(\underline{W}\) & 1424 & 6644 & Wivenhoe Dam TW & W, & 4854 \\
\hline 6527 & Helidon AL & \(\mathrm{W}_{2}\) & 407 & & ALERT-P & & \\
\hline 6543 & Cooyar Ck AL & \(\mathrm{W}_{\mathrm{r}}\) & 1529 & 6645 & Splityard Ck Dam AL & Wil & 918 \\
\hline 6551 & Walloon AL-P & Wh. & 1230 & 6647 & Lowood AL-B & W. & 2366 \\
\hline 6554 & Rosentretters Br AL & \(\mathrm{W}_{5}\) & 895 & 6650 & Lowood AL \({ }^{\text {P }}\) & W & \\
\hline 6557 & Glenore Grove AL & \(\mathrm{W}_{4}\) & 3666 & 6652 & Amberley AL-P & W. & 5315 \\
\hline 6560 : & Savages Crossing & WL & 4220 & 6654 & Amberiey AL-B & W & 1113 \\
\hline & AL & & & 6655 & Buaraba Creek AL & W. & 299 \\
\hline 6563 & Kalbar Weir AL & WL & 1247 & 6703 & Woodford AL-B & W, & 1048 \\
\hline 6566 & Tenthill AL & \(\mathrm{Wl}_{5}\) & 86 & 6706 & Woodford AL-P. & Wha & 1138 \\
\hline 6569 & O'Reillys Weir AL. & WL, & 1341 & 6709 & Devon Hilis AL & W & 1631 \\
\hline 6572 & Harrisville AL & \(\mathrm{Wh}_{4}\) & 1057 & 6718 & Linville AL & W & 1611 \\
\hline 6578 & Gatton AL & \(W_{L}\) & 3598 & 6720 & Kilcoy Creek AL & \(\mathrm{WL}_{4}\) & 3715 \\
\hline 6581 & Adams Br AL & Wh & 4666 & 6731 & Jindalee AS \({ }^{\text {y }}\) & W & 1465 \\
\hline 6584 & Showground Weir AL & WL & 1179 & 6734 & Rosewood AL & W & 1070 \\
\hline 6591 & Somerset Dam HW ALERT-B & \(\mathrm{W}_{\mathrm{a}}\) & 808 & 6737 & Kuss RdAL & m, & 791 \\
\hline & & & & 6740 & Washpool AL & W & \\
\hline 6594 & Somerset Dam HW ALERT-P & \(\mathrm{W}_{\text {L }}\) & 899 & \[
684
\] & Nallorm-A & W4 & 133 \\
\hline 6595 & Somersef Dam HW & WL & 1153 & 6747 & Whyte Island AL & \(\underline{W}\) & 4667 \\
\hline & ALERT (kest) & & & 6749 & Brisbane City AL & WL & 1653 \\
\hline 6627 & Maroon Dam AL & \(W_{1}\) & 1268 & -6752 & Mt-Crosby-AL & Wr & 3562 \\
\hline 6631 & Lyons Br AL-B & Wh. & 1989 & 6755 & Moggil AL-P & W & 1569 \\
\hline 6634 & Lyons Br AL-P & \(W_{4}\) & \[
2670
\] & 6756 & Burtons Bridge-AL & Wr & -1716 \\
\hline 6637 & Wivenhoe Dam HW ALERT-B & \(\mathrm{W}_{4}\) & 7212 & -6757 & Kholo Bridge AL & \(\mathrm{Wr}_{0}\) & 1324 \\
\hline 6638 & Wivenhoe Dam HW & W \({ }^{3}\) & 1161 & 6758 & Mt Crosby AL-B & \(\underline{W}\) & 555 \\
\hline & ALERT-B2 & & & 6776 & Peachester AL & W & 1714 \\
\hline 6642 & Wivenhoe Dam TW ALERT-B & WL & 2407 & & & & \\
\hline
\end{tabular}

Key: \(\mathrm{RN}=\) Rainfalk \(\mathcal{W}=\) Water leve

\begin{tabular}{|c|c|}
\hline Formatted & \(\ldots\)...[1] \\
\hline Deleted: RV & \\
\hline Deleted; RV & \\
\hline Deleted: RV & \\
\hline Deleted: RV & \\
\hline Deleted; RV & \\
\hline Deleted: RV & \\
\hline Deleted; RV & \\
\hline Deleted: RV & \\
\hline Deleted; RV & \\
\hline Deleted: RV & \\
\hline Deleted: RV & \\
\hline Deleted: RV & \\
\hline Deleted; RV & \\
\hline Deleted: RV & \\
\hline Deleted; RV & \\
\hline Deleted: RV & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline & Deleted: .------------------ \\
\hline 5.3 Network maintenance & \\
\hline \multirow[t]{2}{*}{Seqwater's hydrographic unit is responsible for the operation and maintenance of the rainfall and water level network. This unit is assisted by RoadTek, a division of the Department of Transport and Main Roads.} & Deleted: has a \\
\hline & Deleted: river \\
\hline \multicolumn{2}{|l|}{Most rainfal stations are stand-alone instruments or are co-located with river level stations. Where possible,} \\
\hline \multirow[t]{2}{*}{ALERT water level gauges take advantage of data provided by DERM-owned and maintained gauging stations to provide a robust source of reliable water level sensing.} & Deleted: \\
\hline & Formatted: Font color: Gray-75\% \\
\hline \multirow[t]{2}{*}{A number of the sites damaged during the January 2011 Flood Event have arready been reinstated by
Seqwater staff.} & Formatted: Font color: Gray-75\% \\
\hline & Deleted: that were \\
\hline
\end{tabular}

Header distance from edge: 1.25 cm , Footer distance from edge: 0.5 cm , Col \#1 width: \(7.12 \mathrm{~cm}, \mathrm{Col}\) \#1 spacing: 1.27 cm , Col \#2 width: 7.12 cm , Not Force equal column width

\section*{6 EVENT DATA}


A real time flood monitoring and forecasting system has been established to monitor rainfall and water levels in the Dam catchments and to provide adequate, accurate and timely information for informed decision: making. This system is described in detail in Section 5 . Following is a description of the operational rainfall and river height data collected during the January 2011 Flood Event using this system, as well as a description of other supporting information used by the Flood Operations Centre to support decision-making during the Event.

It should be noted the data contained in this Section is operational data which was collected during the Eyent and upon which operational decisions were made. The data is considered accurate, however only real time validation of the data has been undertaken. Given the time constraints for preparation of this, Report, it is recognised that more information may become available over time to add to the Event data presented in this Section.

\subsection*{6.2 Forecast rainfall}

Forecast rainfall tools provided by the Bureau of Meteorology (BoM) that were examined and considered in decision making during the January 2011 Flood Event were:
- 24 hour Quantitative Precipitation Forecasts (QPF) for the Dam oatchments.
- The weather radar (available through www.bom.gov.au);
- SLLO meteograms forecast rainfall (based on BoM ACCESS Model);
- Interactive weather and wave forecast rainfall manstoased on ACCESS Model);
- Water and the land forecast rainfall (based on antensemble of several numerical weather prediction models);
- Severe weather warnings

Of these, QPF are considered the primary forecast tool as they are provided by BoM to give specific forecast information in relation to the Dameatchment areas. The QPF leading up to and during the Event are shown in Table 6.2.1 following. In relation to the data shown in this table, the following observations can be made;
- The QPF provided asgasonable representation of the actual daily rainfall recorded until 16:00 Saturday 8 January 2011. The 1 forecasts issued to 16:00 Saturday 8 January 2001 overestimated rainfall during this period by only \(21 \%\). This is considered an excellent result. However the total catchment average rainfall recofded during this five-day period was only in the order of 100 mm .
- In the five forecasts issued between 16:00 Saturday 8 January 2011 and 10:00.Tuesday 11 January 2011 the Q QPF underestimates daily actual catchment average rainfall by between \(160 \%\) to \(340 \%\), with an gievage error of \(225 \%\). This was the critical rainfall period, with the catchment average rainfall recorded yuring this two-and a-half day period being in the order of 300 mm
- For the two forecasts issued during the period between 10:00 Tuesday 11 January 2011 and 16:00 on Tuesday 11 January 2011, the QPF overestimates daily actual catchment average rainfall by between \(196 \%\) to \(625 \%\), with an average error of \(270 \%\). The total catchment average rainfall recorded during this period was only in the order of 45 mm
- The QPF provided a reasonable representation of the actual rainfall recorded after 10:00 on Wednesday 13 January 2011.
\begin{tabular}{|c|}
\hline Formatted: Font color: Red, Not Highlight \\
\hline Deleted: and \\
\hline Deleted: in \\
\hline Deleted: to support decisionmaking \\
\hline Deleted: that \\
\hline Deleted: e \\
\hline Deleted: that \\
\hline Deleted: \(\theta\) \\
\hline Deleted: \(r\) \\
\hline Deleted: BoM \\
\hline Deleted: BoM \\
\hline Deleted: BoM \\
\hline Deleted: i \\
\hline Deleted: BoM \\
\hline Deleted: BoM w \\
\hline Deleted: BoM s \\
\hline Formatted: Font color: Gray-75\% \\
\hline Deleted: d \\
\hline Deleted: \(e\) \\
\hline Deleted: the \\
\hline Deleted: t \\
\hline Deleted: below \\
\hline Deleted: . \\
\hline Deleted: on \\
\hline Deleted: eleven \\
\hline Deleted: during this period \\
\hline Deleted: , but \\
\hline Deleted: by \\
\hline Deleted: 5 \\
\hline Deleted: millimetres \\
\hline Deleted: For \\
\hline Deleted: during the period \\
\hline Deleted: on \\
\hline Deleted: up until \\
\hline Deleted: on \\
\hline Deleted: 2 \\
\hline Deleted: millimetres \\
\hline \begin{tabular}{l}
Comment [MSOffice2]: CH \\
CK - this should be 17.00
\end{tabular} \\
\hline Deleted: on \\
\hline Deleted: millimetres \\
\hline
\end{tabular}


As well as examining and modeling the QPFs, the ACCESS model result data provided by BoM allows three day and five day rainfall forecasts to be examined and considered in flood event decision making.

A summary of this data is shown in the following table that contains translated rainfall forecasting results using ACCESS model result data provided by BoM during the critical period of the Event (between 6 and 11 January 2011). The original BoM data has been translated to forecast catchment average rainfall results, based on a derived catchment centroid rainfall, estimated by using Seqwater's Flood Early Warning Modelling System.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Forecast date and time} & \multicolumn{4}{|l|}{Somerset Dam catchment average rainfall} & \multicolumn{4}{|l|}{\begin{tabular}{l}
Wivenhoe Dam catchment average rainfall \\
(excluding Somerset Dam catchment)
\end{tabular}} \\
\hline & \multicolumn{2}{|l|}{3 Days from} & \multicolumn{2}{|l|}{5 Days from} & \multicolumn{2}{|l|}{3 Days from} & \multicolumn{2}{|l|}{5 Days from} \\
\hline & Actual rainfall ( mm ) & Forecast rainfall (mm) & Actual rainfall (mm) & Forecast rainfall (mm) & Actual rainfall (mm) & Forecast rainfall (mm) & Actual rainfall (mm) & Forecast rainfall (mm) \\
\hline 06/01/2011 00:00 & 90 & 73 & 403 & 115 & 79 & 90 & 275 & 114 \\
\hline 06/01/2011 12:00 & 150 & 85 & 515 & 133 & 87 & 51 & 335 & (8) \\
\hline 07/01/2011 00:00 & 298 & 189 & 568 & 206 & 180 & 133 & 347 & 144 \\
\hline 07/01/2011 12:00 & 321 & 123 & 536 & 137 & 183 & 79 & \(322)^{4}\) & 89 \\
\hline 08/01/2011 00:00 & 332 & 191 & 527 & 206 & 205 & 207 & 309 & 218 \\
\hline 08/01/2011 12:00 & 447 & 165 & 527 & 169 & 284 & \(136<8\) & 309 & 139 \\
\hline 09/01/2011 00:00 & 500 & 230 & 510 & 231 & 298 & 267 & 301 & 268 \\
\hline 09/01/2011 12:00 & 441 & 140 & 446 & 141 & 271 & 170 & 273 & 171 \\
\hline 10/01/2011 00:00 & 278 & 463 & 280 & 465 & 169 & 171 & 170 & 171 \\
\hline 10/01/2011 12:00 & 218 & 59 & 219 & 60 & (40) & 389 & 141 & 390 \\
\hline 11/01/2011 00:00 & 196 & 19 & 197 & 19 & 105 & 231 & 105 & 231 \\
\hline
\end{tabular}

Table 6.2.2 above shows:

- There are variations in excess of \(700 \%\) between successive three-day catchment average rainfall forecasts made 12 hours apart;
- There are variations in excess of \(700 \%\) between successive five-day catchment average rainfall forecasts made 12 hours apart;
- There are eight instances inwhich actual rainfall recorded is greater than 200\% (highest is more than \(1,000 \%\) ) of the three-day forecast rainfall;
- There are three instanges in which the three-day forecast rainfall is greater than \(150 \%\) (highest is \(280 \%\) ) of the actual rainfatteorded;
- There are nińe instances in which actual rainfall recorded is greater than 300\% (highest is over 1,000\%) of the five-day forecast rainfall;
- There are two instances in which the five-day forecast actual rainfall is greater than \(200 \%\) (highest is \(280 \%\) ) of the actual rainfall recorded.

These results show that three day and five day forecasts only provide an indication of future rainfall and these forecasts cannot be used as a basis of flood operations decision making where public safety in both rural and urban areas is directly impacted. This forecasting information uses the most up-to-date technology available within BoM at the present time. Future improvements in this area will be examined with interest in order to maximise the flood mitigation benefits of the Dams.

\subsection*{6.3 Event rainfall totals}

As discussed in Section 5, Seqwater uses a network automated rainfall stations within the Brisbane River catchment area to gather rainfall data during flood events. Data from this network is automatically collected in real time using a radio telemetry collection system and sent in real time to the Flood Operations Centre. Every millimetre of rainfall recorded at each station is sent immediately to the Flood Operations Centre as it is recorded.

Data sent to the Flood Operations Centre in this way is operational data that has not been validated. Both manual and automatic data checking was undertaken in the Flood Operations Centre at regular and routine intervals over the course of the Event.

Table 6.31 shows the daily rainfall totals collected by the Flood Operations Centre both FLOOD-Col dod Enviromon) at each of the rainfall stations during the Event. Stations highighted in bold are configued in the flood models and used in modelling of flows.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Alert ID} & \multirow[t]{2}{*}{BoM ID} & \multirow[t]{2}{*}{Station} & \multicolumn{2}{|l|}{Location} & \multicolumn{5}{|l|}{Rainfall (mm) 24 hours ending 09:00.} & \multirow[b]{2}{*}{11101} & \multirow[b]{2}{*}{\(12 / 01\)} & \multirow[b]{2}{*}{\(13 / 01\)} & \multirow[t]{2}{*}{8 day total} \\
\hline & & & Latitude & Longitude & 6/01 & 7/01 & \(8 / 01\) & \(9 / 01\) & 10/01 & & & & \\
\hline 6500 & 540184 & Mt Glorious-B & -27.3120 & 152.7470 & & & & & & & & & \\
\hline 6511 & 541057 & Mt Pechy & -27.3167 & 152.0817 & 44 & 16 & 16 & 7 & (8) & 101 & 18 & 0 & 283 \\
\hline 6514 & 540139 & Gregor Ck-P & -26.9800 & 152.4040 & 27 & 39 & 11 & 25 & 221 & 77 & 25 & 1 & 426 \\
\hline 6517 & 540140 & Gregor Ck-B & -27.0000 & 152.4040 & & & & & & & & & \\
\hline 6520 & 540141 & Boat Mountain & -26.9789 & 152.2847 & 40 & 52 & 20 & 25 & 179 & 62 & 26 & 4 & 408 \\
\hline 6523 & 540142 & Cressbrook Dam & -27.2650 & 152.1950 & 32 & 28 & & 7 & 94 & 120 & 11 & 1 & 307 \\
\hline 6526 & 540143 & Helidon & -27.5440 & 152.1130 & 56 & 42 & 25 & 6 & 101 & 33 & 0 & 0 & 263 \\
\hline 6529 & 540144 & St Aubyns & -27.0619 & 151.8944 & 25 & & 23 & 20 & 74 & 123 & 8 & 2 & 301 \\
\hline 6540 & 540145 & Yarraman & -26.8358 & 151.9692 & 32 & 40 & 21 & 20 & 113 & 130 & 0 & 1 & 357 \\
\hline 6542 & 540146 & Cooyar Ck & -26.7417 & 152.1367 & 230 & 55 & 28 & 18 & 118 & 118 & 3 & 1 & 364 \\
\hline 6550 & 540147 & Walloon-P & -27.6170 & 152.6680 & 25 & 14 & 14 & 3 & 69 & 42 & 114 & 0 & 281 \\
\hline 6553 & 540148 & Rosentretters Br & -27.1383 & 152.3294 & - 28 & 27 & 25 & 4 & 129 & 111 & 23 & 4 & 351 \\
\hline 6555 & 540479 & Atkinson Dam & -27.4320 & 152.4640 & 44 & 28 & 9 & 5 & 109 & 119 & 98 & 0 & 412 \\
\hline 6556 & 540149 & Glenore Grove & -27.5242 & 1524081 & 16 & 24 & 13 & 4 & 84 & 77 & 129 & 0 & 347 \\
\hline 6559 & 540150 & Savages Xing & -27.4410 & 152.6680 & 4 & 27 & 5 & 5 & 113 & 246 & 144 & 0 & 544 \\
\hline 6562 & 540151 & Kalbar Weir & \(-27.9230\) & 152.6010 & 42 & 39 & 7 & 4 & 15 & 67 & 55 & 0 & 229 \\
\hline 6565 & 540152 & Tenthill & -27.6360 & 152.2140 & & & . & & & & & & \\
\hline 6568 & 540153 & O'Reillys Weir & \(\times 27.4197\) & 152.5892 & 10 & 36 & 6 & 2 & 98 & 146 & 206 & 0 & 504 \\
\hline 6571 & 540154 & Harrisville & -27.8150 & 152.6406 & 14 & 19 & 10 & 1 & 30 & 76 & 53 & 0 & 203 \\
\hline 6574 & 540155 & Caboonbah & -27.1460 & 152.4900 & 24 & 23 & 39 & 9 & 130 & 154 & 54 & 0 & 433 \\
\hline 6577 & 540156 & Gatton & -27.5564 & 152.2731 & 17 & 36 & 21. & 4 & 87 & 68 & 88 & 0 & 321 \\
\hline 6580 & 540157 & Adams \(\mathrm{Br} S^{\text {b }}\) & -27.8294 & 152.5108 & 33 & 30 & 13 & 2 & 36 & 93 & 92 & 1 & 300 \\
\hline 6583 & 540158 & Showground Weir & -27.6386 & 152.3844 & 13 & 27 & 18 & 1 & 68 & 103 & 117 & 0 & 347 \\
\hline 6590 & 540160 & Somersety Dam HW-B & -27.1200 & 152.5510 & 20 & 18 & 42 & 22 & 159 & 136 & 65 & 1 & 463 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Alert ID} & \multirow[t]{2}{*}{BoM ID} & \multirow[t]{2}{*}{Station} & \multirow[t]{2}{*}{\begin{tabular}{l}
Location \\
Latitude
\end{tabular}} & \multirow[b]{2}{*}{Longitude} & \multicolumn{5}{|l|}{Rainfall (mm) 24 hours ending 09:00} & \multirow[b]{2}{*}{\(11 / 01\)} & \multirow[b]{2}{*}{\(12 / 01\)} & \multirow[b]{2}{*}{13701} & \multirow[t]{2}{*}{8 day total} \\
\hline & & & & & \(6 / 01\) & \(7 / 01\) & \(8 / 01\) & \(9 / 01\) & \(10 / 01\) & & & & \\
\hline 6593 & 540159 & Somerset Dam HW-P & -27.1000 & 152.5510 & & & & & & & & & \\
\hline 6596 & 540161 & Crows Nest & -27.2308 & 152.0311 & 44 & 21 & 15 & 11 & 113 & 98 & 18 & 0 & 322 \\
\hline 6598 & 540162 & Toowoomba & -27.5114 & 151.9536 & 44 & 18 & 27 & 9 & 81 & 117 & 24 & 1 & 321 \\
\hline 6600 & 540163 & Kilcoy & -26.9481 & 152.5836 & 12 & 38 & 18 & & 179 & 96 & 61 & 2 & 430 \\
\hline 6601 & 540494 & Mt Binga & -26.9920 & 151.9850 & 38 & 39 & 35 & 22 & 121 & 118 & 13 & 2 & 388 \\
\hline 6602 & 540164 & Top of Brisbane & -26.4772 & 152.1567 & 45 & 52 & 70 & 17 & 41 & 66 & 0 & 0 & 291 \\
\hline 6603 & 540493 & Blackbutt & -26.8860 & 152.1020 & 45 & 75 & 30 & 33 & 160 & 107 & 13 & 0 & 463 \\
\hline 6604 & 540165 & Toogoolawah & -27.0858 & 152.3722 & 16 & & 22 & 12 & 177 & 103 & 27 & 2 & 385 \\
\hline 6605 & 540492 & Eskdale & -27.1670 & 152.1860 & & & & & & & & & \\
\hline 6606 & 540166 & West Woodbine & -27.7847 & 152.1497 & 35 & 17 & 5 & 4 & 17 & 88 & 33 & 0 & 199 \\
\hline 6607 & 540491 & Lindifield & -26.8370 & 152.5810 & 50 & 34 & 18 & 90 & 271 & 86 & 65 & 1 & 615 \\
\hline 6608 & 540167 & Jimna & -26.6610 & 152.4510 & + 29 & 44 & 28 & 42 & 117 & 47 & 22 & 1 & 330 \\
\hline 6609 & 540490 & Monsildale & -26.5820 & 152.3250 & 25 & 43 & 62 & 49 & 117 & 160 & 4 & 2 & 462 \\
\hline 6610 & 540168 & Kluvers Lookout & -27.2070 & 1627030 & 4 & 52 & 24 & 17 & 126 & 164 & 191 & 4 & 582 \\
\hline 6611 & 540489 & Redbank Creek & -27.2770 & 152.2890 & 32 & 40 & 21 & 7 & 130 & 170 & 27 & 1 & 428 \\
\hline 6612 & 540488 & Mt Stanley & \(-26.6829\) & 152.2050 & 24 & 61 & 32 & 32 & 137 & 160 & 2 & 1 & 449 \\
\hline 6613 & 540487 & Hazeldean & -27.0280 & 152.5370 & 9 & . 38 & 32 & 18 & 204 & 123 & 90 & 5 & 519 \\
\hline 6614 & 540486 & Westvale & -27.0170 & 152.6100 & & & & & & & & & \\
\hline 6615 & 540169 & Thomton & -27.8211 & 152.3800 & 23 & 31 & 12 & 5 & 46 & 123 & 98 & 0 & 338 \\
\hline 6617 & 540170 & Little Egypt & -27.7042 & 152.0650 & 50 & 18 & 8 & 1 & 30 & 92 & 30 & 1 & 230 \\
\hline 6619 & 540171 & Mt Castle & -27.9636 & 152.3756 & 52 & 55 & 17 & 4 & 88 & 195 & 122 & 21 & 554 \\
\hline 6621 & 540172 & Nukinenda \({ }^{\text {S }}\) & -27.0567 & 152.1072 & 11 & 43 & 19 & 13 & 114 & 113 & 10 & 2 & 325 \\
\hline 6623 & 540173 & Tarome & -27.9867 & 152.5008 & 31 & 55 & 9 & 0 & 26 & 81 & 82 & 0 & 284 \\
\hline 6624 & 540474 & Moogerab) Dam & -28.0310 & 152.5450 & 23 & 55 & 16 & 1 & 21 & 96 & 76 & 0 & 288 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Alert ID} & \multirow[t]{2}{*}{BoM ID} & \multirow[t]{2}{*}{Station} & \multicolumn{2}{|l|}{Location} & \multicolumn{8}{|l|}{Rainfall (mm) 24 hours ending 09:00} & \multirow[t]{2}{*}{8 day total.} \\
\hline & & & Latitude & Longitude & \(6 / 01\) & \(7 / 01\) & \(8 / 01\) & 9101 & 10/01 & \(11 / 01\) & \(12 / 01\) & 13/01 & \\
\hline 6626 & 540475 & Maroon Dam & -28.1840 & 152.6340 & 20 & 19 & 1 & 5 & 34 & 78 & 46 & 0 & 203 \\
\hline 6630 & 540175 & Lyons Br-B & -27.4717 & 152.5236 & 25 & 25 & 13 & 4 & 83 & 130 & 239 & 0 & 519 \\
\hline 6633 & 540174 & Lyons \(\mathrm{Br}-\mathrm{P}\) & -27.4717 & 152.5236 & 26 & 22 & 11 & 5 & 75 & 114 & 214 & 0 & 467 \\
\hline 6636 & 540177 & Wivenhoe Dam HW-B & -27.3550 & 152.5960 & 6 & 29 & 6 & & 87 & 135 & 197 & 0 & 464 \\
\hline 6641 & 540179 & Wivenhoe Dam TW-B & -27.3900 & 152.5960 & 8 & 32 & 6 & 5 & 99 & 157 & 206 & 0 & 513 \\
\hline 6643 & 540178 & Wivenhoe Dam TW-P & -27.4100 & 152.5960 & 7 & 30 & & 2 & 101 & 160 & 218 & 0 & 525 \\
\hline 6646 & 540183 & Lowood-B & -27.4700 & 152.5930 & 8 & 29 & 7 & 4 & 104 & 183 & 210 & 0 & 545 \\
\hline 6649 & 540182 & Lowood-P & -27.4900 & 152.5930 & 6 & & 8 & 9 & 99 & 163 & 194 & 0 & 501 \\
\hline 6651 & 540180 & Amberley-P & -27.6780 & 152.6990 & 39 & 13 & 16 & 3 & 68 & 32 & 86 & 0 & 257 \\
\hline 6653 & 540181 & Amberley-B & -27.6783 & 152.6989 & 38 & 12 & 16 & 3 & 59 & 32 & 81 & 1 & 242 \\
\hline 6656 & 540472 & Bill Gunn Dam & -27.6320 & 152.3790 & 13 & 31 & 23 & 1 & 74 & 102 & 132 & 0 & 376 \\
\hline 6658 & 540473 & Lake Clarendon Dam & -27.5160 & 152.3530 & 31 & 35 & 20 & 5 & 88 & 76 & 134 & 0 & 379 \\
\hline 6680 & 540138 & Mt Glorious-P & -27.3220 & 152.7470 & 29 & 46 & 16 & 24 & 204 & 260 & 228 & 2 & 809 \\
\hline 6690 & 540185 & Mt Mee-P & -27.0700 & 1527800 & 10 & 55 & 46 & 30 & 220 & 137 & 179 & 10 & 687 \\
\hline 6701 & 540246 & Mt Mee-B & -27.0700 & 152.7800 & 9 & 55 & 49 & 28 & 219 & 138 & 179 & 9 & 686 \\
\hline 6702 & 540338 & Woodford-B & \(-26.9300\) & 152.7600 & 8 & 42 & 43 & 37 & 181 & 88 & 196 & 5 & 600 \\
\hline 6705 & 540337 & Woodford-P & -26.9500 & 152.7600 & 8 & 41 & 43 & 38 & 182 & 88 & 196 & 5 & 601 \\
\hline 6708 & 540188 & Devon Hills & \(\bigcirc 20.9000\) & 152.3210 & 28 & 42 & 43 & 55 & 162 & 68 & 16 & 1 & 415 \\
\hline 6711 & 540189 & Baxters Ck & -27.1958 & 152.8000 & 3 & 37 & 23. & 17 & 127 & 170 & 192 & 0 & 569 \\
\hline 6714 & 540190 & Ferris Knob & -26.8542 & 152.8167 & 0 & 33 & 24 & 90 & 250 & 78 & 224 & 11 & 710 \\
\hline 6716 & 540191 & West Bellthorpe & -26.8230 & 152.6780 & 50 & 30 & 14 & 104 & 312 & 134 & 95 & 7 & 746 \\
\hline 6717 & 540261 & Linville \({ }^{\text {b }}\) & -26.8050 & 152.2720 & 30 & 39 & 32 & 37 & 139 & 51 & 34 & 0 & 362 \\
\hline 6730 & 540192 & Jindalee & -27.5322 & 152.9239 & 24 & 35 & 8 & 5 & 75 & 26 & 45 & 0 & 218 \\
\hline 6733 & 540193 & RosewoQd & -27.6600 & 152.6030 & 21 & 14 & 17 & 3 & 67 & 54 & 152 & 0 & 328 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Alert ID} & \multirow[t]{2}{*}{BoM ID} & \multirow[t]{2}{*}{Station} & \multicolumn{2}{|l|}{Location} & \multicolumn{5}{|l|}{Rainfall (mm) 24 hours ending 09:00} & \multirow[b]{2}{*}{11701} & \multirow[b]{2}{*}{\(12 / 01\)} & \multirow[b]{2}{*}{\(13 / 01\)} & \multirow[t]{2}{*}{8 day total} \\
\hline & & & Latitude & Longitude & \(6 / 01\) & 7101 & \(8 / 01\) & \(9 / 01\) & \(10 / 01\) & & & & \\
\hline 6736 & 540194 & Kuss Rd & -27.6658 & 152.5414. & & & & & & & & & \\
\hline 6739 & 540195 & Washpool & -27.8290 & 152.7550 & 12 & 20 & 11 & 1 & 24 & 60 & 38 & 0 & 166 \\
\hline 6742 & 540196 & Walloon-B & -27.6100 & 152.6680 & 26 & 16 & 14 & 6 & 67 & 42 & 113 & 0 & 284 \\
\hline 6748 & 540198 & Brisbane City & -27.4730 & 153.0300 & 49 & 36 & 12 & & 105 & 20 & 41 & 0 & 278 \\
\hline 6751 & 540199 & Mt Crosby & -27.5300 & 152.7980 & 4 & 39. & 11 & 6 & 86 & 25 & 73 & 0 & 244 \\
\hline 6754 & 540200 & Moggill-P & -27.5950 & 152.8630 & 3 & 39 & 6 & 5 & 60 & 35 & 52 & 0 & 200 \\
\hline 6759 & 540277 & North Pine Dam-B & -27.2750 & 152.9300 & 4 & 45 & 4 & 9 & 82 & 53 & 67 & 0 & 264 \\
\hline 6760 & 540202 & North Pine Dam & -27.2650 & 152.9300 & 3 & & 4 & 8 & 83 & 52 & 65 & 0 & 260 \\
\hline 6763 & 540203 & Petrie & -27.2700 & 152.9750 & 6 & 57 & 5 & 12 & 121 & 63 & 55 & 0 & 319 \\
\hline 6766 & 540204 & Lake Kurwongbah & -27.2500 & 152.9500 & 7 & 52 & 7 & 10 & 127 & 60 & 72 & 1 & 336 \\
\hline 6769 & 540205 & Drapers Xing & -27.3500 & 152.9167 & 2 & 47 & 8 & 9 & 123 & 47 & 84 & 2 & 322 \\
\hline 6774 & 540207 & Wilsons Peak-P & -28.2440 & 152.4860 & & & & & & & & & \\
\hline 6775 & 540059 & Peachester & -26.8400 & 152.8406 & & & & & & & & & \\
\hline 6778 & 540060 & Samford & -27.3610 & 1628790 & 21 & 41 & 6 & 9 & 131 & 51 & 99 & 2 & 360 \\
\hline
\end{tabular}

Table 6.3.1 - Daily rainfall fotals by station for the duration of the January 2011 Flood Event

The following maps (Figure 6.3.2 to Figure 6.3.11) ilustrate the data in Table 6.3.1.

Rainfall in the 24 hours to 09:00, Wednesday 5 January 2011
In the 24 hours to 09:00, Wednesday 5 January 2011, only small rainfall totals, generally less than 5 mm , were recorded in the Brisbane Basin. The word "None" on the map signifies that no reports were received from the station during the period. Figures in red also indicate errors in the data. The 24 hour totals in table 6.3 .1 were created after the event with the full data record for the event present. The 24 hours totals for each day on the map may be slightly different as they represent the data as it was at that point in time. If a data signal had not yet been received then the interpolations to 9:00 am will vary from the complete data set.



\section*{6 EVENT DATA (continsed)}

Rainfall in the 24 hours to 09:00, Thursday 6 January 2011
In the 24 hours to 09:00, Thursday 6 January 2011, widespread rainfall was recorded throughout the area, Deleted: on with totals ranging from 20 mm to 56 mm . The highest totals in this period were concentrated in the Upper Deleted: u Brisbane catchment, around Boat Mountain and Cooyar.


\section*{6 EVENT DATA}
conlives)

Rainfall in the 24 hours to 09:00, Friday 7 January 2011
Deleted: on

Compared to the previous period, rainfall generally eased in the 24 hours to 09:00, Friday 7 January 2011. \(\qquad\) Deleted: on
Rainfall in the period was again wide-spread, however totals were generally between 10 mm to 30 mm , with an Deleted: upper occasional isolated higher total in the لpper Brisbane River and Stanley River catchments.


Rainfall in the 24 hours to 09:00,Saturday 8 January 2011
The highest totals in the 24 hours to 09:00. Saturday 8 January 2011 were recorded in the headwater areas around Ferris Knob and Bellthorpe West, with totals around 100 mm . High rainfall continued to be recorded in the Jpper Brisbane River around Devon Hills. Elsewhere in the basin downstream of Wivenhoe Dam, totals were generally less than 10 mm .


\section*{6}
(continued)

Rainfall in the 24 hours to 09:00, Sunday 9 January 2011
Rainfall throughout the basin was widespread in the 24 hours to 09:00, Sunday 9 January 2011. Totals were
Deleted: on
generaliy below 30 mm , but with isolated higher totals just over 40 mm in the upper reaches of the Stanley
River catchments around Ferris Knob and around the centre of the Upper Brisbane River catchment around \(\qquad\) Deleted: upper Devon Hills.



\section*{6 EVENT DATA}
(continued)

Rainfall in the 24 hours to 09:00, Monday 10 January 2011 \(\qquad\)

The rainfall in the 24 hours to 09:00 Monday 10 January 2011 was especially high in the Stanley River Deleted: on catchment. The highest dally Event total of 310 mm was recorded at Bellthorpe West. Falls in other parts of
| the Stanley River catchment ranged from 180 mm to 250 mm in the same period. In the Upper and Middle Brisbane River catchments, 24 -hour totals ranged from 73 mm at St Aubins to 284 mm at Mt Glorious just east of Wivenhoe Dam. Widespread rain between 100 mm and 200 mm was recorded in other parts of the catchment.

Rainfall in the Lockyer Creek catchment ranged from 15 mm at Woodbine West to nearly 80 mm at Toowoomba. The heaviest falls in the Bremer River system were concentrated in the lower reaches, with totals of up to 70 mm recorded. In the headwater of the Bremer River, totals were much lower. This was the
| first day since the start of the Event that heavy rainfall was recorded in the Lower Brisbane River catchneht, Deleted: lower with 24 hour totals up to 113 mm .



Rainfall in the 24 hours to 09:00, Tuesday 11 January 2011
Heavy rain continued to be recorded throughout the Brisbane Basin in the 24 hours to 09:00 Tuesday 11 January 2011, with the highest totals in the area around the Jower Middle Brisbane River and upper reaches of the Lower Brisbane River catchment, with totals up to 262 mm at Mt Glorious In the Stanley River catchment, totals between 80 mm and 130 mm were again reported widely throughout the catchment.

Particularly heavy rainfall was recorded in the upper reaches of Lockyer Creek around Toowoomba, which recorded 116 mm in the period, with most of this falling the previous afternoon. Very large totals were also recorded in the headwater area of Laidley Creek, where nearly 200 mm was reported at Mount Castle. In the Bremer River catchment, rainfall was still widespread, although totals were generally below 70 mm .
| Totals in the \(L\) ower Brisbane River area were generally below 30 mm , although there were very high totalg ) around Fernvale.



Rainfall in the 24 hours to 09:00, Wednesday 12 January 2011
High rainfall continued to be recorded in the upper reaches of the Stanley River, with falls in excess of 220 mm Deleted: on
in the 24 hours to 09:00, Thursday 12 January 2011.
In the Upper Brisbane River catchment, rainfall had eased with 24 -hour totals generally less than 30 mm .
Deleted: upper
However, heavy rainfall continued in the area around Wivenhoe Dam and just south, with totals between 150 mm and 230 mm in the area, most of which fell in the previous afternoon.

Heavy rain continued in the Laidley Creek, Bremer River and Warrill Creek catchments, with totals up to 120 mm .

Elsewhere in the Lower Brisbane River catchment, totals ranged from 40 mm to 70 mm .



\footnotetext{

}

\section*{6}

EVENT DATA (corifinese)

Rainfall in the \(\mathbf{2 4}\) hours to 09:00_ Thursday 13 January 2011
By 09:00 Thursday 13 January 2011, the rainfal event was virtually complete, with totals generaliy below
Deleted: on

10 mm in the 24 -hour period, with only an isolated higher total of 22 mm at Mount Castle in لpper Laidley
Deleted: upper
Creek.


Figure 6.3 .10 - Reinati in the 24 hours to 09:00, Thursuay 13 danuary 2011

Rainfall in the six days to 09:00 . Thursday 13 January 2011
Figure 6.2.11 below shows the rainfall distribution during the six-day period to 09:00 Thursday 13 January \(\qquad\) Deleted: on 2011.

The highest totals were recorded in the headwater ridges in the Stanley River catchment and along the D'Aguilar Range from Mt Mee to Mt Glorious. Elsewhere through the Stanley, لpper Brisbane River and \(\qquad\) Middle Brisbane River catchments, rainfall totals - while still significant - were half those recorded at elevated

\section*{Deleted: upper} stations.

This effect was not as pronounced in the Lockyer Creek and Bremer River catchments, where the totals over
| the period tended to be more uniform. In the Lower Brisbane River area, totals in urban areas were half of, \(\qquad\) Deleted: lower those recorded around Fernvale and Lowood.



Over the nine-day period ending 09:00, Thursday 13 January 2011, the highest rainfall total in any of the
Seqwater operated gauges was 814 millimetres at the Mt Glorious gauge, just to the east of Wivenhoe Dam.
Individual highest daily (24 hours to 09:00 on the date indicated) rainfall includes:
- Bellthorpe West

106mm, Sunday 9 January 2011
- Bellthorpe West
- Mit Glorious
, Monday 10 January 2011
- Lyons Bridge

242mm, Wednesday 12 January 2011
Average rainfall for each subcatchment in the Brisbane Basin is determined by applying a weighting to the rainfall depth at each available station within the subcatchment. Within the operational system, the Brisbane Basin is divided into the two subcatchments shown in the table below.

The Somerset catchment represents the average catchment rainfall in the Stanley River to S@0erset Dam.

The \(\bigcup\) per Brisbane River catchment, as represented in Table 6.3 .12 , represents the total Wivenhoe Dam \(\qquad\)
\begin{tabular}{|l|}
\hline Deleted: upper \\
\hline Deleted: upper \\
\hline Deleted: middle \\
\hline Deleted: upper \\
\hline Deleted: m \\
\hline
\end{tabular} catchment; excluding the Somerset Dam catchment, and is a weighted average of the pepper and Middy
Brisbane River catchments shown in Figure 6.3.13. For example, the weighted adage of the Upper \(\qquad\)
Deleted: upper
\(\qquad\) catchment average of 401 mm for the Event.

Deleted: m


Table a. 3.12 -- Daily rabbin inoughout the total wivenoe Dem catchment (excluding Somerset Dem catchment
The following map (Figure 6.3.13) illustrates the data contained in Table 6.3.12, summarised over the period of the Event during which significant rainfall was recorded. Catchment rainfall in the eight days to 09:00 Thursday 13 January 2011.


Fighte 6.3 .13 - Catciment rainfall in the eight coys to 00.00, Thursday 13 sanuary 2011
The following cattchment average rainfall hyetographs (Figure 6.2.14 to Figure 6.2.19) do not necessarily reflect the logalsed high intensity rainfall recorded throughout the Basin at various times and locations.


Catchof rainfalls can include hourly intensities at individual stations which can be up to five times the calombent average.


Figure 6,3.75- Lppor Brisbane Pher average houry tanalis


Fgure 5.3.17-. Lomyer Crew average hoully rimatis




The average catchment rainfall graphs clearly show a number of individual and linked rainfall bursts over the duration of the Event. The two most intense bursts occurred relatively late in the Event between the following periods:
- The morning and evening of Sunday 9 January 2011
- The early morning and afternoon of Tuesday 11 January 2011, interspersed with a period of lower rainfail.

\section*{6}

An intense burst at the end of the Event, followed by a relatively sudden end to the rainfall, is characteristic of most of these temporal patterns. Tables of hourly rainfall for all stations used during the Event (demonstrating this pattern) are contained in Appendix O , with one table per day during the period Wednesday 5 January 2011 to Thursday 13 January 2011.

Significant hourly rainfall totals include:


\footnotetext{
Tatoresir20 - Somificant hourfy timajil totats
}

\subsection*{6.4 Event rainfall temporal patterns}

Temporal patterns are critical to the flood modelling process and the resulting inflow hydrographs. They define the distribution of the rainfall with time, and indicate the distinct periods of heavy rainfall that occurred throughout the Brisbane Basin. Temporal patterns for selected representative stations are contained in Appendix \(T\). The following conclusions can be drawn from examining this data:
- For this Event, the West Bellthorpe gauge represents the temporal pattern of the Somerset Dam catchment.
- For this Event, the Gregors Creek gauge represents the temporal pattern of the catchment area in the upper reaches of the Brisbane River.
- The period of heaviest rainfall recorded in both the West Bellthorpe gauge and the Gregors Creek gaffge occurred on the afternoon and evening of Sunday 9 January 2011.
- At Toowoomba, near the headwaters of Lockyer Creek, high intensity rainfall occurred on the dikernoon of Monday 10 January 2011 and resulted in flash nooding. This rainfall was not closely reflegtorith the catchment average rainfall patterns.
- Around the time floodwaters (resulting from the first period of heavy rainfall) arrivedat Wivenhoe Dam from the upper reaches of the Brisbane River, the next critical period of heavy rainfalfof on the morning of Deleted: occurred Tuesday 11 January 2011 in the area immediately around the Wivenhoe Dameservoir. This huge burst of inflow into the Dam required immediate action to avoid a situation that would risk the safety of the Dam.
- Hourly rainfall totals during the critical period of heavy rainfall, on the mofning of Tuesday 11 January 2011 in the area immediately around Wivenhoe Dam, are summarised if Table 6.4,1. The table shows heavy rainfall commenced about 05:00 and continued until \(14: 00\) with tofels of nearly 400 mm . This is believed to have contributed to the very high level inflows into Wivenhoe tam during this period.

Hourly rainfall stations around Wivenhoe Dam reservoir
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Hour ending & \[
\begin{aligned}
& 0 \\
& 0 \\
& 5 \\
& 0
\end{aligned}
\] & 0
5
0
0
0
0
0
0
0
0
0
0 & \[
\begin{aligned}
& \stackrel{E}{5} \\
& \stackrel{1}{9} \\
& \stackrel{y}{5} \\
& \stackrel{2}{3}
\end{aligned}
\] & \[
\begin{aligned}
& 9 \\
& \frac{3}{2} \\
& \frac{0}{0} \\
& \frac{1}{3}
\end{aligned}
\] & 5
0
0
0
3
\(n\)
3
3
3 & \[
\frac{』}{2}
\] &  & \[
\begin{aligned}
& 5 \\
& \frac{2}{0} \\
& \frac{2}{8} \\
& \frac{0}{6}
\end{aligned}
\] & 0
3
0
0
0
0
0
0 &  & 5
0
0
0
0
0
0
0
0
0 \\
\hline & 6646 & 6559 & 6636 & 6680 & 6610 & 6690 & 6590 & 6574 & 6604 & 6553 & 6523 \\
\hline & mm & 1 mm & mm \\
\hline 05:00 11 Jan & 3 & 1 & 3 & 14 & 12 & 14 & 37 & 32 & 23 & 19 & 13 \\
\hline 06:00 11 Jan 4 & 16 & 16 & 20 & 27 & 26 & 24 & 40 & 24 & 3 & 4 & 18 \\
\hline 07:00 11 Jan & 43 & 31 & 32 & 28 & 46 & 29 & 4 & 6 & 2 & 1 & 0 \\
\hline 08:00 Ag Ján & 53 & 86 & 35 & 57 & 7 & 9 & 3 & 10 & 0 & 0 & 0 \\
\hline 09:00 11 Jan & 56 & 93 & 38 & 71 & 40 & 15 & 0 & 4 & 0 & 0 & 0 \\
\hline 60.00 11 Jan & 19 & 18 & 32 & 51 & 36 & 16 & 0 & 0 & 0 & 2 & 0 \\
\hline 11:00 11 Jan & 51 & 36 & 31 & 50 & 50 & 24 & 8 & 2 & 3 & 0 & 1 \\
\hline 12:00 11 Jan & 34 & 18 & 36 & 39 & 33 & 33 & 3 & 4 & 5 & 5 & 3 \\
\hline 13:00 11 Jan & 39 & 33 & 52 & 28 & 33 & 59 & 24 & 11 & 2 & 0 & 1 \\
\hline 14:00 11 Jan & 56 & 33 & 39 & 28 & 20 & 9 & 19 & 24 & 3 & 0 & 2 \\
\hline
\end{tabular}


\subsection*{6.5 Event water levels}

Seqwater uses a network of 34 automated stream height stations within the Brisbane River catchment area to gather Dam level and stream height data during flood events. Data from this network is automatically collected in real time using a radio telemetry collection system and is sent in real time to the Flood Operations Centre. Every recorded change in water level at each station is also sent directly to the Flood Operations Centre as it is recorded.

Data sent to the Flood Operations Centre in this way is operational data and is not validated. Both manual and automatic data checking is undertaken in the Flood Operations Centre at regular and routine intervals over the course of the Event.

While the vast majority of the water level data contained in this Report was collected automatically via then Seqwater ALERT network, manual observations of gauge boards at Somerset and Wivenhoe Dams were also collected via email and phone during the Event. These gauge board observations are more reliable han the automatically provided readings and, therefore, provided the basis for gate operations at the Dands.
| Table 6.5.1 includes details of the peak heights recorded by the automatic gauging stationswised during the
Event. Multiple peaks were recorded at a number of stations through the period and areshown in the fable in descending order. The table is based on data received in the Flood Operations Contte during the Event and has not been verified by field survey. The figures identified in italics are the maximum heights recorded prior to fallure of the gauge.


\section*{6 EVENT DATA}
(contmued)


Page 27
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{\begin{tabular}{l}
Primary \\
ALERT \\
ID
\end{tabular}} & \multirow[t]{3}{*}{Watercourse} & \multirow[t]{3}{*}{Station} & \multicolumn{2}{|l|}{Gauge zero} & \multirow[t]{2}{*}{Date and time} & \multicolumn{2}{|l|}{Peak heights} \\
\hline & & & m & Datum & & Elevation & GH \\
\hline & & & & & 7/01/20114:18 & 28.83 & 5.86 \\
\hline \multirow[t]{3}{*}{6563} & \multirow[t]{3}{*}{Warrill Creek} & \multirow[t]{3}{*}{Kalbar Weir} & \multirow[t]{3}{*}{74.60} & AHD & 11/01/2011 19:36 & 80.29 & 5.69 \\
\hline & & & & & 10/01/2011 16:15 & 79.19 & 4.59 \\
\hline & & & & & 6/01/2011 15:39 & 77.35 & 2.75 \\
\hline \multirow[t]{3}{*}{6572} & \multirow[t]{3}{*}{Warrill Creek} & \multirow[t]{3}{*}{Harrisville} & \multirow[t]{3}{*}{45.69} & \multirow[t]{2}{*}{SD} & 11/01/2011 19:44 & 51.60 & 5.91 \\
\hline & & & & & 10/01/2011 22:59 & 50.80 & 5.11 \\
\hline & & & & & 7/01/2011 18:41 & 50.00 & C4.31 \\
\hline \multirow[t]{2}{*}{6652} & \multirow[t]{2}{*}{Warrill Creek} & \multirow[t]{2}{*}{Amberley} & \multirow[t]{2}{*}{19.87} & \multirow[t]{2}{*}{AHD} & 12/01/2011 8:26 & 27.99 & 8.12 \\
\hline & & & & & 8/01/2011 2:47 & S 307 & 5.2 \\
\hline 2168 & Bremer River & Ipswich & 0.00 & AHD & 12/01/2011 12:58 & 15.96 & 15.96 \\
\hline 6755 & Brisbane River & Moggil & 0.00 & AHD & 12/01/2011 14:47 & 17.72 & 17.72 \\
\hline 6731 & Brisbane River & Jindalee & 0.00 & AHD & 12/01/2011 17:50 & 12.90 & 12.9 \\
\hline 6749 & Brisbane River & City Gauge & 0.00 & AHD & 13/01/2094/257 & 4.45 & 4.45 \\
\hline
\end{tabular}

Tabte 6.5 .1 - Feak heinhts recorden at automatio geughg stations during the January 2011 flood Event
Height hydrographs (Figure 6.5.2 to Figure 6.5.12) for selected key(stations within the Brisbane River Basin are plotted below: During the Event, Flood Officers were respotisible for basic data checking. A full set of the heights recorded at each flood monitoring station is contained 4 Appendix \(Q\).

\section*{Stanley River at Woodford}

The Stanley River at Woodford is a key gauging station upstream of Somerset Dam, however it only represents around \(20 \%\) of the catchment to the Dam. This gauge operated reliably and provided sufficientiy accurate operational data for modelling purposes during the Event.


\section*{Somerset Dam}

There are two automatic gauges at Somerset Dam, which provided readings slightly under the manual gauge board readings. As discussed previously, Dam operations were based on the data provided by gauge board readings.


\section*{Brisbane River at Gregors Creek}

The Brisbane River at Gregors Creek is the key gauging station upstream of Wivenhoe Darn. When combined with the outflow from Somerset Dam, this gauge represents almost \(75 \%\) of the catchment to the Dam. This gauge operated reliably and provided sufficiently accurate operational data for modelling purposes during the Event.


\section*{Wivenhoe Dam}

The manual read gauge board used during this event is located on the outside of wing wall of the spillway approach. There are two automatic gauges at Wivenhoe Dam. Sensor 6638 was marked as 'out of action' (OOA) for the Event. The other sensor 6637, located around 50 m upstream of the gates, matched the manual gauge board readings until around midday on Tuesday 11 January 2011. It was at this point the large gate openings began to cause noticeable drawdown and surging in the spillway approach. The automatic lake level gauge 6637 is located within the approach and was impacted by this drawdown This discrepancy combined with a possible sensor blockage resulted in readings, which were, up to 0.8 m lower than the, observed manual readings during this period. It should be noted that as previously discussed gate operations were \(\quad\) ndertaken based on the accurate manual gauge board observations. The discrepancy is shown clearly in Figure 6 . 5.6 .


Deleted: were observed to cause
Deleted: d
Deleted:
Deleted; the local water level
to lower in the vicinity of the automatic gauge.
Deleted: gauge anomolies,

\section*{Deleted: as}

Deleted: at times, was
Deleted: , however,
Deleted: , in fact,
Deleted: 5

Figure 6.5.5 -. Qauge heighi, Whenhoe Danh, 6-20 January 2011


Figure 6.5.4. Cauge heigh, whenhoe Dam 11-13 Januarv 2011

\section*{Lockyer Creek at Lyons Bridge}

Lockyer Creek at Lyons Bridge is a key gauging station for determining outflows from Lockyer Creek into the Brisbane River. While the O'Rellys Weir gauge is located further down the catchment, it is influenced by backwater due to releases from Wivenhoe Darn. Therefore, readings from the O'Reillys Weir gauge during a large Event are not considered reliable. The Lyons Bridge gauge operated reliably and provided sufficiently accurate operational data for modelting purposes during the Event.


\section*{Brisbane River at Savages Crossing}

Savages Crossing is located just downstream from the junction of the Brisbane River and Lockyer Creek. This gauge is considered to more accurately represent the combined Lockyer and Brisbane flow than the upstream station at Lowood. This gauge operated reliably and provided sufficiently accurate operational data for modelling purposes during the Event.


Figure 6.5.5 - Gauge heigh, Brisbane River at Savages Crossing

\section*{Bremer River at Walloon}

Walloon is a key gauging station used to determine total outflow from the Bremer River. It operated reliably and provided sufficiently accurate operational data for modelling purposes during the Event.


Figure 6.5.3-Gauge heigh, Eramer Rwer at waloon

\section*{Warrill Creek at Amberley}

Amberley is a key gauging station on Warrill Creek, and when combined with Walloon, it is a key gauging station used to determine total outflow from the Bremer River. This station operated reliably and provided sufficiently accurate operational data for modelling purposes during the Event.


Figure 6,5.10-- ©auge height, Wamill Creek at Amberey

\section*{Bremer River at Ipswich}

Ipswich is located on the lower reaches of the Bremer just above its junction with the Brisbane River. It should be noted that water levels at this gauge are affected by backwater from high water levels in the Brisbane
River. This gauge operated reliably and provided sufficiently accurate operational data for modelling purposes during the Event.


\section*{Brisbane River at Moggill}

Moggill is the key gauging station at the junction of the Brisbane and Bremer Rivers. It represents the combined flow of these two rivers. This gauge operated reliably and provided sufficiently accurate operational data for modelling purposes during the Event.


Figure 6.5:12-- Gauge height, Brishande River ai Moggis

\section*{Brisbane River at Port Office}

The Port Office gauge has the longest flood record of any water level gauge in the Brisbane River and is the is the key gauging station for the Brisbane City area. This gauge operated reliably and provided sufficiently accurate operational data for modeling purposes during the Event.


Figure 6.5 .13 - Gauge heiaht, Brisbane River at Port Office

\section*{6 EVENT DATA} (contifued)

\section*{Brisbane River at Whyte Island}

The Brisbane River gauge at Whyte Island is located near to the mouth of the river and records tide levels.
While tide levels do not directly impact dam operations, flood levels in the dower Brisbane River are tide dependent and the Flood Operations Centre needs to be cognisant of the tides.

During the January 2011 Flood Event, recorded tides at Whyte Island were up to 0.5 m lower than the previous week.


Figure 6.5.14-Gauge height, Brisbane Fiver at Whyte isiand

\subsection*{6.6 Dam inflows and outflows}

The inflows and outlows from Somerset and Wivenhoe Dams appear in Table 6.6.1 and are shown in more detail in Section 9 and Appendix B. Dam inflow is estimated by reverse routing, Reverse routing is calculating Formatted: Font color: Red the rate of change of the storage and adding the Dam outlow.
\begin{tabular}{|c|c|c|c|}
\hline ltem & Unit & Somerset Dam & Wivenhoo Dam* \\
\hline Inflow volume & ML & 825,000 & 2,650,000 \\
\hline Outllow volume & ML & 820,000 & 2,650,000 \\
\hline Inflow peaks & m3/s & \begin{tabular}{l}
5,350 on 09/01/2011 15:00 \\
4,170 on 11/01/2011 14:00
\end{tabular} & \[
\begin{aligned}
& 10,100 \text { on } 10 / 01 / 20118: 00 \\
& 11,600 \text { on } 11 / 01 / 2011 \text { 13:00 }
\end{aligned}
\] \\
\hline Outflow peaks & \(\mathrm{m} 3 / \mathrm{s}\) & \[
\begin{aligned}
& 1,690 \text { on } 10 / 01 / 201116: 00 \\
& 1,460 \text { on } 12 / 01 / 201111: 00
\end{aligned}
\] & 7,460 on 11/01/2011, tero 0 \\
\hline Peak water level & m AHD & 105.11 on 12/01/2011 06:00 & 74.97 on \(11 / 0 \sqrt{2011} 19: 00\) \\
\hline
\end{tabular}
*Wivenhoe Dam inflow figures include Somerset Dam outiflows

Table 6.6.1-summary infows and outigusfor Somersti and Wivenhoe Dams
The inflow into Somerset Dam is characterised by dual peaks; the first peak on the aflernoon of Sunday 9 January 2011 being higher than the second on the aflernoon of Tuesday 1 t' January 2011 (nearly 48 hours apart). The peak of the outlow occurred late on Monday 10 January 0,11 when five sluices were opened. These were quickly closed on the morning of Tuesday 11 Januand 2011 when Wivenhoe Dam levels began rising quickly. The maximum water level in Somerset Dam of 10511 m was reached on the morning of Wednesday 12 January 2011. This information is summarisedrin the following graph, Figure 6.6.2.


Figure 6.8.2-50merset Dam water levals, Janury 2011 Ffood Evem?

Similar to Somerset Dam, the inflow into Wivenhoe Dam is also characterised by dual peaks. The first peak on the morning of Monday 10 January 2011 was lower than the second on the afternoon of Tuesday 11 January 2011 ( 30 hours apart). The peak of the outflow occurred at 19:00 on Tuesday 11 January 2011. Flow was reduced quickly later that night as the Dam water level stabilised, however it was increased again during

Thursday 13 January 2011 to achieve the drainage required within seven days after the flood peak passed below Moggill. The peak water level in Wivenhoe Dam of 74.97m was reached at 19:00 on Tuesday 11 January 2011. This information is summarised in the following graph, Figure 6.6.3.


Fgute 6.6.3-Wibenhoe Dam water levels, January 2031 Fiood Event

\subsection*{6.7 Other data sources}

Other decision-making support tools examined and considered in conjunction with the modelling results \(\qquad\) Formatted; Font color: include:
- Flood model resuits (available via BoM registered user service)
- Enviromon, the BoM replacement software for FLOOD-Col. This includes all available ALERT stations in

Deleted: Flood-Col South East Queensland, including a large number of non-Seqwater stations.

Formatted: Font color: Gray-75\%
During the Event, detailed discussions were also held with the BoM Flood Warning Centre. These discussions centred on model results, rainfail forecast information and actual and projected Dam inflows and outflows. BoM also provided Lockyer Creek and Bremer River outllows to compare against modelled resufts generated by the Flood Operations Centre. Generally, Flood Operations Centre modeling correlated well with BoM modelling results.

Similar discussions were held with Brisbane City Council and the Council also provided stagedaimage data for consideration by the Flood Operations Centre during the Event

In addition to the sources listed above, for comparison purposes, the QERMwebsite (wow.derm.gld.gov.au) was used to examine and check river height and flow estimations at selected gaugig stations.

\subsection*{9.1 Wivenhoe Dam}

Table 9.1.1 provides full details of inflows into and releases from Wivenhoe Dam for the duration of the January 2011 Flood Event. Details of the strategies used in determining these releases and how these strategies comply with the Manual are contained in Sections 2 and 10 of this Report. Table 9.1 .1 also shows the gate operation sequence was in accordance with the Manual over the duration of the Event. Deleted: that
Some points to note in relation to Table 9.1.1 are:
- Inflow and flood release calculations are based on manual gauge board readings shown in the table that provide the lake level. During the Event, these manual gauge board readings were provided by the Dam operators to the Flood Operations Centre on an hourly basis. Any missed readings have been interpodated from the closest available actual readings.
- Release calculations are based on the discharge rating tables contained in the Manual.
- Inflow calculations are derived using a reverse routing technique assuming level pool. Foreach time step, inflow is based on the rate of change of the storage calculated from the manual gauge bidard readings and the Dam storage curve plus the releases. The method tends to underestimate the rising limb and overestimate the falling limb of the inflow. The erratic shape of the inflow is due to mall level differences \(\qquad\) Deleted: resulting in large inflow volumes.
- The table shows inflow rates and releases on the hour through the event, intsome instances, gate operations may have occurred between hours or at less than one-hourdintervals. In these instances, the table shows the actual gate openings as they were at the time indicated.
- The flood release from Wivenhoe Dam associated with the flodeevent prior to the January 2011 Flood Event was completed at 09:00 on 2 January 2011. The lake level in Wivenhoe Dam at this time was 67.10 m or 0.15 m below the gate opening trigger level. A Athis level, \(16,25 \mathrm{ML}\) of inflow is needed before trigger level is reached. Following gate closure, the Dam continued to release over \(4,00 \mathrm{ML}\) per day to account for base flow into the dam from the previous flood event, with the expectation being that the dam would slowly fall below FSL in the days following? January 2011. However, due to rainfall and further
\begin{tabular}{l} 
Deleted: metres \\
Deleted: \\
\hline
\end{tabular} dam inflows, the lake level rose steadily after, 2 January 2011 and was above gate trigger level at the commencement of the event. However int accordance with Strategy W1 and the intent of that Strategy, releases did not immediately commenceito ensure that bridges downstream of the dam were not prematurely submerged.

Although the values shown in fre Fables below are presented to the nearest \(\mathrm{m}^{3} / \mathrm{s}\) or ML , no level of precision Deleted: not be should be inferred from this fevel of reporting.


\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Date/time & & Storage & \multicolumn{2}{|l|}{Net inflow (outflow deducted)} & \multicolumn{2}{|l|}{} & \multicolumn{3}{|l|}{Gate settings} & & \multicolumn{4}{|r|}{Gate discharges} & \multicolumn{2}{|r|}{Total outflow} & \multirow[t]{2}{*}{Total inflow} & \multirow[t]{2}{*}{Total inflow minus Somerset outflow \(\mathrm{m}^{3} / \mathrm{s}^{4}\)} & Formatted: Centered \\
\hline & m AHD & ML & ML. & \(\mathrm{m}^{3} / \mathrm{s}\) & \(\mathrm{m}^{3} / \mathrm{s}\) & m & m & m & m & m & \(\mathrm{m}^{3} / \mathrm{s}\) & & & Formatted: Centered \\
\hline 08/01/2011 11:00 & 68.59 & 1344441 & 2558 & 711 & 13 & 1.5 & 2.0 & 4.0 & 2.0 & 1.0 & 158 & 209 & 404 & 209 & 105 & 1085 & 1399 & 109 & \\
\hline 08/01/2011 12:00 & 68.60 & 1345622 & 1082 & 301 & 13 & 1.5 & 2.0 & 4.0 & 2.0 & 1.5 & 158 & 209 & 404 & 209 & 158 & 1138 & 1260 & 0 & \\
\hline 08/01/2011 13:00 & 68.61 & 1346802 & 394 & 109 & 13 & 1.5 & 2.5 & 4.0 & 2.0 & 1.5 & 158 & 260 & 404 & 209 & 158 & 1189 & 1530 & 279 & \\
\hline 08/01/2011 14:00 & 68.61 & 1346802 & 1181 & 328 & 13 & 1.5 & 2.5 & 4.0 & 2.5 & 1.5 & 188 & 260 & 404 & 260 & 158 & 1239 & 1799 & 574 & \\
\hline 08/01/2011 15:00 & 68.63 & 1349164 & 1968 & 547 & - 13 & 1.5 & 2.5 & 4.0 & 2.5 & 1.5 & 158 & 260 & 404 & 260 & 158 & 1240 & 1581 & \(\cdots 157\) & \\
\hline 08/01/2011 16:00 & 68.64 & 1350345 & 1181 & 328 & 13 & 1.5 & 2.5 & 4.0 & 2.5 & 165 & 158 & 260 & 405 & 260 & 158 & 1241 & 1418 & 12 & \\
\hline 08/01/2011 17:00 & 68.65 & 1351525 & 590 & 164 & 13 & 1.5 & 2.5 & 4.0 & 2.5 & 1.5 & 158 & 260 & 405 & 260 & 158 & 1242 & 1227 & 0 & \\
\hline 08/01/2011 18:00 & 68.65 & 1351525 & -98 & -27 & 13 & 1.5 & 2.5 & 4.0 & 25 & 1.5 & 158 & 260 & 405 & 260 & 158 & 1242 & 1255 & 0 & \\
\hline 08/01/2011 19:00 & 68.65 & 1351525 & 0 & 0 & 13 & 1.5 & 2.5 & 4.0 & 2.5 & 1.5 & 158 & 260 & 405 & 260 & 158 & 1242 & 1255 & 0 & \\
\hline 08/01/2011 20:00 & 68.65 & 1351525 & 0 & 0 & 13 & 1.5 & 2.5 & \(4{ }^{4}\) & 2.5 & 1.5 & 158 & 260 & 405 & 260 & 158 & 1242 & 1255 & 0 & \\
\hline 08/01/2011 21:00 & 68.65 & 1351525 & 0 & 0 & 13 & 1.5 & 2.5 & 4.0 & 2.5 & 1.5 & 158 & 260 & 405 & 260 & 158 & 1242 & 1282 & 0 & \\
\hline 08/01/2011 22:00 & 68.65 & 1351525 & 98 & 27 & 13 & 1.5 & \(\leqslant 25^{3}\) & 4.0 & 2.5 & 1.5 & 158 & 260 & 405 & 260 & 158 & 1242 & 1091 & 0 & \\
\hline 08/01/2011 23:00 & 68.65 & 1351525 & -590 & -164 & 13 & 1.5 & 2.5 & 4.0 & 2.5 & 1.5 & 158 & 260 & 405 & 260 & 158 & 1242 & 899 & 0 & \\
\hline 09/01/2011 00:00 & 68.64 & 1350345 & -1279 & -355 & 13 & 1.5 & 2.5 & 4.0 & 2.5 & 1.5 & 158 & 260 & 405 & 260 & 158 & 1241 & 926 & 0 & \\
\hline 09/01/2011 01:00 & 68.63 & 1349164 & -1181 & -328 & 13 & 1.5 & 2.5 & 4.0 & 2.5 & 1.5 & 158 & 260 & 404 & 260 & 158 & 1240 & 925 & 0 & \\
\hline 09/01/201102:00 & 68.62 & 1347983 & -1181 & -328 & 人 & 1.5 & 2.5 & 4.5 & 2.5 & 1.5 & 158 & 260 & 450 & 260 & 158 & 1286 & 943 & 0 & \\
\hline 09/01/2011 03:00 & 68.61 & 1346802 & -1279 & -355 & 13 & 1.5 & 2.5 & 4.5 & 2.5 & 1.5 & 158 & 260 & 450 & 260 & 158 & . 1285 & 1189 & 0 & \\
\hline 09/01/2011 04:00 & 68.60 & 1345622 & -394 & -109 & 13 & 1.5 & 2.5 & 4.5 & 2.5 & 1.5 & 158 & 260 & 450 & 260 & 158 & 1285 & 970 & 0 & \\
\hline 09101/2011 05:00 & 68.60 & 1345622 & -1181 & -328 & 13 & 2.0 & 2.5 & 4.5 & 2.5 & 1.5 & 209 & 260 & 450 & 260 & 158 & 1336 & 802 & 0 & \\
\hline 09/01/2011 06:00 & 68.58 & 1343260 & -1968 & -547 & 13 & 2.0 & 2.5 & 4.5 & 2.5 & 1.5 & 209 & 259 & 449 & 259 & 158 & 1335 & 1047 & 0 & \\
\hline 09/01/201107:00 & 68.57 & 1342080 & -1082 & -301 & 13 & 2.0 & 2.5 & 4.5 & 2.5 & 1.5 & 209 & 259 & 449 & 259 & 158 & 1334 & 1046 & 0 & \\
\hline 09/01/2011 08:00 & 68.56 & 1340899 & -1082 & -301 & 13 & 2.0 & 2.5 & 4.5 & 2.5 & 1.5 & 209 & 259 & 449 & 259 & 157 & 1334 & 773 & 0 & \\
\hline 09/01/2011 09:00 & 68.55 & 1339718 & -2066 & -574 & - 13 & 2.0 & 2.5 & 4.5 & 2.5 & 1.5 & 209 & 259 & 449 & 259 & 157 & 1333 & 1182 & 0 & \\
\hline 09/01/2011 10:00 & 68.53 & \(138 \% 357\) & -590 & -164 & 13 & 2.0 & 2.5 & 4.5 & 2.5 & 1.5 & 209 & 259 & 448 & 259 & 157 & 1332 & 1536 & 310 & \\
\hline 09/01/201111:00 & 68.54 & 1338538 & 689 & 191 & 13 & 2.0 & 2.5 & 4.5 & 2.5 & 1.5 & 209 & 259 & 448 & 259 & \(\cdot 157\) & 1332 & 1646 & 438 & \\
\hline
\end{tabular}







Page 10


Page 11


Page 12


Page 13
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Date/time & Lake & Storage & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Net inflow (outflow deducted)
\[
\mathrm{ML}, \mathrm{~m}^{3} / \mathrm{s}
\]}} & \multirow[t]{2}{*}{Hydro
\[
\mathrm{m}^{3} / \mathrm{s}
\]} & \multicolumn{5}{|c|}{Gate settings} & \multicolumn{5}{|c|}{Gate discharges} & \multirow[t]{2}{*}{Total outflow
\[
\mathrm{m}^{3 / \mathrm{s}}
\]} & \multirow[t]{2}{*}{Total inflow
\[
\mathrm{m}^{3} / \mathrm{s}
\]} & \multirow[t]{2}{*}{Total inflow minus Somerset outflow. \(\mathrm{m}^{3} / \mathrm{s}^{4}\).} \\
\hline & m AHD & ML & & & & m. & m & m & m & m & \(\mathrm{m}^{3} / \mathrm{s}\) & \(\mathrm{m}^{3 / \mathrm{s}}\) & \(\mathrm{m}^{3 / \mathrm{s}}\) & \(\mathrm{m}^{3 / \mathrm{s}}\) & \(\mathrm{m}^{3} \mathrm{~s}\) & & & \\
\hline 18/01/2011 21:00 & 67.17 & 1183654 & -3160 & -878 & 0 & 2.5 & 3.0 & 4.5 & 2.5 & 2.5 & 242 & 288 & 417 & 242 & 242 & 1432 & 755 & 755 \\
\hline 18/01/2011 22:00 & 67.15 & 1181488 & -2437 & -677 & 0 & 2.5 & 2.5 & 4.5 & 2.5 & 2.0 & 242 & 245 & 416 & 242 & 195 & 1338 & 235 & 235 \\
\hline 18/01/2011 23:00 & 67.12 & 1178238 & -3972 & -1103 & 0 & 2.0 & 2.5 & 4.5 & 2.5 & 1.5 & 195 & 242 & 416 & 242 & 147 & 1241 & 188 & 188 \\
\hline 19/01/2011 00:00 & 67.08 & 1173905 & -3792 & -1053 & 0 & 1.5 & 2.5 & 4.0 & 2.5 & 1.5 & 142 & 241 & 373 & 241 & 147 & 1150 & 46 & 46 \\
\hline 19/01/2011 01:00 & 67.05 & 1170655 & -3972 & -1103 & 0 & 1.5 & 2.0 & 4.0 & 2.0 & 1.5 & 147 & 194 & 373 & 194 & 147 & 1055 & 302 & 302 \\
\hline 19/01/2011 02:00 & 67.01 & 1166321 & -2711 & -753 & 0 & 1.0 & 2.0 & 4.0 & 2.0 & 10 & 98 & 194 & 372 & 194 & 98 & 956 & 609 & 609 \\
\hline 19/01/201103:00 & 67.00 & 1165238 & -1248 & -347 & 0 & 1.0 & 1.5 & 4.0 & 1.5 & 1.0 & 98 & 146 & 372 & 146 & 98 & 860 & 96 & 96 \\
\hline 19/01/2011 04:00 & 66.98 & 1163105 & -2753 & -765 & 0 & 0.5 & 1.5 & 4.0 & (15) & 0.5 & 49 & 146 & 371 & 146 & 49 & 762 & 0 & 0 \\
\hline 19/01/2011 05:00 & 66.95 & 1159906 & -3554 & -987 & 0 & 0.5 & 1.0 & 4.0 & 1.0 & 0.5 & 49 & 98 & 370 & 98 & 49 & 664 & 244 & 244 \\
\hline 19/01/2011 06:00 & 66.92 & 1156707 & -1511 & -420 & 0 & 0.0 & 1.0 & 40 & 1.0 & 0.0 & 0 & 98 & 370 & 98 & 0 & 565 & 466 & 466 \\
\hline 19/01/2011 07:00 & 66.92 & 1156707 & -355 & -99 & 0 & 0.0 & 0.5 & 4.0 & 0.5 & 0.0 & 0 & 49 & 370 & 49 & 0 & 468 & 319 & 319 \\
\hline 19/01/201108:00 & 66.91 & 1155641 & -533 & -148 & 0 & 0.0 & <0\% & 3.5 & 0.0 & 0.0 & 0 & 49 & 327 & 0 & 0 & 376 & 228 & 228 \\
\hline 19/01/2011 09:00 & 66.91 & 1155641 & -533 & -148 & 0 & 0.0 & 0.0 & 3.0 & 0.0 & 0.0 & 0 & 0 & 284 & 0 & 0 & 284 & 136 & 136 \\
\hline
\end{tabular}

A summary of the data in Table 9.1 . 1 is illustrated in Figure 9.12 The considerable flood mitigation benefits provided by Wivenhoe Dam over the duration of the Event is clearly demonstrated in Figure 9.1 .2 and can be seen in considerable differences between Dam inflow and outflow.
\begin{tabular}{|l|}
\hline Deleted: this \\
\hline Deleted: \(d\) \\
\hline Deleted: dam \\
\hline
\end{tabular}

Wivenhoe Dam - January 2011 Flood Event


\subsection*{9.2 Somerset Dam}

Table 9.2.1 provides full details of inflows into and releases from Somerset Dam over the duration of the Flood Event. Details of the strategies used in determining these releases and how these stralegies comply with the Manual are contained in Section 7 of this Report. Table 9.2 .1 also shows the gate operation sequence was in accordance with the Manual over the duration of the Event.

Some points to note in relation to Table 9.2 .1 are:
Deleted: the tabie in
- Inflow and flood release calculations are based on manual gauge board readings shown in the table that provide the lake level. During the Event, these manual gauge board readings were normally provided by the Dam operators to the Flood Operations Centre on an hourly basis. However, with prior approval from the Flood Operations Centre, during non-critical periods, the operators occasionally would miss a reading to complete higher priority site activities. In these instances, the table value has been interpolated from the closest available actual readings.
- Release calculations use the discharge rating formulae contained in the Manual.
- Inflow calculations are derived using a reverse routing technique assuming level pool for each time step, inflow is based on the rate of change of the storage calculated from the manual gayge board readings and the Dam storage curve plus the releases. The method tends to underestimate the rising limb and overestimate the falling limb of the inflow. The erratic shape of the inflow is due to small level differences
 resulting in large inflow volumes.
- The table shows inflow rates and releases on the hour through the event. In some instances, gate operations may have occurred between hours or at less than one thourly intervals. In these instances, the table shows the actual gate openings as there were at the timendicated.
- The flood release from Somerset Dam associated with theiflood event prior to the January 2011 Flood Event was completed at 13:00 on 31 December 2010. the lake level in Somerset Dam at this time was | 98.99 m or 0.01 m below the FSL. The Dam contivied to release \(3,000 \mathrm{ML}\) per day to account for base flow into the dam from the previous flood event, with the expectation being that the dam would slowiy fall below FSL in the days following 31 December 20f4, .However, due to rainfall and further dam inflows, the lake \begin{tabular}{l} 
Deleted: metres \\
Deleted: \\
\hline
\end{tabular} level rose steadily after 31 December 20ffrand was above FSL at the commencement of the event.





Page 20






Table 9.2.1-Somerset Dan inflow and release data for the January 2 gationtood Event


Figure 9.2,2 - Somerset Dam inflow and release summary for the Jantrary 2011 Flood Event

\subsection*{9.3 Inflow Volumes}

Figure 9.3 .1 shows the increase in inflow volume in both Dams over the duration of the Event. The total combined inflow for the Event was \(2,650,000 \mathrm{ML}\) between 2 and 19 January 2011. Of this total, nearly

\section*{Deleted: e} \(820,000 \mathrm{ML}\) was generated in the Stanley River to Somersef Dam catchment while the remaining \(1,830,000 \mathrm{ML}\) was generated in the Upper Brisbane River catchment.

The Somerset Dam catchment accounts for slightly less than 20\% of the total Wivenhoe catchment, but nearly \(31 \%\) of the Event runoff was generated in this catchment.


Fiqure 9.3 .7 -Event infow volume

Figure 9.3.2 shows the cumulative inflow volume of the Event over its duration. At 13:00 on 9 January 2011. only \(13 \%\) of the Event inflow volume had been generated. Within the relatively short space of two and a half days, this had increased to nearly \(70 \%\) of the total Event inflow volume.


\section*{10 FLOOD MANAGEMENT STRATEGIES AND MANUAL COMPLIANCE}

\subsection*{10.1 Manual objectives}

Flood events that impact Somerset Dam and Wivenhoe Dam are caused by rainfall events that vary in intensity, duration and distribution over a catchment area exceeding \(7,000 \mathrm{~km}^{2}\) above the Dams. When making decisions about releasing water from the Dams during flood events, consideration is also given to rain falling in Brisbane River catchment areas not controlled by the Dams. These catchment areas, which include the Lockyer Creek and Bremer River catchments, also cover an area in the order of \(7,000 \mathrm{~km}{ }^{2}\) and rain falling in these catchments will also vary in intensity, duration and distribution. Accordingly, the Manual must account for an infinite number of flood event scenarios.

The current level of forecasting technology does not make it possible for the Bureau of Meteorology (BoM) to provide completely accurate rainfall forecasts for the Dam catchment areas. A degree of uncertainty exisfsis in all weather forecasts and the further forward in time forecasts are provided, the greater the degree of uncertainty.

As it is not possible to provide a specific procedure for Dam operation during every possible \({ }^{\text {Dood }}\) event, the Manual takes the approach of providing objectives and strategies to quide operational dession-making during a flood event. The objective followed and strategy chosen at any point in time depends an the actual water levels in the Dams as well as flood modelling predictions based on the best obserfedrand forecast rainfall and stream flow information available at the time.

It is not possible to predict the range of objectives and strategies that willheused during the course of a flood event, before or at any time during the event, prior to the event peak. Oplectives and strategies change as flood events progress, as rainfall is received in the catchment and astorecast rainfall amounts change. For small floods, objectives and strategies relate to minimising flood, moacts in rural areas, while as the scale of the flood increases, the emphasis changes to protecting urbase yeas and maintaining the structural safety of the Dam.

The primary objectives of the Manual, in order of imporiance, are:
- Ensure the structural safety of the Dams:
- Provide optimum protection of urbaniseg-areas from inundation;
- Minimise disruption to rural life inthe valleys of the Brisbane and Stanley Rivers
- Retain the storage at Full Surary Level (FSL) at the conclusion of the flood event;
- Minimise impacts to ripalan flora and fauna during the drain down phase of the flood event.

While ensuring the Dafiss are operated during flood events within these objectives, Seawater's duly of care to the public is also a primiary consideration when making flood releases from the Dams. Every attempt is made to ensure publiofpads are closed prior to inundation by Dam outflows and that authorities are provided with enough time to prepare for community isolations and to undertake evacuations. These actions are in accordance with draft Communication Protocol prepared by the Department of Environment and Resource Managorment to to ensure information is effectively communicated to the public dufing flood events impacting theprons. Every attempt is also made to ensure urban damage is minimised and that Dam outflows with the patential to contribute to urban damage are delayed until it is apparent no other options are avalable without risking the safety of the Dams.

\section*{Formatted: Bualets and} Numbering
| There are four strategies (W1 to W4) used when operating Wivenhoe Dam during a flood event. The strategy chosen at any point in time depends on the actual levels in the Dams and the following predictions, which are to be made using the best recorded and forecast rainfall and stream flow information available at the time:
- Maximum storage levels in Wivenhoe and Somerset Dams;
- Peak flow rate at the Lowood gauge (excluding Wivenhoe Dam releases);
- Peak flow rate at the Moggill gauge (excluding Wivenhoe Dam releases).

Strategies change during a flood event as rain is received in the catchments and forecasts change. It is not possible to predict the range of strategies that will be used during the course of a flood event at the commencement of the event. Strategies are changed in response to changing rainfall forecasts and steach flow conditions to maximise the flood mitigation benefits of the Dams.

Deleted: These strategies are based on the Flood Objectives of the Manual. These objectives, listed in descending order of importance, are as follows:Tl
<\#>Ensure the structural safety
of the Dams; II
<\#>Provide optimum protection of urbanised areas from inundation; \(\|\)
<\#>Minimise disruption to rural life in the valleys of the Brisbane and Stanley Rivers; <\#>Retain the storage at Full Supply Level at the conclusion of the Flood Event; 1
<\#>Minimise impacts to riparian flore and fauna during the drain down phase of the Flood Event. When using any of the four strategies, consideration is always given to these objectives in this order, when making decisions on Dam releases. 1
Deleted: G
Deleted: G
Deleted: forecasts change and
Strategy Wi intends to ensure the seven bridges between the Damand Moggill are not submerged prematurely. The limiting condition for Strategy W1 is the subogergence of Mt Crosby Weir Bridge which occurs at approximately \(1,900 \mathrm{~m}^{3} / \mathrm{s}\).

This strategy requires a great deal of control over releasés and knowiedge of discharges from Lockyer Creek. In general, the releases from Wivenhoe Dam are conhtrolled to ensure the combined flow from Lockyer Creek and Wivenhoe Dam is less than the limiting values to delay the submergence of a paricular bridge.

Strategy U2 A Iransition strategy where the primary consideration changes from minimising impact to downstream rural life to protecting urban areas irom inundation.


Strategy W2 intends to limit the flow in the Brisbane River to less than the naturally occurring peaks at Lowood a(d) Moggill, while remaining within the upper limit of non-damaging floods at Lowood \(\left(3,500 \mathrm{~m}^{3} / \mathrm{s}\right)\).

Deleted: \(\pi\)

Strategy W3, The prinary consideration is protecing ubam areas frominumation
Conditions
- Wivenhoe storage level predicted to be between 68.50 m and 74.00 m
- Maximum release shouid not exceed \(4,000 \mathrm{~m}^{3} / \mathrm{s}\)
- The primary consideration is protecting urban areas from inundation
- Lower level objectives are still considered when making decisions on water releases. Objectives are always considered in order of importance

\section*{10 FLOOD MANAGEMENT STRATEGIES AND MANUAL COMPLIANCE (confineed)}

Strategy W3 intends to limit the flow in the Brisbane River at Moggill to less than \(4,000 \mathrm{~m}^{3} / \mathrm{s}\), noting that \(4,000 \mathrm{~m}^{3} / \mathrm{s}\) at Moggill is the upper limit of non-damaging floods downstream defined in the Manual. The combined peak river flow targets for Strategy W3 are shown in the table below. In relation to these targets, it should be noted that, depending on natural flows from the Lockyer and Bremer catchments, it may not be possible to limit the flow at Moggill to below \(4,000 \mathrm{~m}^{3} / \mathrm{s}\). In these instances, the llow at Moggill is to be kept as low as possible.
\begin{tabular}{|l|l|}
\hline Timing & Target maximum flow in the Brisbane River \\
\begin{tabular}{l|l} 
Prior to the naturally occurring peak at Moggill \\
(excluding Wivenhoe Dam releases).
\end{tabular} & The flow at Moggill is to be minimised. \\
\begin{tabular}{l} 
After the naturally occurring peak at Moggill \\
(excluding Wivenhoe Dam releases).
\end{tabular} & \begin{tabular}{l} 
The flow at Moggill is to be lowered to 4,000ngs as \\
soon as possible.
\end{tabular} \\
\hline
\end{tabular}

Strategy W4-The primaty consideration is protecting the structural safety of the Dam
\begin{tabular}{|c|c|}
\hline Conditions & \begin{tabular}{l}
- Wivenhoe storage level predicted to exceed \(74.00 \mathrm{~m} /\) \\
- No limit on maximum release rate \\
- The primary consideration is protecting the structural safety of the Dam \\
- Lower level objectives are still considered When making decisions on water releases. Objectives are always consigered in order of importance
\end{tabular} \\
\hline
\end{tabular}

Strategy W4 intends to ensure the safety of the Dam while limiting downstream impacts as much as possible. This strategy generally comes into effect when the watedevel in Wivenhoe Dam reaches 74.0m. However, the Senior Flood Operations Engineer may seek to invivge the discretionary powers of Section 2.8 if the earlier commencement of Strategy W 4 is able to prevent afuse plug being triggered.

Under Strategy W4, the release rate is increased as the safety of the Dam becomes the priority. The gates are generally opened until the storage level-b Wivenhoe Dam begins to fall. There are no restrictions on gate opening increments or gate operating frequency once the storage level exceeds 74.0 m , as the safety of the Dam is of primary concern at thesefitrage levels.

\subsection*{10.3 Somerset Dat flood mitigation strategies}

Somerset Dam is capabive of being operated in a number of ways to regulate Stanley River floods. Somerset Dam and Wivenhoe Dam are to be operated in conjunction to optimise the flood mitigation benefits downstream of Wivenhoe Dam. Once a flood event is declared, an assessment is made of the magnitude of the flood eveat, including a prediction of the maximum storage levels in Somerset and Wivenhoe Dams.

Three strategies, based on the objectives of the Manual, are used when operating Somerset Dam during a flood. Svent. The strategy selected at any point in time depends on predictions of the maximum storage levels
in Sobmerset and Wivenhoe Dams, made using the best actual and forecast rainfall and stream flow information available at the time.

Strategies are likely to change during a flood event as rain is received in the catchments and forecasts change It is not possible to predict the range of strategies that will be used during the course of a flood event when the event begins. Strategies are changed in response to changing rainfall and stream flow conditions to maximise the flood mitigation benefits of the Dams.

Deleted: forecasts

The three Strategies (S1 to S3) used when operating Somerset Dam during a flood event are summarised below.

\section*{10 FLOOD MANAGEMENT STRATEGIES AND MANUAL COMPLIANCE (conimned}

\section*{Strategy S1 - Minimising impact on rural life upstream}

Conditions \(\quad\) - Somerset Dam level expected to exceed 99.0 m and Wivenhoe Dam not expected to reach \(67.0 \mathrm{~m}(\mathrm{FSL})\) during the course of the flood event

Strategy S 1 intends to return the Dam to full supply level while minimising the impact on rural life upstream of the Dam. Consideration is also given to minimising the downstream environmental impacts from the release.

The crest gates at Somerset Dam are raised to enable uncontrolled discharge. The regulator valves and sluice gates are to be used to maintain the level in Somerset Dam below 102.0 m (deck level of Mary Smokes Bridge). The Somerset Dam release rate is not to exceed the peak inflow into the Dam,
Strategy S2 - Mininise impacts below Wivenhoe Dam
Conditions \(\quad\)\begin{tabular}{l} 
- \begin{tabular}{l} 
Somerset Dam level expected to exceed 99.0 m and Wivenhoe Danfifivel \\
expected to exceed 67.0 m (fSL) but not exceed 75.5 m (fuse plug \\
the course of the flood event
\end{tabular}
\end{tabular}

Strategy S 2 intends to maximise the benefits of the flood storage capabilities of the P am, while protecting the structural safety of both Dams. Table 10.2.1 contains the operating conditionsaldy actions for Strategy \(\mathbf{S 2}\).



\section*{10 FLOOD MANAGEMENT STRATEGIES AND MANUAL COMPLIANCE}


Notes on Figure 10.22: \(\qquad\)
- The Operating Target Line was selected followingahioptimisation study and considering the following factors:
- Equal minimisation of flood level pearksin both Dams in relation to their associated Dam failure levels;
- Minimisation of flows in the Brigbarie River downstream of Wivenhoe Dam;
- Consideration of the time needed at the onset of a flood event to properly assess the magnitude of the event and the likely inghacts. This is to ensure the optimal strategy to maximise the flood mitigation benefits of thestorages can be selected.
- The target point on theqperating Target Line at any point in time is based on the maximum storage levels in Somerset and Wivenhoe Dams, using the best forecast rainfall and stream flow information available at the time.
- Gate operations śs enable the progressive movement of the duty point towards the target line. It is not necessaritionssible to adjust the duty point directly towards the target line in a single gate operation.


Strategy S 3 intends to maximise the benefits of the flood storage capabilities of the Dam while protecting the structural safety of both Dams. In addition to the operating protocols used in Strategy S2 to prevent fuse plug initiation, consideration can be given to temporary departure from the operating protocols contained in this strategy under the following conditions:
- The safety of Somerset Dam is the primary consideration and cannot be compromised;
- The peak level in Somerset Dam cannot exceed 109.7 m .

\section*{10 FLOOD MANAGEMENT STRATEGIES AND MANUAL COMPLIANCE \\ (conthated)}

\subsection*{10.4 Wivenhoe Dam - Manual compliance}

Table 10.3.1 summarises the strategies used in the operation of Wivenhoe Dam during the January 2011 Flood Event and provides explanations of how the use of these strategies complies with the Manual

Period, \begin{tabular}{l} 
Strategies, \\
used during, \\
the period,
\end{tabular}

Commenced
Friday
07 Jan 2011
09:00
(Lake level
67.75 m )

Completed
Friday
07 Jan 2011
15:00
(Lake level
68.03m)

\section*{Explanation of strategies used during the period} the period
- The strategy transitioned from Strategy W1B to Strategy W1C once the lake level exceeded 67.75 m .
- The strategy during this period was to ensure Burtons Bridge remained trafficable by limiting the combined flows from Wivenhoe Dam and Lockyer Creek to a maximum of \(430 \mathrm{~m} 3 / \mathrm{s}\). Once
Butons-Bridge was-closed to traffic endeavour-to-keep-Kholo Bridge trafficable by-limiting the combined fows from Wivenhoe Dam and Lockyer Creek to a maximum of \(550 \mathrm{~m}^{3} / \mathrm{s}\). Because of the inflows into the Brisbane River from Lockyer Creek, there were no releases from the Dam during this period:
- Based on flows recorded at Savages Crossing, Burtons Bridge was inundated near the end of this period.
- Based on flows recordeđ at Mt Crosby Weir, Khöo Bridge remãined frafficable dưing this periōa.
- As well as being in accordance with the Manual, delaying releases until 15:00 allowed bridges to be closed by the relevant authorities and arrangements to be made to cater for rural community isolation. The impacted rural communities had been isolated over the Christmas period and time was needed to make suitable arrangements to allow these communities to prepare for another potentially extended isolation period.
- The strategy transitioned from Strategy W1C to Strategy W1D once the lake level exceeded 68.00 m .

\section*{Manual requirements}

Use Strategy WIC when the lake level is between 67.75 m and 68.00 m .

KMaximum release \(500 \mathrm{~m}^{3} / \mathrm{s}\) )
theter-Strategr Wf4C the Manuat requirement is to endeavour to keep Burtons Bridge trafficable by limiting the combined flows from Wivenhoe Dam and Lockyer Creek to a maximum of \(430 \mathrm{~m}^{3} / \mathrm{s}\).
Under-Strategy W1e, the Manual also requires that once Burtons Bridge is closed to traffic (occurred around 13:00 during this period) endeavour to keep Kholo Bridge trafficable by limiting the combined flows from Wivenhoe Dam and Lockyer Creek to a maximum of \(550 \mathrm{~m}^{3} / \mathrm{s}\).
Use Strategy W1D when the lake Jevel is between 68.00 m and 68.25 m .
(Maximum release \(1,900 \mathrm{~m}^{3} / \mathrm{s}\) )
Deleted: Lake
Deleted: Lake
Deleted: [
Deleted: ]
Deleted: Lake

\section*{Deleted: Lake}

Deleted: Lake
\begin{tabular}{|l|}
\hline Deleted: Lake \\
\hline Deleted: [ \\
\hline Deleted: ]
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Period & Strategies used during the period & Explanation of strategies used during the period & Manual requirements \\
\hline \begin{tabular}{l}
Commenced \\
Friday \\
07 Jan 2011 \\
15:00 \\
(Lake level \\
68.03 m )
\end{tabular} & Strategy W1D & \begin{tabular}{l}
- The strategy transitioned from Strategy W1C to Strategy W1D once the dake level exceeded 68.00 m . \\
- At the start of this period, it became apparent Kholo Bridge would be inundated by natural Brisbane River flows (excluding Wivenhoe Dam releases). Based on flows recordedrat Mt Crosby Weir-Kholo-Bridge was inundated near the end-of-this-period (midde of the-nigh) - Therefore,- the strategy adopted was to close Kholo Bridge in daylight hours for public safety and then assume -for the purposes of Strategy W1D - that Kholo Bridge was closed to traffic.
\end{tabular} & \begin{tabular}{l}
Use Strategy W1D when the lake level is between 68.00 m and 68.25 m . \\
(Maximum release \(1,900 \mathrm{~m}^{3} / \mathrm{s}\) ) \\
Under-Strategy W1D; the Manural requires that once Kholo Bridge is
\end{tabular} \\
\hline \begin{tabular}{l}
Completed \\
Friday \\
07 Jan 2011 \\
22:00 \\
(Lake Jevel \\
68.26 m )
\end{tabular} & & \begin{tabular}{l}
continiüüsily at Wivento or 0.5 metres of individual gate opening per hour. \\
- Mt Crosby Weir Bridge remained trafficable during the Period. \\
- The strategy transitioned from Strategy W1D to Stategy W1E once the lake level exceeded 68.25 m .
\end{tabular} & \begin{tabular}{l}
Use Strategy W1E when the lake level is between 68.25 m and 68.50 m . \\
(Maximum release \(1,900 \mathrm{~m}^{3} / \mathrm{s}\) )
\end{tabular} \\
\hline \begin{tabular}{l}
Commenced \\
Friday \\
07 Jan 2011 \\
22:00 \\
(Lake Jevel
\end{tabular} & Strategy W1E & \begin{tabular}{l}
- The strategy transitioned from Strategy W1D to Strategy W1E once the lake Jevel exceeded 68.25 m . \\
- The strategy during this period was to keep Mt Crosby Weir Bridge trafficable by limiting the combined flows from Wivenhoe Dam and Lockyer Creek to a maximum of \(1,900 \mathrm{~m}^{3} / \mathrm{s}\).
\end{tabular} & \begin{tabular}{l}
Use Strategy W1E when the lake devel is between 68.25 m and 68.50 m . \\
(Maximum release \(1,900 \mathrm{~m}^{3} / \mathrm{s}\) )
\end{tabular} \\
\hline \begin{tabular}{l}
68.26 m ) \\
Completed Saturday 08 Jan 2011 08:00
\end{tabular} & & \begin{tabular}{l}
- During this period, releases were increased to \(927 \mathrm{~m}^{3} / \mathrm{s}\). Radial gates were opened continuously at Wivenhoe Dam, in accordance with the standard gate opening sequence at a rate or 0.5 metres of individual gate opening per hour. \\
- Mt Crosby Weir Bridge remained trafficable during the period. \\
- The strategy transitioned from Strategy W1E to Strategy W2 once the lake level reached 68.50 m .
\end{tabular} & Under Strategy W4E; the Mantal requirement is to endeavour to keep Mt Crosby Weir Bridge trafficable by limiting the combined flows from Wivenhoe Dam and Lockyer Creek to a maximum of \(1,900 \mathrm{~m}^{3} / \mathrm{s}\). \\
\hline (Lake level 68.52 m ) & & & Use Strategy W2 or-Strategy W3-as appropriate when-the lake devel......... reaches 68.50 m . \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Period & Strategies used during the period & Explanation of strategies used during the period & Manual requirements \\
\hline \multirow[t]{5}{*}{\begin{tabular}{l}
Saturday \\
08 Jan 2011 \\
08:00 \\
(Lake, Jevel \\
68.52 m )
\end{tabular}} & \multirow[t]{5}{*}{Attempt to transition to Strategy W2} & \multirow[t]{5}{*}{\begin{tabular}{l}
- The lake level at this time was 68.52 m and the release rate from the Dam at this time wase \(927 \mathrm{~m}^{3} / \mathrm{s}\). \\
- At this time, it was not possible to satisfy Strategy W2 by limiting the flow in the Brisbidhe River to tess than the naturally occurring peaks-at-L-owood-and-Aloggilt.- The calculated-patitrahy-occurfing peaks at Lowood and Moggill were \(530 \mathrm{~m}^{3} / \mathrm{s}\) and \(800 \mathrm{~m}^{3} / \mathrm{s}\) respectively, whereas the release rate from the Dam at this time was \(927 \mathrm{~m}^{3} / \mathrm{s}\). \\
- Accordingly, it was not appropriate to switch to Strategy W2, and Strategy, Wr3 was adopted for use at 08:00 on Saturday 8 January 2011.
\end{tabular}} & The Manual states, "If the level reaches EL 68.5 m in Wivenhoe Dam, switch to Strategy W2 or W3 as appropriate". \\
\hline & & & Use Strategy W2 when the lake devel is predicted to be between 68.50 m and 74.00 m . (Maximum release \(3,500 \mathrm{~m}^{3} / \mathrm{s}\) ) \\
\hline & & & Strategy W2 is a transition strategy in which the primary consideration changes from minimising disruption to downstream rural life to protecting urban areas from inundation. \\
\hline & & & Lower level objectives are still considered under Strategy W2 when making decisions on water releases. Objectives are always considered in order of importance. \\
\hline & & & The intent of Strategy W2 is to limit the flow in the Brisbane River to less than the naturally occurring peaks at Lowood and Moggill, while remaining within the upper limit of non-damaging floods at Lowood \(\left(3,500 \mathrm{~m}^{3} / \mathrm{s}\right)\). \\
\hline
\end{tabular}
\begin{tabular}{l} 
Deleted: Lake \\
\hline Deleted: 40 \\
\hline Deleted: Lake \\
\hline Deleted: 40 \\
\hline Deleted: Lake \\
\hline Deleted: [ \\
\hline Deleted: ] \\
\hline
\end{tabular}

\section*{Period}

\section*{Strategies} used during the period

\section*{Commenced}

Saturday
08 Jan 2011
08:00
(Lake level
68.52m)

Completed
Sunday
09 Jan 2011
08:00
(Lake level
68.56 m )

Explanation of strategies used during the period
- The lake level at the start of this period was 68.52 m and the release rate from the Dam was \(927 \mathrm{~m}^{3} / \mathrm{s}\). The lake level at the end of this period was 68.56 m and the release rate from the Dam was \(1,334 \mathrm{~m}^{3} / \mathrm{s}\). The lake level rose 40 mm during this 24 -hour period.
- The catchment average rainfall experienced in the Wivenhoe Dam catchment (excluding the Somerset Dam catchment) during this 24 -hour period was 21 mm .
- The latest QPF forecast available at the end of this period was for 40 mm in the Dam catchments in the next 24 hours (issued at 16:00 on 8 January 2011).
- At the end of this period, model results estimated the Wivenhoe Dam peak at 68.7 m (excluding forecast) and 69.3 m (including forecast). The estimated peak of 69.3 m (including forecast) had previously been exceeded in March 1989, April 1989, February 1999, October 2010 and December 2010. On each of these occasions, no known urban damage had occurred downstream of Moggill as a result of Dam releases.
- At the end of this period, model results estimate total Dam inflow at 569,000ML (excluding forecast) and \(814,000 \mathrm{ML}\). (including forecast). The estimated total Dam inflow of \(814,000 \mathrm{ML}\) (including forecast) on a full Dam had previously been exceeded in April 1989 and February 1999. On each of these occasions, no known urban damage had occurred downstream of Mogill as a result of Dam releases.
- Estimated peak flow at Moggill (including Wivenhoe Dam releases) was \(1,720 \mathrm{~m}^{3} / \mathrm{s}\) (excluding forecast) and \(2,220 \mathrm{~m}^{3} / \mathrm{s}\) (including forecast).
- On the basis of the information above, the available data did not indicate there would be a need to increase releases from Wivenhoe Dam above the current modelled levels to protect urban areas from inundation, either during the current period or in the 24 hours following the current period.
- The naturally occurring peak at Moggill was estimated to have occurred at 05:00 on 08 January 2011 (i.e. in the past). Strategy W3 requires the flow at Moggill to be lowered to \(4,000 \mathrm{~m}^{3} / \mathrm{s}\) as soon as possible after the naturally occurring peak at Moggill (excluding Wivenhoe Dam releases). This was already achieved.
- Strategy W3 also requires consideration of lower level Manual objectives, and on the basis of this requirement; consideration during this period was given to minimising disruption to downstream rural life and endeavouring to keep Mt Crosby Weir Bridge and Fernvale Bridge trafficable.
- Wivenhoe Dam outflows were more than doubling the natural peak flows at Moggill. Increasing releases from Wivenhoe Dam to produce a flow rate at Moggill of up to \(3,000 \mathrm{~m}^{3} / \mathrm{s}\) would have meant transitioning back to operating Strategy W1 in around 18 hours from this time. Therefore, increasing Dam releases could not be iustified diven the resulting impacts such a flow would have downstream, especially on localised flooding in Brisbane:

\section*{Manual requirements}

Use Strategy W3 when the intent of Strategy W2 cannot be met and the lake level is predicted to be between 68.50 m and 74.00 m . (Maximum release \(4,000 \mathrm{~m}^{3} / \mathrm{s}\) )
The primary consideration is protecting urban areas from inundation, however the Manual also requires lower level objectives to be considered when making decisions on water releases. Objectives are always considered in order of importance.
The intent of Strategy W3 is to limit the flow in the Brisbane River at Moggill to less than \(4,000 \mathrm{~m}^{3} / \mathrm{s}\).
After the naturally occurring peak at Moggill (excluding Wivenhoe Dam releases), the flow at Moggill is to be lowered to \(4,000 \mathrm{~m}^{3} / \mathrm{s}\) as soon as possible.
Period, , \(\quad\) Strategies, used during,

Commenced
Sunday
9 Jan 201
08:00
(Lakelevel
68.58 m )

Completed
Sunday
09 Jan 2011
19:00
- (Lake level
68.97 m )

Explanation of strategies used during the period the period

Strategy W3
,
- The Jake level at the start of this period was 68.56 m and the release rate from the Dam was \(1,334 \mathrm{~m}^{3} / \mathrm{s}\). The Jake level at the end of this period was 68.97 m and the release rate fros \({ }^{3}+\) Dam was \(1,411 \mathrm{~m}^{3} / \mathrm{s}\). The ake level rose 410 mm during this 11 hour period.
- The catchment average rainfall experienced in the Wivenhoe Dam catchment (excluding the Somerset Dam- catchment) during-this-24-houf period-was-96mm-the butk-of which ( 62 mm occurred in the last five hours of the period
- The latest QPF forecast available at the end of this period was for 65 maim the Dam catchments in the next 24 hours (issued at 16:00 on 9 January 2011).
- At the mid-point of this period (14:00), model results estimated Waenhoe Dam to peak at 70.0 m (excluding forecast) and 71.3 m (including forecast). The estimated peak of 71.3 m (including
 damage had occurred downstream of Moggill as a result of Dam releases.
- At the mid-point of this period ( \(14: 00\) ), model results estinated total Dam inflow at \(804,000 \mathrm{ML}\) (excluding forecast) and \(1,108,000 \mathrm{ML}\) (including forecast). The estimated total Dam inflow of (excluding forecast) and 1,108,000ML (including forecast). The estimated total Dam inflow of
\(1,108,000 \mathrm{ML}\) (including forecast) - on a full Dam \(\leqslant\) thad never previously been exceeded, with th
 previous largest volumes being \(870,000 \mathrm{ML}\) in Apry 1989 and 925,000 in February 1999 Although the inflow estimate of \(1,108,000 \mathrm{Mk}\) was based on a forecast, it resulted in an expectation that there may be a need widhidthe next six hours to transition to a situation where
minimising disruption to downstream rufallife was no longer considered. This would result in the minimising disruption to downstream rupalife was no longer considered. This would result in the
closure of all bridges between the Dabl and Moggill, and the closure of Brisbane Valley Highway
At the mid-point of this period ( \(14 \times 0\) ), estimated peak flow at Moggill (including Wivenhoe Dam releases) was \(1,850 \mathrm{~m}^{3} / \mathrm{s}\) (excfinging forecast) and \(2,590 \mathrm{~m}^{3} / \mathrm{s}\) (including forecast).
- On the basis of the information above, the available data at the mid-point of this period did not indicate there would befadefinite need to increase releases from Wivenhoe Dam above the current modelled leyess, to protect urban areas from inundation in the six hours from 14:00.
- At the end of this 反eriod, model results estimated Wivenhoe Dam to peak at 72.1 m (excluding forecast) and \(\bar{\beta} 9.9 \mathrm{~m}\) (including forecast). These values had never been previously exceeded.
- At the end of this period, model results estimated total Dam inflow at \(1,272,000 \mathrm{ML}\) (excluding forecast a and \(1,712,000 \mathrm{ML}\) (including forecast). These values had never been previously excegted.
- Onthe basis of the estimated Wivenhoe Dam peak levels and inflow volumes from the model Fesults undertaken towards the end of this period, the decision was made at 19:00 on 09 January 2011 to transition to a situation where minimising disruption to downstream rural life was no longer a consideration.

Manual requirements

Use Strategy W3 when the intent of Strategy W2 cannot be met and the lake level is predicted to be between 68.50 m and 74.00 m . [Maximum release \(4,000 \mathrm{~m}^{3} / \mathrm{s}\) ]
The primary consideration is protecting urban areas from inundation, however the Manual also requires lower level objectives to be considered when making decisions on water releases. Objectives are always considered in order of importance.
The intent of Strategy W3 is to limit, the flow in the Brisbane River at Moggill to less than \(4,000 \mathrm{~m}^{3} / \mathrm{s}\).
After the naturally occurring peak at Moggill (excluding Wivenhoe Dam releases), the flow at Moggill is to be lowered to \(4,000 \mathrm{~m}^{3} / \mathrm{s}\) as soon as possible
\begin{tabular}{l} 
Deleted: Lake \\
\hline Deleted: Lake \\
\hline Deleted: Lake \\
\hline Deleted: Lake \\
\hline Deleted: Lake \\
\hline
\end{tabular}

Deleted: Lake
\begin{tabular}{|c|c|c|}
\hline Period & Strategies used during the period & Explanation of strategies used during the period \\
\hline
\end{tabular}

Manual requirements

Commenced
Sunday
09 Jan 2011
19:00
(Lake level
68.97 m )

Completed
Tuesday
11 Jan 2011
08:00
(Lake evel
73.70 m )
- On the basis of the information contained in the previous table, at the start of this period, it was decided to transition to a situation where minimising disruption to downstream rural life was no longer considered.
- The lake level at the start of this period was 68.97 m and the release rate from the Dam was \(1.41 . \mathrm{mm}^{2} / \mathrm{s}\) The lake Dam was \(2,753 \mathrm{~m}^{3} / \mathrm{s}\). The take level rose \(4,730 \mathrm{~mm}\) during this 37 -hour period. \(\qquad\) was
- The catchment average rainfall experienced in the Wivenhoe Dam catchment (excluding Somerset Dam catchment) during this 24-hour period was 115 mm , the bulk of which ( 77 mm ) occurred in the last twelve hours of this 37 -hour period.
- The latest QPF forecast available at the end of this period was for 65 mm in the Dam catchments

- By two thirds of the way through this period (20:00, 10 January 2011), model results estimated Wivenhoe Dam to peak at 73.6 m (excluding forecast) and 74.3 m (including forecast). A discussion with the Dam Safety Regulator was held at 21:00 to obtain permission to exceed a level of 74.0 m in Wivenhoe Dam for a short period without invoking Strategy W4 (provided the safety of the Dam could be guaranteed). This issue was considered carefully at all times during the period in view of the continued rainfall.
- At 04:00 on 11 January 2011, a period of intense rainfall commenced within the Wivenhoe Dam catchment area. By 08:00, model results estimated Wivenhoe Dam would peak at 74.5 m (excluding forecast) and 75.1 m (including forecast). A decision was made to transition to Strategy W4 and the Dam Safety Regulator, Seqwater CEO and the Councils were advised of this decision. The Wivenhoe dake level was 73.70 m .

Use Strategy W3 when the intent of Strategy W2 cannot be met and the lake level is predicted to be between 68.50 m and 74.00 m . (Maximum release \(4 ; 000 \mathrm{~m}^{3} / \mathrm{s}\) )
The primary considecation is protecting urban areas from inundation, however the Manual also requires lower level objectives to still be considered when making decisions on water releases. Objectives are always considered in. order of importance.
The intent of Strategy W3 is to limit the flow in the Brisbane River at Moggill to less than \(4,000 \mathrm{~m}^{3} / \mathrm{s}\).
After the naturally occurring peak at Moggill (excluding Wivenhoe Dam releases), the flow at Moggill is to be lowered to \(4,000 \mathrm{~m}^{3} / \mathrm{s}\) as soon as possible.
Use Strategy W4 when Wivenhoe Dam's storage level is likely to exceed 74.00 m . No limit on maximum release rate) \(\qquad\)
The primary consideration of Strategy W4 is to protect the structural safety of the Dam, structural satety of the Dam, however lower level objecti
still considered in order of still considered in order of
importance when making decision importance when m
on water releases.

Under Strategy W4, gates are opened until the storage level of Wivenhoe Dam begins to fall.
\begin{tabular}{|l|}
\hline Deleted: Lake \\
\hline Deleted: [ \\
\hline Deleted: ] \\
\hline Deleted: Lake \\
\hline Deleted: Lake \\
\hline Deleted: Lake \\
\hline Deleted: \\
\hline Deleted: Lake \\
\hline Deleted: Lake \\
\hline Deleted: on \\
\hline
\end{tabular}
Deleted: [


Commenced
Tuesday
11 Jan 2011
08:00
(Lake Jevel
73.70 m )
- Completed

Thursday
13 Jan 2011
12:00
(Lake level
74.61 m )
- On the basis of the information contained in the previous table, at the start of this period itturas decided to transition to Strategy W4.
- The dake level at the start of this period was 73.70 m and the release rate from the Darion was \(2,753 \mathrm{~m}^{3} / \mathrm{s}\). The ake level at the end of this period was 74.61 m and the release fate from the Dam was- \(2534 \mathrm{~m}^{3}\) - Dung this-perio \(19: 00-1-\mathrm{dan}\) - 2011 the 74.97 m and the release rate peaked at \(7,464 \mathrm{~m}^{3} / \mathrm{s}\).
- The lake level stabilised at 20:00 on 11 January 2011 and then dropped shohtly at 21:00. A decision was made at 21:00 to commence closing the gates as quickly as possible to reduce urban flood impacts. This decision was made in an attempt to minirfise urban damage below Moggill, which is an objective that must be considered under Strategy W4. Gates would have been re=opened if further lake level rises were experienced
- Following a decision to close the gates, it was calculated thatreducing to a discharge o \(2,547 \mathrm{~m}^{3} / \mathrm{s}\) from Wivenhoe Dam would:
- Not increase the downstream flood peak;
- Not cause the water level in Wivenhoe Dameto rise; and
- Allow the dam to be drained back to FSt Sib seven days in accordance with the Manual
- On this basis, this target release rate was asof
- At the end of this period, it was apparentithe flood peak had passed and therefore the operational strategy transitioned to the drain down phase

Use Strategy W4 when Wivenhoe Dam's storage level is likely to exceed 74.00 m . Wo limit on maximum release rate The primary consideration of Strategy W4 is to protect the structural safety of the Dam nowever lower level objectives are still considered in order of importance when making decisions on water releases.
Under Strategy W4, gates are Under Strategy W4, gates are
opened until the storage level of Wivenhoe Dam begins to fall.

\section*{The Manual states that rapid} closure of radial gates is permissible when there is a requirement to reduce downstream flooding.

Drain down operations require stored floodwaters to be emptied from the Dams within seven days of the flood event peak passing through the Dams.
\begin{tabular}{|c|c|c|c|}
\hline Period & Strategies used during the period & Explanation of strategies used during the period & Manual requirements \\
\hline \begin{tabular}{l}
Commenced Thursday \\
13 Jan 2011 \\
08:00 \\
(Lake Jevel
\end{tabular} & Drain down & \begin{tabular}{l}
- On the basis of the information contained in the previous table, a decision was made at the start of this period to transition to the drain down phase. \\
- The lake level at the start of this period was 74.61 m and the release rate from the Dam was \(2,534 \mathrm{~m}^{3} / \mathrm{s}\). The lake level at the end of this period was 66.89 m and only operational water supply feleases-were-being made-ffom the-Bam-
\end{tabular} & Drain down operations require stored floodwaters to be emptied from the Dams within seven days of the flood-event-peak passing through the Dams. \\
\hline \begin{tabular}{l}
74.61 m ) \\
Completed Wednesday 19 Jan 2011 12:00 (Lake level 66.89 m )
\end{tabular} & & \begin{tabular}{l}
- Considerations that impacted the duration and timing of the drain down phase in this instance included: \\
- Causing no additional increases in river levels below the Dam (except where they were unavoidable due to tidal influences); \\
- Maintaining an adequate release rate to ensure the temporary pumps providing water supplies to the Lowood area could continue to operate; \\
- Minimising bank slumping impacts along the river, particularly in key areas such as Coronation Drive (as requested by Brisbane City Council); \\
- Re-opening Brisbane Valley Highway, the D'Agular Highway and key rural bridges as quickly as possible; \\
- Achieving Full Supply Levels in the Dams at the conclusion of the Event. \\
- The Flood Event concluded on Wednesday 19 January 2011 at 12:00.
\end{tabular} & \\
\hline
\end{tabular}
\begin{tabular}{|l|}
\hline Deleted: Lake \\
\hline Deleted: \\
\hline Deleted: Lake \\
\hline Deleted: Lake \\
\hline
\end{tabular}

Deleted: Lake
supplies to the Lowood area could continue to operate;
Minimising bank slumping impacts along the river, particularly in key areas such as Coronation Drive (as requested by Brisbane City Council);
- Re-opening Brisbane Valiey Highway, the D'Agular Highway and key rural bridges as quickly as possible;
- The Flood Event concluded on Wednesday 19 January 2011 at 12:00

\section*{10 FLOOD MANAGEMENT STRATEGIES AND MANUAL COMPLIANCE \\ (coninues)}

\subsection*{10.5 Somerset Dam-Manual compliance}

The table that commences on the following page (Table 10.4.2) summarises the strategies used to operate | Somerset, Dam during the January 2011 Flood Event, and outlines how the use of these strategies complies Deleted: Wivenhoe with the Manual.

A graph showing the track of the Wivenhoe / Somerset Operating Target Line over the course of the Event is shown at the end of the Table 10.4.3. The Dam levels tracked very close to and on the line, in the hours leading up to and following the Event peak at 19:00 on 11 January 2011. This is demonstrated in Table 10.4.1.
\begin{tabular}{|c|c|c|c|c|c|}
\hline Date & \multicolumn{2}{|l|}{Actual Dam level coordinates} & \multicolumn{2}{|l|}{Interaction line coordinates} & Comments \\
\hline 10/01/2011 23:00 & 103.39 & 73.22 & 103.39 & 73.18 & Moved above interaction line. \\
\hline 11/01/2011 00:00 & 103.37 & 73.26 & 103.37 & 73.16 & \\
\hline 11/01/2011 01:00 & 103.36 & 73.31 & 103.36 & 73.15 & \[
\sigma^{7}
\] \\
\hline 11/01/2011 02:00 & 103.31 & 73.35 & 103.31 & 73.09 & ) \\
\hline 11/01/201103:00 & 103.27 & 73.38 & 103.27 & 73.05 & \\
\hline 11/01/2011 04:00 & 103.23 & 73.40 & 103.23 & 73.01 & \\
\hline 11/01/2011 05:00 & 103.28 & 73.46 & 103.28 & 73.065 & \\
\hline 11/01/2011 06:00 & 103.34 & 73.51 & 103.34 & 73.12 & \\
\hline 11/01/201107:00 & 103.40 & 73.61 & 103.40 & 73.19 & \\
\hline 11/01/2011 08:00 & 103.46 & 73.70 & 103.46 & 73.25 & \\
\hline 11/01/2011 09:00 & 103.50 & 73.81 & 103.50 & 73.30 & \\
\hline 11/01/2011 10:00 & 103.54 & 73.95 & 103.54 & 73.34 & \\
\hline 11/01/2011 11:00 & 103.61 & 74.1全 & 103.61 & 73.42 & \\
\hline 11/01/2011 12:00 & 103.68 & 74.27 & 103.68 & 73.49 & \\
\hline 11/01/2011 13:00 & \multicolumn{2}{|l|}{103.83 \(<74.39\)} & 103.83 & 73.65 & \\
\hline 11/01/2011 14:00 & 103.96 & 74.57 & 103.96 & 73.79 & \\
\hline 11/01/2011 15:00 & 104.12 & 74.71 & 104.12 & 73.97 & \\
\hline 11/01/2011 16:00 & 104.31 & 74.81 & 104.31 & 74.17 & \\
\hline 11/01/2011 17:00 (\%) & 104.41 & 74.89 & 104.41 & 74.28 & \\
\hline 11/01/2011 18:00 & 104.51 & 74.95 & 104.51 & 74.39 & \\
\hline 11/01/2014t9:00 & 104.60 & 74.97 & 104.60 & 74.49 & Wivenhoe Dam Event peak. \\
\hline 11/01/2011 20:00 & 104.70 & 74.97 & 104.70 & 74.59 & \\
\hline \(140.1 / 20112100\) & 104.78 & 74.95 & 104.78 & 74.68 & \\
\hline 11/01/2011 22:00 & 104.85 & 74.95 & 104.85 & 74.76 & \\
\hline 11/01/2011 23:00 & 104.90 & 74.92 & 104.90 & 74.81 & \\
\hline 12/01/2011 00:00 & 104.98 & 74.91 & 104.98 & 74.90 & \\
\hline 12/01/201101:00 & 105.00 & 74.87 & 105.00 & 74.92 & Moved below interaction line. \\
\hline
\end{tabular}

\footnotetext{

}

Period, Strategies:
used during the period

Commenced
Thursday
06 Jan 2011
07:42
(Lake level
99.34 m )

Completed
Friday
07 Jan 2011
17:00
(Lake level
100.06 m )

Strategy S2

\section*{Commenced Strategy S2}

Thursday
07 Jan 2011
17:00
(Lake level
100.06 m )

Completed
Friday
08 Jan 2011
07:00
(Lake level
100.44 m )
- During this nine-hour period, the Wivenhoe Dam level was rising ( 67.31 m at the start of the During this nine-hour period, the Wivenhoe Dam level was rising ( 67.31 m at the start of the
period, rising to 68.03 m by the end of the period) and the Somerset Dam level was below 100.45 m .
- In accordance with Strategy S2, the crest gates at Somerset Dam were raised at the start of the Event to enable uncontrolled discharge, and the low-level sluices were kept closed. Some regulated releases continued from December as part of previous event drain down, (in the order of \(35 \mathrm{~m}^{3} / \mathrm{s}\) ) and these continued during this period.
Explanation of strategies used during the period
- D
- During this 15 -hour period, the Wivenhoe Dam lev \({ }^{\text {- }}\) ) was rising ( 68.03 m at the start of the period, rising to 68.48 m by the end of the period and the Somerset Dam level was below 100.45 m .
- At 17:00, it was apparent that unless releases began at Somerset Dam, the Somerset lake level would exceed 100.45 m within 12 Avurs. Accordingly, one sluice gate was opened during this period to allow Dam levelsit move towards the Wivenhoe/Somerset Operating Target Line.

Manual requirements

Use Strategy S2 when the Somerset Dam level is expected to exceed 99.0 m and the Wivenhoe Dam level is expected to exceed 67.0 m but not exceed 75.5 m (fuse plug initiation) during the course of the event.
If Wivenhoe Dam is rising and the Somerset Dam level is below 100.45 m Strategy S2 requires the crest gates to be raised, and the low-level regulators and sluices are generally kept closed.

Use Strategy S2 when the Somerset Dam level is expected to exceed 99.0m and the Wivenhoe Dam level is expected to exceed 67.0 m but not exceed 75.5 m (fuse plug initiation) during the course of the event.

If Wivenhoe Dam is rising and the Somerset Dam level is below 100.45 m Strategy S2 requires the crest gates to be raised, and the low-level regulators and sluices are generally kept closed.
Period, ,

\section*{Strategies used during}

Commenced
Friday
08 Jan 201
07:00
Lake level
100.06 m )

Completed
Friday
08 Jan 2011
13:00
(Lake level
100.45 m )

Commenced
Friday
08 Jan 2011
13:00
(Lake level
100.45 m )

Completed
Friday
08 Jan 2011
17:00
(Lake level
100.40 m )

Explanation of strategies used during the period
- During this six hour period, the Wivenhoe Dam level was rising \((68.48 \mathrm{~m}\) at the start of the period, rising to 68.61 m by the end of the period) and the Somerset Dam level moved above 100.45 m (this occurred between 07:00 and 08:00 on 8 January 2011) and then stayed abov 100.45 m for the remainder of the period.
- A second sluice was opened during this period to allow Dam levels to track towards the Wivenhoe/Somerset Operating Target Line.

During this four hour period the Wivenhoe Dam ley
was rising \((68.61 \mathrm{~m}\) at the start of the period, rising to 68.65 m by the end of the period) The Somerset Dam level moved to just below 100.45 m (this occurred between 13:00, and 14:00 on 8 January 2011) and then stayed below 100.45 m for the remainder of the period.
- At the beginning of this period, it was apparent the Somerset lake level would exceed 100.45 m within four hours. Accordingtwitwo sluices remained open during this period to allow Dam levels to track towards the Wivermoe/Somerset Operating Target Line.

\section*{Manual requirements}

Use Strategy S2 when the Somerset Dam level is expected to exceed 99.0 m and the Wivenhoe Dam level is expected to exceed 67.0 m but not exceed 75.5 m (fuse plug initiation) during the course of the Event.
If Wivenhoe Dam is rising and the Somerset Dam level is above 100.45 m , Strategy S2 requires the crest gates to be raised, and the low-level regulators and sluices are used to generally allow he Wivenhoe/Somerset Operating
Target Line to be followed.
Use Strategy S2 when the Somerset Dam level is expected to exceed 99.0 m and the Wivenhoe Dam level is
expected to exceed 67.0 m but no exceed 75.5 m (fuse plug initiation) during the course of the Event:-
ff Wivenhoe Dam is rising, and the Somerset Dam level is below 100.45 m Strategy \(\$ 2\) requires the crest gates to be raised, and the low-level regulators and sluices are generally kept closed.
\begin{tabular}{|c|c|c|c|}
\hline Period & Strategies used during the period & Explanation of strategies used during the period & Manual requirements \\
\hline Commenced Friday 08 Jan 2011 17:00 (Lake level 100.40 m ) & Strategy S2 & \multirow[t]{2}{*}{\begin{tabular}{l}
- During this 17 -hour period, the Wivenhoe Dam level was falling \((68.65 \mathrm{~m}\) at the start of the period, falling to 68.53 m by the end of the period). The Somerset Dam level remained below 100.45 m . \\
- Strategy S2 does not provide specific guidance for this situation, however Strategy S2 intends to maximise the benefits of the flood storage capabilities of the Dams. Accordingly, two sluices remained open during this period and a third sluice was opened near the end of the period as modelling results indicated rapidly increasing inflows into Somerset Dam occurring soon after the end of the period and continuing. Increasing the sluice gate release would ultimately allow Dam levels to track towards the Wivenhoe/Somerset Operating Target Line.
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Use Strategy S2 when the Somerset Dam level is expected to exceed 99.0m, and the Wivenhoe Dam level is expected to exceed 67.0 m but not exceed 75.5 m (fuse plug initiation) during the course of the Event. \\
Strategy S2 intends to maximise the benefits of the flood storage capabilities of the Dams.
\end{tabular}} \\
\hline Completed Saturday 09 Jan 2011 10:00 (Lake level 100.31 m ) & & & \\
\hline \begin{tabular}{l}
Commenced \\
Saturday \\
09 Jan 2011 \\
10:00 \\
(Lake level \\
100.31 m )
\end{tabular} & Strategy S2 & \begin{tabular}{l}
- During this three-hour period, the Wivenhoe Dam levefudars rising 68.53 m at the start of the period, rising to 68.56 m by the end of the period). The-Somerset Dam level remained below 100.45 m , but rose rapidly. \\
- Three sluices remained open during this period and a fourth sluice was opened near the end of the period to allow Dam levels to track tpyerds the Wivenhoe/Somerset Operating Target Line.
\end{tabular} & Use Strategy S2 when the Somerset Dam level is expected to exceed 99.0 m , and the Wivenhoe Dam level is expected to exceed 67.0 m but not exceed 75.5 m (fuse plug initiation) during the course of the Event. \\
\hline Completed Saturday 09 Jan 2011 13:00 (Lake level 100.43m) & & \(\mathrm{C}^{2}\) & If Wivenhoe Dam is rising, and the Somerset Dam level is below 100.45 m , Strategy S2 requires the crest gates to be raised, and the low-level regulators and sluices are generally kept closed. \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline Period & Strategies used during the period & Explanation of strategies used during the period & Manual requirements \\
\hline \begin{tabular}{l}
Commenced Tuesday \\
11 Jan 2011 09:00 \\
(Lake level 103.50 m ) \\
Completed Tuesday \\
11 Jan 2011 \\
19:00 \\
(Lake level \\
104.60 m )
\end{tabular} & Strategy S2 & \begin{tabular}{l}
- During this 10 -hour period, the Wivenhoe Dam level was rising ( 73.81 m at the start of the period, rising to 74.97 m by the end of the period). The Somerset Dam level remained above 100.45 m . \\
- During this period, all sluice gates remained closed to allow Dam levels to track towards the Wivenhoe/Somerset Operating Target Line and limit rises in Wivenhoe Dam.
\end{tabular} & \begin{tabular}{l}
Use Strategy S2 when the Somerset Dam level is expected to exceed 99.0 m , and the Wivenhoe Dam level is expected to exceed 67.0 m but not exceed 75.5 m (fuse plug initiation) during the course of the Event. \\
If Wivenhoe Dam is rising, and the Somerset Dam level is above 100.45 m , Strategy S2 requires the crest gates to be raised, and the low-level regulators and sluices are used to generally allow the Wivenhoe/Somerset Operating Target Line to be followed.
\end{tabular} \\
\hline \begin{tabular}{l}
Commenced \\
Tuesday \\
11 Jan 2011 \\
19:00 \\
(Lake level \\
104.60m)
\end{tabular} & Strategy S2 & \begin{tabular}{l}
- During this 15 -hour period, the Wivenhoe Dam levepas falling ( 74.97 m at the start of the period, falling to 74.78 m by the end of the period) The Somerset Dam level remained above 100.45 m . \\
- During this period, all sluice gates remainetrosed to allow Dam levels to track towards the Wivenhoe/Somerset Operating Targeteine and limit rises in Wivenhoe Dam.
\end{tabular} & Use Strategy S2 when the Somerset Dam level is expected to exceed 99.0 m , and the Wivenhoe Dam level is expected to exceed 67.0 m , but not exceed 75.5 m (fuse plug initiation) during the course of the Event. \\
\hline \begin{tabular}{l}
Completed \\
Wednesday \\
12 Jan 2011 \\
10:00 \\
(Lake leve) \\
105.09m)
\end{tabular} & &  & If Wivenhoe Dam is falling, and the Somerset Dam level is above 100.45 m , Strategy S2 requires the crest gates to be raised, and the low-level regulators and sluices are used to generally not cause Wivenhoe Dam to rise significantly. \\
\hline
\end{tabular}



Figure 104.3-- Wivenhoe / Somerset Operating Target Line throughout the January 2011 Flood Event

\section*{11 EVENT COMMUNICATION}

Queensland's disaster management response is provided at a local, district and State level by various, specialist agencies. This collaborative approach ensures the effective and timely coordination of information and support services state-wide.

Disaster management and hazard-specific response plans provide details of arrangements and processes to
be followed at times of crisis. They als, identify the need for all public communication to be coordinated during
these critical times.

Following the flood event impacting Somerset and Wivenhoe Dams in October 2010, a draft Communication
Protocol ("the Protocol") was developed by the Department of Environment and Resource Management
(DERM) \(\downarrow \mathrm{o}\) ensure effective communication between local, State and Commonwealth agencies impacted by ........- Deleted: ("the Protocol) the release of floodwater from the Dams. Jts aim is to ensure consistent harmonised information is successfully communicated to the public during flood events.

The Protocol outlines the communication processes to be followed during flood events by the foffoying agencies:
- Brisbane City Council;
- Ipswich City Council;
- Somerset Regional Council;
- Seqwater;
- Water Grid Manager;
- Queensland Police Service;
- Department of Community Safety;
- DERM; \(\qquad\)
- Department of Premier and Cabinet;
- Bureau of Meteorology (BoM).

The Protocol divides the communicationphocess into three key stages:
1. Monitoring and assessment;
2. Briefing and activation;
3. Public communications

The application of the Protocol to the January 2011 Flood Event is summarised below.
1. Monitorinĝand assessment

During hic January 2011 Flood Event, all jnformation communicated to the public- including information abogt liodwater releases from Wivenhoe Dam - was based upon a continuous process of monitoring and têprical assessment of the developing situation. During the Event, Seqwater understands the following monitoring and assessment activities were undertaken by external agencies in accordance with the Protocol:
- Weather events and Dam levels were routinely monitored by relevant agencies using established systems and procedures.
- The BoM was the primary agency responsible for providing weather forecasts and warnings to the public. BoM parlicipated in technical discussions and shared modelling results with Seqwater, Brisbane City Council, Ipswich City Council and Somerset Regional Council as necessary These discussions lead to the development of a technical agreement around the flood situation, which formed the basis for all public communications.
- Councils monitored creek levels, local runoff and flash flooding within their areas of responsibility.


\section*{11 EVENT COMMUNICATION} (continued)
- Councils with the necessary resources and expertise undertook modelling, formed predictions, identified flood inundation areas \({ }_{t}\) assessed impacts for their communities and shared this information with relevant
 from other agencies to complete the impact assēssmēnt for their comúníities.
- Technical staff from relevant agencies held regular teleconferences to clarify and agree modeling inputs and results. Regular teleconferences were held between Seawater and RoM
\begin{tabular}{|l|}
\hline Deleted: and \\
\hline Deleted: parties \\
\hline Deleted: had to rely \\
\hline Deleted: Certainly, \(r\) \\
\hline
\end{tabular}

To support the activities undertaken by external agencies, and in accordance with the Protocol, Seawater:;
- Modelled implications of the inflows on the necessary floodwater release from Somerset Dam and/or Wivenhoe Dam. (The floodwater release strategy balances releasing water from the Dams quickly enough to ensure the flood storage capacity is available if another major rain event occurs, and minimising downstream flooding impacts to people and property)
- Calculated floodwater releases according to the Manual and regularly provided actual and projected release information to DoM and Brisbane City Council. The dates and times of when this jufrmation was provided are shown in Table 11.1 .1 below. Bow used this information to model the Brisbane River catchment and its river systems \(\qquad\) \(-19\)
\begin{tabular}{l} 
Deleted: se \\
\begin{tabular}{l} 
Deleted: undertook the \\
following actions in accordance
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|}
\hline Date/time of issue \\
07/01/2011 10:23 \\
\hline \(08 / 01 / 2011\) 14:58 \\
\(09 / 01 / 2011\) 08:44 \\
09/01/2011 17:55 \\
\hline \(09 / 01 / 201121: 08\) \\
\(10 / 01 / 2011\) 01:56 \\
\(10 / 01 / 201106: 05\) \\
\hline \(10 / 01 / 201109: 07\) \\
\hline
\end{tabular}

\begin{tabular}{|l} 
Deleted: Seqwater m \\
Deleted: is a \\
\hline
\end{tabular}

Tabla 11.1.1- Timing of information hifovided by seawater to Bo and Brisbane City Council around food water releases
- Issued Situation Reports to SoM, Quincils and internal Seawater recipients up to four times per day during the formative stages of the Even The frequency of issue reduced following the peak of the Event at Wivenhoe Dam. Details of these reports are contained in Appendix E.
- Compiled Technical situation Reports (TSR) around the floodwater release from Wivenhoe Dam and provided these to the Water Grid Manager TARs were provided more frequently during critical periods o the Flood Event Appendix F contains a copy of all TORs issued during the Event. \(\qquad\) Date/time of issue ) 11/01/2011 22:00
- The Director-General of the Department of Community Safety informed the Director-General of the Department of Premier and Cabinet, the Chair of the State Disaster Management Group and activated the State Disaster Coordination Centre. The Direcfor-Generat of fhe Department of Cominnily Safety also informed the Minister for Police, Corrective Services and Emergency Services;
```

Deleted: (DPC)... (SDMG)... (SDCC)...

- The Director-General of DERM informed the Minister for Natural Resources, Mines and Energy;
- The Director-General of the Deparment of Premier and Cabinet informed the Premier;
- The Crisis Communications Network, chaired by the Department of Premier and Cabinet, was activated at the direction of the State Disaster Management Group Chair to coordinate public messaging from BoM, Seqwater, the Water Grid Manager, Queensland Police Service, relevant Councils and the Department of Community Safety.

3. Public communications issues

The Protocol allows each agency to initiate public communication and engage disaster manageng processes as they deem appropriate. The frigger points for initiating public communicationduing a flood event are defined according to an agency's responsibilities. During the January 2011 Flaod Event, as it became apparent public impacts were likely, local, State and Commonwealth agencies ingreased the frequency of their communication with the community,

Deleted: the ... of

information ...ir... communication with ... as it became apparent public impacts were likely ... [2]

The Protocol states that each agency is responsible for publicly communicating fiormation commensurate with their role, which can be done without prior approval However, during the January 2011 Flood Event, agencies shared information prior to its public release to ensure the infomation provided was always consistent

Deleted: . This ...s... public information was provided ... [3]

Under the requirements of the Manual, Seqwater is responsible for issuing information to the public and media regarding storage conditions and Dam releases, However, in relation to the Water Grid, the Water Grid Manager is the State's designated lead communication agency on floodwater releases. During the Flood Event. Seqwater provided relevant and timely information to the Water Grid Manager who then communicated this detail to the public and media.

Seqwater understands the following agencieswere responsible for communicating specific information during the Event, in accordance with the Protocot

- BoM - Communicated flood waroings, broadly ysing the BoM website (www.bom.gov.au), through other agencies and the media. Representatives from BoM also participated in media (radio, television, newspaper) interviews to-rovide factual information regarding observed and forecast weather conditions, rainfalis and water levels,
- Local governmentsy Local Disaster Management Groups - Communicated the effects of weatherrelated events and the potential safety impacts for Jocal communities, residents, and Council-owned assets. Local governments were primarily responsigle for communicating within their community.
- Water Grid Manager - Publicly communicated aspects of floodwater release timing and the expected duration of the impacts. Seqwater operational staff ensured supporting technical information was provided to the Water Grid Manager and the Water Grid Manager took responsibility for liaising with local fovernments and coordinating any public communication in relation to the flood releases.

To support the above processes, Seqwater provided regular situation updates to the Water Grid Manager, Brisbane City Council, Ipswich City Council and Somerset Regional Council. In addition Seqwater also provided regular updates to mid-Brisbane irrigators during the Event. All updates were also provided to the Water Grid Manager.

The primary communications from BoM, bcal governments and the Water Grid Manager were augmented by:

- Department of Premier and Cabinet - Ensured consistent messages were provided to the media and other relevant agencies.
- Queensland Police Service - Provided specific community safety messaging during operations.

- Department of Community Safety - Communicated general safety matters regarding flooding.

Information was released to the public as reguired throughout the Event. The timing of media releases was guided by the frequency with which technical reports became available and the content of these reports.

Deleted: frequently as
Report frequency ranged from once a day to an appropriate higher frequency during the critical stages of the Event.
\qquad
Deleted: of
Deleted: , which
Formatted: Highlight
Seqwater understands \downarrow he Water Grid Manager's Communications Unit centrally tracked and shared all communications and liaised with the following agencies in regard to public safety messages:
1

- BoM;
- Seqwater;
- Councils' Media Directors;
- The Queensland Police Service Media Director;

Formatted: Font color:
Orange, Highlight
Deleted: once an hour during
Formatted: Font color:
Orange, Highlight
Formatted: Font color:
Orange, Highlight

- The Department of Community Safety Media Director.

Overall, the public and agency communication undertaken by Seqwater throughout tha , vent was in
Formatted; Font color:
Orange
Deleted: that
accordance with the procedures outlined in the Protocol.

Page 3: [3] Deleted

25/02/2011 8:33:00 AM
S

age 3; [3] Deleted	

public information was provided

Page 3: [4] Deleted
 25/02/2011 8:36:00 AM

the

Page 3: [4] Deleted
 25/02/2011 8:36:00 AM

e
Page 3: [4] Deleted.
of

Page 3: [4] Deleted	

d

Page 3: [4] Deleted

25/02/2011 8:37:00 AM
to the public and the media

Page 3; [5] Deleted

25/02/2011 8:42:00 AM
Under the arrangements in place during the Flood Event for disseminating information to the public and the media in relation to the Water Grid, Seqwater met this responsibility by providing relevant information to the Water Grid Manager, the State's designated lead communication agency on floodwater releases. The Water Grid Manager then communicated the provided information to the public and the media.

Page 3: [5] Deleted

25/02/2011 8:43:00 AM
that

Page 3: [5] Deleted

25/02/2011 8:43:00 AM
the communication of

Rage 3; [6] Deleted

25/02/2011 8:44:00 AM
Concentrated on
(Page 3: [6] Deleted
, which were communicated broadly

Page 3: [6] Deleted	25/02/2011 8:44:00 AM
via	

Page 3: [6] Deleted

25/02/2011 8:52:00 AM
other

G

Page 3: [7] Deleted	25/02/2011 8:53:00 AM

on safety
Page 3. [7] Deleted

25/02/2011 8:45:00 AM
their

Page 3: [7] Deleted	25/02/2011 8:53:00 AM
s'	

Page 3: 17] Deleted

25/02/2011 8:48:00 AM
-g

Page 3: 17] Deleted

25/02/2011 8:46:00 AM
had the

Page 3: [7] Deleted

25/02/2011 8:46:00 AM
ility

Page 3: [8] Deleted

25/02/20118:46:00 AM
As the State's lead communication agency on floodwater release, the Water Grid Manager concentrated on


```
p
```

Page 3: [8] Deleted
ing
Page 3: [8] Deleted

25/02/2011 8:46:00 AM
s

Page 3: [8] Deleted
25/02/2011 8:47:00 AM
To allow these communications to occur,
Page 3: [8] Deleted
the

Page 3: [8] Deleted	25/02/2011 8:47:00 AM
T	

ge 3: [8] Deleted	

s

Page 3: [9] Deleted
25/02/2011 8:49:00 AM
se

Page 3: [9] Deleted

25/02/2011 8:49;00 AM
to these operational communications
e

Page 3. [9] Deleted

25/02/2011 8:50:00 AM
These

Page 3. [10] Deleted
 25/02/2011 8:54:00 AM

L

Page 3: [9] Deleted

25/02/2011 8:49:00 AM
e

Page 3: [9] Deleted

25/02/2011 8:50:00 AM
These

Page 3: [10] Deleted

25/02/2011 8:54:00 AM

L

12 REVIEW OF DATA COLLECTION SYSTEMS

12.1 Review of data collection system performance during the Event

Due to the rarity of flood events the size of the January 2011 Flood Event, the rainfall and stream height field stations used to collect data, had never been tested by a flood of this size Because of this, some field failures did occur during the January 2011 Flood Event, however, such fallures would bexpected in all systems of this type world-wide when impacted by an event of this magnifude Some stations were completely destroyed by the volume and magnitude of the flood fows and by surveying the aftermath of the flood and its impacts along the river channels, it is easy to see how this occurred.

After the Event, 14 out of 75 rain stations, and 31 out of 71 river height stations, were not operating correctly. This is considered a good result, with the station redundancy system Seqwater has in place within the network miligating the impacts of these failures. Data omissions or errors resulting from these failures did not adversely impactoperational decision-making .

However, one gap did occur in the recording of rainfall data on Tuesday 11 January 2011, durike me period of intense rainfall that resulted in the extreme and rapid rises in the level of Wivenhoe Dam. The dainfall experienced during this time was not recorded as, it fell directly on the Wivenhoe Dam lake, in an area where there are, no catchment rain gauges. A similar scenario also occurred the previous dayothen extreme rainfall lead to flash flooding in the Lockyer Valley, This extreme rainfall was also not recorded in the catchment rain gauges
in order to counteract this issue for future events, a solution may be 10 expand the network and install additional rain gauges in the Brisbane Basin. This issue will be examinedin detailjn conjunction with BoM and other relevant agencies as soon as practical However, it should berged that within an area the size of the Brisbane Basin, it is not practically possible to guarantee any extensue rain gauge network will detect all instances of rainfall that occurs in this area

12.2 Future of the data collection sysfem

The current ALERT data collection network has beepr operational since 1995. Overali, the performance of the system has been satisfactory, with the following improvements made in recent times:

- Seqwater employed a dedicated hydrographic team to enhance and maintain the data collection network. This team continues to be supporied by the RoadTek technicians who have been maintaining the network since its initial instaliation
- In 2008/09, around 30 statlons were upgraded with new generation ALERT Event Reporting Radio Telemetry System (ERFFS) equipment. Following the upgrading of a further 55 sites in 2009/10, almost all the ERRTS equipinght in the Seqwater ALERT network has now been μ pgraded.
- In 2008/09 and $2009 / 10$, new rainfall stations were constructed and installed at the following locations:
- Lindfieldy
- Wusivale;
- Hazeldean

Monsildale:
Mt Stanley;

- Mt Binga;
- Blackbutí
- Redbank Creek.
- In 2008/09 and 2009/10, new or upgraded rain/river height stations were constructed and installed at the following locations:
- Atkinson Dam;
- Bill Gunn Dam;
- Lake Clarendon Dam;
- Moogerah Dam;
- North Pine River at Dayboro Waste Water Treatment Plant.

	Formatted: Highlight
Deleted: T	
	Formatted: Highlight
	Deleted: e
	Deleted: of the January 2011 Event
Deleted: As would be	
	Deleted:
	Deleted: some field failures did occur during the Event
	Deieted:
	Deleted: B
	Deleted: There were no d
	Deleted: which resulted in incorrect
	Deleted: s being made
	Deleted: This issue is examined in Section 5.0.
	Deleted: One significant gap in rainfall data occurred on Tuesday 11 January 2011 during the period of intense rainfall that resulted in extreme and rapid rises in the level of Wivenhoe Dam.
	Deleted: This very intense rainfall appeared to
	Deleted: a
	Deleteds, outside the
	Deleted: This was a similar
	Deleted: to when the rainfal that lead to the
	Deleted: and subseque [1]
	Deleted:
	Deleted: occurred the P] ... [2]
	Deleted: This flash floog ... [3]
	Deleted: did not record ... [4]
	Deleted: A
	Deleted: to this issue could be
	Deleted: (a delailed
	Deleted: ation
	Deleted: of this issue
	Deleted: will be undertaken
	Deleted:)
	Deleted: very intense of ... [5]
	Deleted: could occur in ... [6]
	Deleted: 1
	Deleted: in recent times
	Deleted: I
	Deleted: a further 55 sit $\ldots . .17]$
	Deleted: has now been

- In 2008/09 and 2009/10, new river height stations were installed at the following locations:
- Kilcoy Creek downstream of Kilcoy Weir;
- Kobble Creek at Mt Samson.

The network will undergo further upgrades and enhancements over the coming years as Seqwater looks to maximise the System's overall reliability, In coniunction with BoM, Seqwater is continualiy seeking ways to improve the network, particularly in line with the advancement of available technology.

```
Deleted: s
```

Deleted: II

Page 1: [1] Deleted

Shallcross
25/02/2011 4:16:00 PM
and subsequently impacted the Grantham township

Page 1: [3] Deleted
25/02/2011 9:50:00 AM
This flash flooding impacted the Grantham township however, the catchment rain

Page 14 [4] Deleted

25/02/2011 9:50:00 AM
did not record the exireme rainfall

Page 1: [5] Deleted

25/02/2011 9:54:00 AM
very intense or extreme rainfall

Page 1: [6] Deleted

25/02/2011 9:53:00 AM
could occur in the Basin

Page 1: [7] Deleted

25/02/20119:59:00 AM
a further 55 sites were upgraded so now almost

13 REVIEW OF FLOOD OPERATIONS CENTRE MOBILISATION AND STAFFING

1. Engineer 1;
2. Engineer 2;
3. Engineer 3;
4. Engineer 4.

As previously stated, the four current Flood Operations Engineers undertake flood operations duties in O
Formatted: Font: 9 pt addition to their senior full-time roles within various State Government organisations. These flood ofgrations Formatted: Font: 9 pt duties include $24 / 7$ on call duties, $24 / 7$ catchment monitoring during rainfall events and undertak 12 hour Formatted: Font: 9 pt shifts during flood events. Flood Operations Engineers do not receive any additional payments to undertake these flood operations duties. This includes requirements to work extended Abturs on Christmas Day, Boxing Day, Now Years Day and other public holidays, as has occurred in recentmonths. Flood Operations Engineers are also generally responsible for their own travel and meal afougements when working in the Flood Operations Centre and in some current instances Flood Opgrations Engineers undertake the role on a purely voluntary basis. This arrangement is in contrast to BoM whosemploy a dedicated team of full time permanent siaff to undertake flood forecasting.

During the Event, the Duty Engineers worked long hours and functionedon a limited amount of sleep, particularly during the critical period of the Event between Sundaysanuary 2011 and Wednesday 12 January 2011. These demands are expected with this work and decision making was not adversely impacted by these requirements. \qquad
As previously stated, it should also be noted that the Elood Operations Engineers managed flood operations activities at North Pine Dam in conjunction with mataging the January 2011 Flood Event impacting on Somerset Dam and Wivenhoe Dam. Prelimingry indications based on the North Pine Dam Emergency Action Plan, are that the flood event impacting Nortafinte Dam was in the extreme range (AEP greater than 1 in 2000).

Number of Flood Operations Engerbers,

Deleted: While t
Deleted: :
Deleted: in any way
Deleted: during the Event.
However, it is recommended
the following support
mechanisms are examined to
determine any valuable
improvements to the current
system
Deleted: Duty Engineers
Deleted: Duty

The appropriate number of Flofor Operations. Engineers required to work during an event has been widely
Deleted: Duty considered and discussed oyet the past 15 years. From the perspective of event management continuity and coordination, a small team of very experl and experienced staff working closely together is preferred. However, this must beconsidered in line with the potential impact of fatigue during larger events or extended periods of operation and subsequent report writing.
From 1996 todate, engaging four Flood Operations Engineers has proven to be sufficient when managing flood events impacting the Dams. There are currently also three professionally qualified engineers working within the flood officer team who gain valuable event experience that will eventually enable them to transition
 witbe examined further in conjunction with the Dam Safety Regulator at an appropriate time following the submission of this Report.

	Formatted: Bullets and Numbering
	Deleted: Duty

Work hours

While the work hours during the Event were long, they were not considered excessive or to be at a level that adversely impacted on operational decision making. Natural disaster emergency management requires efforts above and beyond normal day-to-day operations, and the Flood Operations, Engineers fully accept and
Deleted: Duty
understand this is a responsibility of their role

13 REVIEW OF FLOOD OPERATIONS CENTRE MOBILISATION AND STAFFING
 (continued)

13.2 Flood Officers

The nine Flood Officers that assisted in the Flood Operations Centre during the Event were:

1. Flood Officer 1 ;
2. Flood Officer 2;
3. Flood Officer 3;
4. Flood Officer 4;
5. Flood Officer 5;
6. Flood Officer 6 ;
7. Flood Officer 7;
8. Flood Officer 8;
9. Flood Officer 9 .

Similar to the role of the Flood Operations Enginers, Flood Officers fill their roles oreth "as needed" basis only. as they fill full time roles within their various organisations and only undertake foog operations duties when "on call" (average on one week in four) or during flood events. All Officers have'been trained in Flood Operations Centre duties and completed their allocated tasks efficiently, eofrectly and with a high degree of professionalism over the full duration of the Event. A team of around g to 10 persons has proven appropriate for this role.

Flood Officers generally work on paid overtime arrangements haccordance with their respective industrial awards when undertaking flood operations duties.

14 REVIEW OF DAM SITE MOBILISATION AND STAFFING

1. Dam Operator 1;
2. Dam Operator 2;
3. Dam Operator 3;
4. Dam Operator 4;
5. Dam Operator 5;
6. Dam Operator 6;
7. Dam Operator 7;
8. Dam Operator 8;
9. Dam Operator 9;
10. Dam Operator 10 ;
11. Dam Operator 11 ;
12. Dam Operator 12 ;
13. Dam Operator 13.

All Operators have been trained in Flood Operations Centre duties and completed their allocated tasks efficiently, correctly and with a high degree of professionalism over施e duration of the Event. Dam Operators are either full time Seqwater Dam site staff or full time Seqwatof field personnel working on and around the Dam sites. All Dam Operators have been trained in their requred duties and completed their allocated tasks efficiently, correctly and with a high degree of professionalism over the full duration of the Event. A team of around 13 to 15 persons has proven appropriate for thisrole. Dam Operators work on paid overtime arrangements in accordance with their respective industrial awards when undertaking flood operations duties.

The following is a list of suggestions that will help to ensure the Dam Operators are fully supported and can continue to perform their roles with a hightevel of effectiveness in future events:

- Housing arrangements that provide for trained operators living on site should continue as this was shown to be critically important duringextreme events of this nature to ensure a timely response to developing situations;

Deleted: Staff h
Deleted: should be retained. Having
Deleted: is
Deleted: the

Local staft members wriking on site during flood events need to be able to maintain contact with their family and friends tof yrovide reassurance they are safe and secure while on duty. This is an issue that

Deleted: the may have caused some anxiety at certain stages of the January 2011 Event and will be addressed;

- There were systems,are provided to release flood water if breakdowns do occur. However further investigations will be undertaken to determine if it is appropriate to provide additional trade suppott to site above the current levefprovided during fiood events. This is to ensure that the risks associated with all possible equipment faifure scenarios during extreme events are fully managed.

Deleted: Ensuring additional
electrical and mechanical trade
support can be provided to the
Dams during events of this
nature. While t
Deleted: while
Deleted: ,
Deleted: may be critically
important if breakdowns
Deleted: do occur. Unless
trade support can be sourced
prior to the closure of Brisbane
Valley Highway, the Dams may
not be accessible in extreme
events as travel to the Dams
becomes difficult and at times,
impossible. The ability to
ensure early in the event that
trade support is accessible
should be examined.

15.1 Review of system performance during the Event

The Real Time Flood Model (RTFM) and associated systems performed well during the Event as described in detail in Section 8. No system failures occurred during the Event and, generally, the systems closely modelled actual stream flow.

One difficulty was encountered during the period of intense rainfall that occurred on Tuesday 11 January 2011, when there were extreme and rapid rises in the level of Wivenhoe Dam. The very intense rainfall generally fell directly on the Wivenhoe Dam lake and was not recorded in rain gauges, which resulted in the RTFM not accurately modelling the rapid rises in the Dam level. This scenario was similar to the flash flooding experienced in Lockyer Valley the previous day, As previously discussed, this is a data collection, issue rather than a modeling issue and a review of the existing data collection network wil be undertaken as discussedin Section 12.

In summary, there were no operational flaws or errors detected in the existing RTFM system thatedadersely impacted Event decision making.

15.2 Future of the RTFM

The RTFM was originally developed more than 15 years ago and primarily residps on the Linux Fedora Core Operating System. Although there were no system fallures experienced during pevious flood events or the current Flood Event, the age of the software is such that Seqwater commersed developing a seplacement RTFM in 2008 in coniunction with the Dam Safety Requiator and other kenstakeholders including BoM. This new system js expected to be implemented and operational in 2011 for wwing approval from the Dam Safety Regulator The updated system uses the same hydrologic models but operates under a more robust platform that provides an enhanced user interface. This work has beenfundertaken in accordance with Seqwater's policy of continual improvement of the system in line with advances in technology.

Independent of the RTFM, Seqwater has developed a series of URBS flood models for all of its storages, including Somersef Dam and Wivenhoe Dam. These models are linked to the BoM Enviromon data collection system and can be run in real time. This syster हnovides a backup to the RTFM software in the Flood Operations Centre and was used as a verification tool during the Event. Generally, this system provided very similar modelling results to the RTFM andexperienced similar difficulties to the RTFM in accurately modelling the rapid rises in the Wivenhoe Dam lack, level that occurred on Tuesday 11 January 2011 as described in Section 15.1.

Page 1: [1] Deleted

25/02/2011 8:41:00 AM
A secondary component of the original RTFM software (WIVOPS) that assisted in formulating the gate operating strategy at Wivenhoe Dam is no longer used. This software was retired in 2005 following the construction of the Dam's auxiliary spillway, comprising three fuse plugs. A number of factors were considered in this retirement process, including the age of the WIVOPS program (more than 15 years), the absence of program documentation and the complexity of the required programming changes to account for the new auxiliary spillway.

Detailed operational spreadsheets are currently used in place of WIVOPS and these worked very well during this Event (see Section 8.0 and Appendix A). WIVOPS was used as a verification tool during the Event (see Section 8.0), within the limits of its operational effectiveness. A dedicated program with similar functionality to WIVOPS has also been under development since 2010 and, when complete, will be evaluated to determine its operational role and function during an event.

16 REVIEW OF THE MANUAL'S OBJECTIVES AND STRATEGIES

Deleted: FLOOD
16.1 The Manual

The Manual of Operational Procedures for Flood Mitigation at Wivenhoe Dam and Somerset Dam (Revision 7) Formatted: Font: Italic (the Manual) defines the objectives and procedures for operating the Dams during flood events.

The Manual is an approved Flood Mitigation Manual under Chapter 4, Part 2 of the Water Supply (Safety and Reliability) Act 2008 (the Act). The Manual is approved by the Chief Executive of the Department of Environment and Resource Management in accordance with the Act. An owner of a dam who observes the operational procedures in an approved flood mitigation manual. does not incur civil liability for an act done, or omission made, honestly and without negligence in observing the manual procedures.

16.2 Manual objectives

The primary objectives of the procedures contained in the Manual, in order of importance, are

1. Ensure the structural safety of the Dams:
2. Provide urbanised areas with optimum protection from inundation;
3. Minimise the distuption to rural life in the valleys of the Brisbane River and Staniley River;
4. Retain the storage at Full Suppiy Level (FSL) at the conclusion of the fiood ivent;
5. Minimise impacts to riparian flora and fauna during the drain down phase of the flood event.

To meet these objectives, the Dams must be operated in a mannertitiat considers the potential effects of closely spaced flood events. Accordingly, normal procedures require stored floodwaters to be emptied from the Dams within seven days of the food event peak passing-fflough the Dams.

Throughout the duration of this Event, the Manual objectives were always considered in order of importance, and the requirement to empty the stored floodwaterswithin seven days of the flood event peak passing through the Dams was also achieved.

Following the Event some discussions occured in the public arena in relation to lowering the emphasis on minimising disruption to rural life in the salleys of the Brisbane and Stanley Rivers for anything but very minor events. The Dams could be operatedgh this way if desired. However, changing the emphasis of the objectives would also require a change to the current version of the Manual.

16.3 Manual straqgies

As discussed in detalin Section $1 Q_{0}$ a range of strategies were used during the Event, in accordance with the Manual. Having to a apply the strategies during such an extremely large and rare event provided the opportunity to consider how the strategies are worded from a practical sense.

The strategies provided a good guide in responding to the full range of scenarios presented by this Event, howevels some situations maybenefit from additional points of clarification, and this will be reviewed in coniuriction with the Dam Safety Requlator following the submission of this report. It should be noted however, that due to the high degree of scenario variability, improving the Manual in this regard may not be possible. Certainly, any changes to the Manual in the areas discussed below would require extensive and detailed engineering and hydrological investigations prior to any proposed changes being formally adopted.

- Under Strategy W3, it would be useful for additional guidance to be provided as to the extent to which the flow at Moggill should be minimised prior to the natural peak occurring at that location
- Under Strategy W3, it would be useful for additional guidance to be provided on the consideration to be given to lower level Manual objectives.

Deleted: Fiood events that impact Somerset Dam and Wivenhoe Dam are caused by rainfail events that vary in intensity, duration and distribution over a catchment area exceeding $7,000 \mathrm{~km}^{2}$ above the Dams. When making decisions about releasing water from the Dam during flood events
consideration is also given to rain falling in Brisbane River calchment areas not controlled by the Dams. These catchment areas, which include the Lockyer Creek and Bremer River catchments, also cover an area in the order of $7,000 \mathrm{~km}^{2}$ and rain falling in these catchments will also vary in intensily, duration and distribution. Accordingly, the Manual must account for an infinite number of flood event scenarios. I
The current level of forecasting technology does not make it possible for the Bureau of Meteorology (BoM) to provide completely accurate rainfall forecasts for the Dam catchment areas. A degree of uncertainty exists in all weather forecasts and the further forward in time forecasts are provided, the greater the degree of uncertainty. T[... [1]
Formatted: Font: Italic
Formatted: Font: (Default) Arial, 9 pt

Deleted: $1 /$

Use of the
Deleted: Additionally, while ensuring the Dams are operated during flood eve ... [21
Deleted: Due to the associated impacis to the public, changing this emf ... [3]

Deleted: t
Deleted: II
Use of the
Deleted: .0
Deleted: would
Deleted: ese are discussed
below.
Deleted: A
Formatted: Butlets and Numbering

- Under Strategy W3, it would be useful to provide guidance on the acceptability of increasing the flood at Moggill above its naturally occurring peak (excluding Wivenhoe releases) but within the upper limit of nondamaging floods downstream.
- Under Strategy W3, it would be useful to clarify the flow at Moggill that defines the upper limit of nondamaging floods downstream. During the Event, Brisbane City Council provided information and damage | curves to the Flood Operations Centre indicating the upper limit flow at Moggill was as low as $2000 \mathrm{~m}^{3} / \mathrm{s}$ whereas the Manual specifies the flow as $4,000 \mathrm{~m}^{3} / \mathrm{s}$. This number must be agreed as it defines the intent of Strategy W3.
- Under Strategy W4, it would be useful to provide additional guidance on gate opening and closing rates. .

Formatted: Indent: Left: 0 cm t Hanging: 0.5 cm , Bulleted + Level: $1+$ Aligned at: 0 cm + Tab after: $0.63 \mathrm{~cm}+$ Indent at: 0.63 cm, Tabs: Not at 0.63 cm
Deleted: During the Event, this requirement competed with the need to protect urban areas by not allowing Wivenhoe Dam to reach a level that invoked Strategy W4. After considering these issues during the Event, it was decided the best course of action would be to increase releases to the limit of nondamaging flows at Moggill, prior to the natural peak occurring at Moggill. This ensured the structural safety of the Dams and provided urbanised areas with optimum protection from inundation.
Deleted:
Deleted: 3
Deleted: sequences
Deleted: would be useful
Deleted: During the Event, a decision was made to begin cosing the gates as quickly as possible, to reduce urban flood impacts once the Wivenhoe Dam level peaked. This was decided in an attempt to minimise urban damage below Moggill (an objective which must be considered under Strategy W4). Gates would have been re-opened if further lake level rises were experienced, however this scenario is not specifically addressed in the Manual.tI Under Strategy S2, additional guidance on actions to take when the Wivenhoe Dam Level is falling and the Somerset Dam Level is below 100.45 would be useful.

Page 1: [1]Deleted

Flood events that impact Somerset Dam and Wivenhoe Dam are caused by rainfall events that vary in intensity, duration and distribution over a catchment area exceeding $7,000 \mathrm{~km}^{2}$ above the Dams. When making decisions about releasing water from the Dams during flood events, consideration is also given to rain falling in Brisbane River catchment areas not controlled by the Dams. These catchment areas, which include the Lockyer Creek and Bremer River catchments, also cover an area in the order of $7,000 \mathrm{~km}^{2}$ and rain falling in these catchments will also vary in intensity, duration and distribution. Accordingly, the Manual must account for an infinite number of flood event scenarios.

The current level of forecasting technology does not make it possible for the Bureau of Meteorology (BoM) to provide completely accurate rainfall forecasts for the Dam catchment areas. A degree of uncertainty exists in all weather forecasts and the further forward in time forecasts are provided, the greater the degree of uncertainty.

As it is not possible to provide a specific procedure for Dam operation during every possible flood event, the Manual takes the approach of providing objectives and strategies to guide operational decisionmaking during a flood event. The objective followed and strategy chosen at any point in time depends on the actual water levels in the Dams as well as flood modelling predictions based on the best observed and forecast rainfall and stream flow information available at the time.

It is not possible to predict the range of objectives and strategies that will be used during the course of a flood event, before or at any time during the event, prior to the event peak. Objectives and strategies change as flood events progress, as rainfall is received in the catchment and as forecast rainfall amounts change. For small floods, objectives and strategies relate to minimising flood impacts in rural areas, while as the scale of the flood increases, the emphasis changes to protecting urban areas and maintaining the structural safety of the Dam

Page 14: [2]Deleted

25/02/20119:01:00 AM
Additionally, while ensuring the Dams are operated during flood events within the Manual objectives, Seqwater's duty of care to the public is also a primary consideration when making flood releases from the Dams. Every attempt is made to ensure public roads are closed prior to inundation by Dam outflows and that authorities are provided with enough time to prepare for community isolations and to undertake evacuations. Every attempt is also made to ensure urban damage is minimised, and that Dam outflows with the potential to contribute to urban damage are delayed until it is apparent no other options are available without risking the safety of the Dams.

Page 1: [3] Deleted

25/02/2011 9:01:00 AM
Due to the associated impacts to the public, changing this emphasis remains a political decision, however it is noted

17 REVIEW OF WIVENHOE DAM FULL SUPPLY LEVEL

Following the January 2011 Flood Event, there has been significant public discussion around the appropriate Full Supply Level (FSL) of the Dams and whether the FSL should be lowered.

The FSL of Somerset Dam and Wivenhoe Dam are contained in the Moreton Resource Operations Plan (see pages 91 and 93), which was developed by the Department of Environment and Resource Management (DERM) in accordance with the Water Act 2000. DERM is responsible for developing and approving all resource operations plans in Queensland, and the current Moreton Resource Operations Plan was approved by Governor-in-Councilin December 2009. It is publicly available on the DERM website (www.derm.ald.gov.au). Seqwater's Resource Operations Licence requires compliance with the relevant parts of the Moreton Resource Operations Plan, including the prescribed FSL.

The Manual states:

1. that an explicit objective is to "retain the storage at full supply level at the conclusion of the Floder Event". In Section 3.5 of the Manual, it states "as the dams are the primary urban water supply for Spvin" East Queensland, it is important that all opportunities to fill the dams are taken. There shouldye no reason why the dams should not be full following a Flood Event";
2. in Section 8.3, "the spillway gates are not to be opened for flood control purposes prior to the reservoir level exceeding EL $67.25^{\prime \prime}$ which is 0.25 metres above FSL.

In view of the above, it can be seen that Flood Operations Engineers dong-sel the FSL of the Dams and they

Formatted: Font: Not Italic Deleted:)" are not authorised to make decisions in relation to setting or changing, the + SL of the Dams at any time, either during or following Flood Events.

If a decision is to be made by DERM to permanently lower the fis., detailed consideration will need to be given to the procedures in the Manual as the procedures assume the existing FSL.

As discussed in Section 11. Queensland's disaster management response is provided by various disaster
management groups at local, district and State levels. This collaborative approach to disaster response ensures an effective and timely coordination of information and services state-wide, whenever disaster strikes.

Under the requirements of the Manual. Seqwater is responsible for issuing information to the public and media regarding storage conditions and Dam releases. During the January 2011 Flood Event, Seqwater followed the draft Communication Protocol that was developed by DERM for this purpose From Segwater's perspective. the Protocol worked and communications were managed effectively. However to properly assess communications, detailed feedback on the effectiveness of Seqwater communications during the Flood Event must be obtained from the following agencies:

- Brisbane City Council; Deleted: (that was developed following the October 2010 Flood Event) was used to manage communications between Seqwater and the
- Ipswich City Council; relevant local, State and Commonwealth agencies
- Somerset Regional Council; impacted by the release of
- Water Grid Manager:
- Queensland Police Service;
- Department of Community Safety;
- Department of Environment and Resource Management;
- Department of Premier and Cabinet;
- Bureau of Meteorology.

To date, this process has not commenced however, this work willoproceed as soon as appropriate personne are available to undertake the necessary review. In the interin' Seqwater has provided comment below and

Deleted: 9

 suggested preliminary recommendations to improve comminications during flood events, based on the experiences of the January 2011 Event. The commeds and preliminary recommendations are made in accordance with the three stages in the communicatton process contained in the Protocol, which are:1. Monitoring and assessment;
2. Briefing and activation;
3. Public communications.

The comments and preliminanvecommendations are summarised below.

1. Monitoring and asseswment

- Seqwater discussions with BoM relating to modelling result comparisons and actual and projected Dam Deleted:
outflows were beneficial to both parties.
Deleted: worked well and
- Seqwater also provided modelling results to Brisbane City Council. It remains unclear how Council used this inimation or if it proved beneficial. Generally, it appears the most relevant information required by the Council was projected flood height data, and this is estimated and issued by BoM. It is recommended Qthe provision of technical data from Seqwater to Brisbane City Council be examined further with Council, with a view to ensuring only useful data is provided to avoid any potential confusion associated with the provision of superfluous data.
- It is also recommended that investigations be undertaken to explore the benefits of a more formal arrangement with BoM in relation to the provision of rainfall forecast information during flood events. While
| sufficient rainfall forecasting information was available to the Flood Operations Centre during the Flood Deleted: s Event, and regular informal discussions were held with BoM in relation to the forecasts, there may be an opportunity to improve this process by including some appropriate procedures in the Communication Protocol.

Deleted:

2. Briefing and actlvation

Situation Reports and Technical Situation Reports were provided to relevant government agencies at regular intervals over the duration of the Event. There has not been any specific feedback received to date indicating whether this process worked well. However, as previously discussed, Seqwater will seek detailed feedback on the effectiveness of its communications with the agencies involved, with a view to implementing any suggested improvements arising from these discussions.

3. Public communications issues

There were no specific public communications made by Seqwater during the January 2011 Flood Event, as the Water Grid Manager was assigned the responsibility of being the State's lead communication agency on floodwater release information. Seqwater operational staff ensured technical information was communicated to the Water Grid Manager, as requested, to support all public communication.

It is understood the Water Grid Manager is currently reviewing the effectiveness of these processes,

19 REPORT CONCLUSIONS

Following are the significant conclusions drawn from the information contained in this Report.
The significant conclusions drawn from the information contained in this Report include:

- During the January 2011 Flood Event, Somerset Dam and Wivenhoe Dam were operated in accordance with The Manual of Operational Procedures for Flood Mitigation at Wivenhoe Dam and Somerset Dam (Revision 7).
- The data collection and flood modelling systems used to support decisions made during the Event performed well and assisted informed decision-making, in accordance with the Manual.
- The uncertainty of BoM rainfall forecasts did not support the additional release of flood water early in the Event.
- During the Event, Seqwater followed the Department of Environment and Resource Managements draft Communications Protocol which was compiled after the October 2010 flood event. This Protoćlwas developed to ensure effective communication between local, State and Commonwealth agencies impacted by the release of floodwater from the Dams.
- The January 2011 Flood Event was an extremely large and rare flood event. The combined effects of Somerset Dam and Wivenhoe Dam did reduce flood damages downstream howeser, they could not fully mitigate the impacts of the Event without putting the safety of the Dams at risk
- Studies associated with the design and operation of Wivenhoe Dam datingback to 1971, indicate a flood of the magnitude of the January 2011 Flood Event would be expected Bresult in urban damage below Moggill.
- The combined effects of Somerset Dam and Wivenhoe Dam proyided clear and greatly significant flood mitigation benefits during the January 2011 Flood Event.

Following is a summary of the key recommendations contained in this Report.

- In conjunction with the Bureau of Meteorology (BoM) and other relevant agencies, examine whether additional rain gauges should be installed in the Brisbane River Basin to improve the level of data recorded | during flood events. It is recognised that installing additional gauges, may not guarantee the rain gauge network will detect all instances of very intense or extreme rainfall that could occur in the Basin area.
- Given that a rare and very large flood event occurred, it is recommended a formal review of The Manual of

Deleted: undertaking this exercise still Operational Procedures for Flood Mitigation at Wivenhoe Dam and Somerset Dam (Revision 7) (the Manual) be underaken. This is a requirement of the Manual when an event of this nature is experienced. The issues raised in Section 16, should be considered in this process. \qquad
Deleted: 0

- In conjunction with BoM and other relevant agencies, it is recommended Seqwater parlicipate in a rexiew of the Agency Communications Protocol used during the Flood Event. This Event was the first majertest of the Protocol since its development in October 2010 and therefore a full review at this time wodd be appropriate.

APPENDIXA - MODEL RESULTS

The following table and associated graphs represent a summary of the model results used to support operational decision making during the Event. Only model runs at the critical times corresponding to the Flood Event Summary contained in Section 2 of this Report, are included in the summary however, model runs between these times are also available. Model run numbers have been edited to provide a sequential list. An indication of the number of additional runs that are available between individually presented runs can be determined by examining these model run numbers.

During the Event some model runs were over-written as new model runs are generally created by using the most recent model run as a base. If the run being used as a base is not explicitly saved, it will be lost. This does not present a problem from an operational sense because historical model runs, which do not consider the effects of rainfall between the time of a decision and the time the historical run was created, have liftle bearing on operational decision making.

For the purpose of this Report, any over-written model runs have been re-created. This is possible at any time from when the model run was initially created to the future because all model runs are based on geteal rainfall recorded in the relevant rain gauges at the time the model run was created. This information is contained in a data archive and, if required, can also be obtained separately and independently from BoMrior verification purposes. In the case of model runs containing forecast rainfall, the forecast rainfall usedywas based on the BoM catchment average Quantitative Precipitation Forecasts (QPFs) contained in Appendix C.

When examining the model results, it should be noted the forecast rainfall modedyesults apply the full 24 -hour catchment average rainfall forecast from the BoM QPF's to the model run. This is regardless of the model run time in relation to the issue time of the forecast and regardless of the rainfer since the forecast was issued. In effect, this provides a "worst case" 24 -hour scenario.

Finally, the values and graphs contained in this Appendix are oftatned from the flood modelling spreadsheets. Similar to the modelling runs, the creation of saved spreadsheets in this Appendix corresponds to the critical times contained in the Flood Event Summary. During the Eyent, the spreadsheets were updated continuously with both updated model results and hourly manual water level readings from the Dams, with a single "live" spreadsheet always being available to be used as thet basis of flood operations decision making. During the Event, spreadsheets were not necessarily explichfosaved at times corresponding to the Flood Event Summary, and in a similar manner to the re-cfeation of model runs where this has not occurred, spreadsheets have been re-created from archived data.

APPENDIX A - MODEL RESULTS

Summary of operational runs

Without forecast rainfall

RUW DATE	RUN	SOMERSET											Lochyer				With Wrenhoe:				Without Wivenhoe			
		$\begin{aligned} & \text { Current } \\ & \text { Level } \end{aligned}$	Predicted			Current Level	PeakHow	$\begin{aligned} & \text { Inflow } \\ & \text { Vol } \end{aligned}$	Predicted			Total sfifow Volume			Bremer		Lowood		Moggill		Lowood		Moggill	
			$\begin{aligned} & \text { Peak } \\ & \text { Flow } \end{aligned}$	$\begin{gathered} \text { Inflow } \\ \text { Vol } \end{gathered}$	Predicted Peak				Predicted Peak	Predicted Peak Outlow			Peak	Preaited	Peak	Predicted	Feak	Predicted	$\begin{aligned} & \text { Peak } \\ & \text { Flow } \end{aligned}$	Predicted	$\begin{aligned} & \text { Peak } \\ & \text { Flow } \end{aligned}$	Predicted	feak	Predicted
		TAHD	m3/s	ML	I AHD	mAHD	m 3 s	ML	mAHD	m3/5	didimm fin	ML	m3/s	dilmm hh	m 3 s :	th	$\mathrm{m} 3 / \mathrm{s}$	dodimm thy	m3/s	dilimm hh	m33s	dimm his	m3/s	didmm ha
Frio7012011 02:00	5	99.59	280	46,000	99.7	67.52	1,110	158,000	68.2	1,220	$08 / 0123$	204,000	470	070119	200	07	1,430	090101	1,460	$09 / 114$	470 :	$07 / 122$	550	081010
Fri 070112011 09:00	7	99.63:	280	56,000	99.8	67.75	1,270	186,000	68.2	1,220	$08 / 0115$	242,000	470	$07 / 0119$	230	070110	1,510	$08 / 0117$	1,550	$09 / 0106$	470	0710122	50	081010
Fri071012011 15:00	8	99.94	790	86,000	100.3	68.03	1,790	260,000	68.4	1,240	$08 / 0113$:	346,000	530	0710121	256	070115	1,610	0810117	1,660	0910106	530 :	080100	660	08010
Sat 08/0112011 14:00	10	100.44	1,110	111,000	100.5	68.61	1,910	309,000	68.7	1.480	100101	420.000	530	$07 / 121$	410	$07 / 0116$	1,620	080117	1,720	09.0106	530	$08: 10100$	70	081010
Sun 0901201211 01:00	12	100.32	1,110	128.000	100.5	68.63	1,890	329,000	68.7	1,480	100101 :	457,000	530	078	410	070116	1.620	081117	1,720	09/10106	530 :	0810100	770	$08: 1010$
Sun 090012011 08:00	14	100.28	1,110	173,000	100.5	68.55	1,930	396,000	68.7	1,500	1010101	569,000	530	$07 / 0121$	410	070116	1,620	080177	1,720	090106	530	0810100	770	$08 / 1010$
Sun 09/012011 14:00	17	100.47	1,700	243,000	100.7	68.58	2,860	561,000	70.0	1,490	1000122	804,000		$07 / 0121$	410	070116	1,680	110103	1,850	$09 / 121$	530	0810100	70	081010
Sun 0901/2011 19:00	21	101.43 :	3,800	387,000	102.3	68.86	6,960	886,000	72.1	2880	110108	1,272,000	530	$07 / 0121$	410	070116	3,240	$11 / 0111$	3,300	120100	530	08:0100	770	081010
Mon 10/0112011 01:00	23	102.51	3.910	448,000	102.9	69.97	8,050	1,020,000	72.9	2700	110107	1,468,006	${ }^{1} 20$	10,0104	410	070116	3,180	$11 / 0108$	3,240	11/0121	620.	100107	820	$10 / 011$
Mon 10/01/2011 09:00	26	103.08 :	3,910	485,000	103.1	71.56	8,180	1,046,000	72.9	2,690	1110106:	1,531,000	630	1010107	470	100116	3,240	1110102	3,420	$11 / 0112$	630	1010110	1,090	100011
Mon 1001201211 15:00	28	103.43	3,910	530,000	103.4	72.54	8.180	1,178,000	73.6	2,750	$11 / 1012$	(1,08,000	780	1010123	870	$10 / 0120$	3.490	1110102	3,910	$11 / 0113$	780	$11 / 0102$	1.500	$10 / 012$
Mon 10:012011 20:00	31	103.46	3.950	544,000	103.5	73.06	8.180	1,187,000	73.6	2.760	$11 / 114$	1,731,000	780	$10 / 0123$	870	100120	3,490	$11 / 0102$	3,930	11/01 13	780	$11 / 10102$	1,500	10012
Tue 11/0112011 04:00	35	103.28	3,950	570,000	103.5	73.40	8.180	1,446,000	74.1	2970	12014	2,016,000	780	$11 / 1221$	870	100120	3.570	120101	4,040	11/1114	780.	1210100	1.500	$10: 012$
Tue 11/012001108:00	37	103.46	3,910	628,000	103.9	73.70	8,180	1,582,000	74.5	3,700	120106	2,210,000	1,750	$11 / 0115$	870	100120	5,430	120104	5,870	120106	1,750	$11 / 0118$	2,320	120102
Tue 11/01/2011 13:00	39	103.91	3,910	748,000	104.8	74.39	8.590	1,758,000	75.0	5.22	120103	2,506,000	3,000:	1110116	2.120	$11 / 10118$	8,130	11/01 19	9.180	120107	3,000	$11 / 0119$	4.410	12010
Tue 11/0112011 19:00	41	104.60	3,910	801,000	105.2	74.97	8,830	1,858,000	75.0	5,480	110122	2,659,000	3,540	$11 / 0118$	2,790	$11 / 0121$	11,000	1100122	12260	120111	3,540	1110121	5,530	122010
Wed 120012011 08:00	43	104.83	3.910	803,000	105.2	74.82	8,180	1,724,000	74.	$9,300$	110121 :	2,527,000	3,540	110118	2790	$11 / 0121$	10.830	$11 / 0122$	12090	120111	3,540	$11 / 0121$	5.530	122010

APPENDIX A - MODEL RESULTS

(continued)

Run 5

Date: Friday 7 January 2011
Time: 02:00

APPENDIX A - MODEL RESULTS

APPENDIX A - MODEL RESULTS

Modelled Somerset Dam Lake Levels

Run 7
Date: Friday 7 January 2011
Time: 09:00

APPENDIX A - MODEL RESULTS

APPENDIX A - MODEL RESULTS

Modelled Bremer River Inflows to the Brisbane River

APPENDIX A - MODEL RESULTS

Modelled Brisbane River Flows at Moggill (without Wivenhoe Dam Outflow)

Run 8

Date: Friday 7 January 2011
Time: 15:00

Modelled Brisbane River Flows at Lowood (without Wivenhoe Dam Outflow)

APPENDIX A - MODEL RESULTS ${ }_{\text {(conitives) }}$

Run 10
Date: Saturday 8 January 2011
Time: 14:00

Modelled Lockyer Creek Inflows to the Brisbaneaiver

APPENDIX A - MODEL RESULTS

Modelled Brisbane River Flows at Lowood (without Wivenhoe Dam, Outflow)

APPENDIX A - MODEL RESULTS

Run 12

Date: Sunday 9 January 2011
Time: 01:00

Run 14

Date: Sunday 9 January 2011
Time: 08:00

Modelled Brisbane River Flows at Lowood (without Wivenhge.Dam Outflow)

APPENDIXA - MODEL RESULTS ${ }_{\text {conturued }}$

Run 17

Date: Sunday 9 January 2011
Time: 14:00

APPENDIX A - MODEL RESULTS

APPENDIX B - FLOOD VOLUME SUMMARY

Event	Somerset Dam			Wivenhoe Dam			
	Peak elevation	Stanley River	Outflow	Peak elevation	Upper Brisbane River only	Total	Outflow
	m AHD	ML	ML	m AHD	ML	ML.	ML
Feb 1893 ${ }^{1}$		1,361,000			1,383,000	2,744,000	
Feb1931		150,000			570,000	720,000	
Mar 1955	103.47	390,000	340,000		560,000	900,000	
Jan 1968	na	540,000	380,000		440,000	820,000	
Jan 1974	106.57	620,000	450,000		960,000	1,410,000	
Jun 1983	101.58	260,000	280,000		800,000	1,080,000	470,000
Mar 1989	102.59	370,000	380,000	69.78	310,000	690,000	660,000
Apr 1989	102.69	340,000	350,000	71.45	520,000	870,000	820,000
Feb 1999	102.96	450,000	280,000	70.45	940,000	1,220,000	900,000
May 2009	99.62	110,000	110,000	62.19	125,000	235,000	00
Mar 2010	99.41	210,000	200,000	66.43	190,000	390,000	0
Oct 2010	101.37	250,000	270,000	69.61	360,000	630,000	- 0
Mid Dec 2010	100.42	150,000	140,000	67.50	220,000		630,000
Late Dec 2010	99.98	120,000				360,000	330,000
Jan 2011	105.11		130,	69.35	370,000	500,000	460,000
	105.11	825,000	820,000	74.97	1,830,000	2,650,000	2,650,000

APPENDIX C - QUANTITATIVE PRECIPITATION FORECASTS

Somerset and Wivenhoe catchments Catchment average rainfall							
Date 1 time of issue	Forecast for 24 hours to	Forecast rainfall				Recorded for 24 hours to	$\begin{gathered} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ \\ \mathrm{~m} \\ \mathrm{~mm} \end{gathered}$
		E	$\begin{array}{r} x \\ \underset{\Sigma}{x} \end{array}$	$\begin{aligned} & 0 \\ & \frac{0}{0} \\ & \boxed{y} \end{aligned}$	$\begin{aligned} & 8 \\ & \frac{9}{5} \\ & \frac{1}{4} \\ & \frac{2}{4} \end{aligned}$		
		mm	mm	mm	mm		
Mon 03-01-2011 11:36	04/01/2011 09:00	5	10		8	04/01/2011 09:00	5.
Mon 03-01-2011 16:00	04/01/2011 15:00	10	20		15	04/01/2011 15:00	4
Tue 04-01-2011 11:30	05/01/2011 09:00	10	20		15	05/01/2011 09:08	0
Tue 04-01-2011 16:00	05/01/2011 15:00	5	15		10	05/01/2011 15:00	2
Wed 05-01-2011 10:03	06/01/2011 09:00	20	30		25	06/01/2071 09:00	26
Wed 05-01-2011 16:00	06/01/2011 15:00	30	50		40	06/01/2011 15:00	44
Thu 06-01-2011 10:21	07/01/2011 09:00	30	50		40	(0701/2011 09:00	38
Thu 06-01-2011 16:00	07/01/2011 15:00	20	30		25	07/01/2011 15:00	43
Fri 07-01-2011 10:03	08/01/2011 10:00	20	30		25	08/01/2011 10:00	26
Fri 07-01-2011 16:04	08/01/2011 16:00	20	30		25	08/01/2011 16:00	6
Sat 08-01-2011 10:03	09/01/2011 09:00	30			40	09/01/2011 09:00	28
Sat 08-01-2011 16:00	09/01/2011 15:00	30	50		40	09/01/2011 15:00	80
Sun 09-01-2011 10:03	10/01/2011 09:00				50	10/01/2011 09:00	149
Sun 09-01-2011 16:00	10/01/2011 15:00	50	80		65	10/01/2011 15:00	125
Man 10-01-2011 10:03	11/01/2011 10:00	50	100		75	11/01/2011 10:00	120
Mon 10-01-2011 16:00	11/01/2011 16:00	25	50	100	38	11/01/2011 16:00	129
Tue 11-01-2011 10:13	12/01/2014,10:00		>100		100	12/01/2011 10:00	51
Tue 11-01-2011 16:13	12/01/2011 16:00	50	100		75	12/01/2011 16:00	12
Wed 12-01-2011 10:03	(3)01/2011 10:00	10	10		10	13/01/2011 10:00	2
Wed 12-01-2011 16:00	13/01/2011 16:00	5	5		5	13/01/2011 16:00	1
Thu 13-01-2011 14:250	14/01/2011 16:00	5	5		5	14/01/2011 16:00	0
Thu 13-01-2011 16:00	14/01/2011 15:00	5	5		5	14/01/2011 15:00	0
Fri 14-01-201-k, 10:03	15/01/2011 09:00	3	3		3	15/01/2011 09:00	0
Fri 14-01-2011 16:00	15/01/2011 15:00	3	3		3	15/01/2011 15:00	0

APPENDIX C - QUANTITATIVE PRECIPITATION FORECASTS

Forecast 1

Date: Sunday 2 January 2011
Time: 10:03

From: Aifs Operational Manager
Sent: Sunday, January 02, 2011 10:03:07 AM
To: weather
Subject: BOM: SEQWB Quantitative Precipitation [SEC=UNCLASSIFIED]
Auto forwarded by a Rule
IDQ10003
BUREAU OF METEOROLOGY
Queensland Region
Brisbane Office

QUANTITATIVE PRECIPITATION FORECAST FOR SEQWB/SUNWATER)
Issued at 10:03am EST on Sunday the 2nd of January2011
SOMERSET DAM AND WIVENHOE DAM CATCGMENTS:
Forecast of catchment average rainfall for the 24) hour period to
9 am Monday.. Less than $5-10 \mathrm{~mm}$
NORTH PINE DAM CATCHMENT
Forecast of catchment average rainforlif for the 24 hour period to 9 am Monday.. $5-10 \mathrm{~mm}$

APPENDIX C - QUANTITATIVE PRECIPITATION FORECASTS

Forecast 2

Date: Sunday 2 January 2011
Time: 16:04

From: Aifs Operational Manager
Sent: Sunday, January 02, 2011 4:04:11 PM
To: weather
Subject: BOM: SEQWB Quantitative Precipitation [SEC=UNCLASSIFIED] Auto forwarded by a Rule

IDQ10003
BUREAU OF METEOROLOGY
Queensland Region
Brisbane Office

QUANTITATIVE PRECIPITATION FORECAST FOR SEQW/BASUNWATER)
Issued at 4:04pm EST on Sunday the 2nd of January 2011
SOMERSET DAM AND WIVENHOE DAM CATCH (NENTS:
Forecast of catchment average rainfall for the 24 four period to 3pm Monday.. $5-10 \mathrm{~mm}$

NORTH PINE DAM CATCHMENT
Forecast of catchment average rainfalfor the 24 hour period to
3 pm Monday.. $5-10 \mathrm{~mm}$

APPENDIX C - QUANTITATIVE PRECIPITATION FORECASTS

Forecast 3

Date: Monday 3 January 2011
Time: 11:36

From: Aifs Operational Manager
Sent: Monday, January 03, 2011 11:36:29 AM
To: weather
Subject: BOM: SEQWB Quantitative Precipitation [SEC=UNCLASSIFIED]
Auto forwarded by a Rule
IDQ10003
BUREAU OF METEOROLOGY
Queensland Region
Brisbane Office

QUANTITATIVE PRECIPITATION FORECAST FOR SEQWBB/SUNWATER)
Issued at 11:36am EST on Monday the 3rd of January 2001才
SOMERSET DAM AND WIVENHOE DAM CATCHDNENTS:
Forecast of catchment average rainfall for the 24 fodur period to 9 am Tuesday .. $5-10 \mathrm{~mm}$

NORTH PINE DAM CATCHMENT
Forecast of catchment average rainfortfor the 24 hour period to 9am Tuesday 5 -10mm

APPENDIX C - QUANTITATIVE PRECIPITATION FORECASTS

Forecast 4

Date: Monday 3 January 2011
Tìme: 16:00

From: Aifs Operational Manager
Sent: Monday, January 03, 2011 4:00:34 PM
To: weather
Subject: BOM: SEQWB Quantitative Precipitation [SEC=UNCLASSIFIED]
Auto forwarded by a Rule
IDQ10003
BUREAU OF METEOROLOGY
Queensland Region
Brisbane Office

QUANTITATIVE PRECIPITATION FORECAST FOR SEQWB/SUNWATER) Issued at $4: 00 \mathrm{pm}$ EST on Monday the 3rd of January 20 O 11

SOMERSET DAM AND WIVENHOE DAM CATCAMENTS:
Forecast of catchment average rainfall for the 24hour period to 3 pm Tuesday .. $10-20 \mathrm{~mm}$

NORTH PINE DAM CATCHMENT
Forecast of catchment average rainfall for the 24 hour period to 3 pm Tuesday $10-20 \mathrm{~mm}$

APPENDIX C - QUANTITATIVE PRECIPITATION FORECASTS

Forecast 5

Date: Tuesday 4 January 2011
Time: 11:30

From: Aifs Operational Manager
Sent: Tuesday, January 04, 2011 11:30:30 AM
To: weather
Subject: BOM: SEQWB Quantitative Precipitation [SEC=UNCLASSIFIED]
Auto forwarded by a Rule
IDQ10003
BUREAU OF METEOROLOGY
Queensland Region
Brisbane Office

QUANTITATIVE PRECIPITATION FORECAST FOR SEQWBSUNWATER)
Issued at 11:30am EST on Tuesday the 4th of January 20才1
SOMERSET DAM AND WIVENHOE DAM CATCHMENTS:
Forecast of catchment average rainfall for the 24 hoar period to
9am Wednesday $10-20 \mathrm{~mm}$
NORTH PINE DAM CATCHMENT
Forecast of catchment average rainfal $\sqrt[4]{4}$ or the 24 hour period to
9am Wednesday $10-20 \mathrm{~mm}$

APPENDIX C - QUANTITATIVE PRECIPITATION FORECASTS

Forecast 6

Date: Tuesday 4 January 2011
Time: 16:00

From: Aifs Operational Manager
Sent: Tuesday, January 04, 2011 4:00:03 PM
To: weather
Subject: BOM: SEQWB Quantitative Precipitation [SEC=UNCLASSIFIED]
Auto forwarded by a Rule
IDQ10003
BUREAU OF METEOROLOGY
Queensland Region
Brisbane Office

QUANTITATIVE PRECIPITATION FORECAST FOR SEQWBISUNWATER)

 Issued at 4:00pm EST on Tuesday the 4th of January 2041SOMERSET DAM AND WIVENHOE DAM CATCHMNENTS:
Forecast of catchment average rainfall for the 24 hodur period to 3 pm Wednesday $5-15 \mathrm{~mm}$

NORTH PINE DAM CATCHMENT

Forecast of catchment average rainffid for the 24 hour period to
3pm Wednesday 5 -15mm

APPENDIX C - QUANTITATIVE PRECIPITATION FORECASTS

Forecast 7

Date: Wednesday 5 January 2011
Time: 10:03

From: Aifs Operational Manager
Sent: Wednesday, January 05, 2011 10:03:06 AM
To: weather
Subject: BOM: SEQWB Quantitative Precipitation [SEC=UNCLASSIFIED]
Auto forwarded by a Rule
IDQ10003
BUREAU OF METEOROLOGY
Queensland Region
Brisbane Office

QUANTITATIVE PRECIPITATION FORECAST FOR SEOWB/SUNWATER)
Issued at 10:03am EST on Wednesday the 5th of Januàry 2011
SOMERSET DAM AND WIVENHOE DAM CATCAMENTS:
Forecast of catchment average rainfall for the 2(4)hour period to 9 am Thursday $20-30 \mathrm{~mm}$

NORTH PINE DAM CATCHMENT
Forecast of catchment average rainfall for the 24 hour period to
9am Thursday $20-30 \mathrm{~mm}$

APPENDIX C - QUANTITATIVE PRECIPITATION FORECASTS

Forecast 8

Date: Wednesday 5 January 2011
Time: 16:00

From: Aifs Operational Manager
Sent: Wednesday, January 05, 2011 4:00:05 PM
To: weather
Subject: BOM: SEQWB Quantitative Precipitation [SEC=UNCLASSIFIED]
Auto forwarded by a Rule
IDQ10003
BUREAU OF METEOROLOGY
Queensland Region
Brisbane Office

QUANTITATIVE PRECIPITATION FORECAST FOR SEQWB/SUNWATER)
Issued at 4:00pm EST on Wednesday the 5th of January 2011
SOMERSET DAM AND WIVENHOE DAM CATCAMENTS:
Forecast of catchment average rainfall for the 24)hour period to 3 pm Thursday $30-50 \mathrm{~mm}$

NORTH PINE DAM CATCHMENT
Forecast of catchment average rainfall for the 24 hour period to 3 pm Thursday $30-50 \mathrm{~mm}$

APPENDIX C - QUANTITATIVE PRECIPITATION FORECASTS

Forecast 9

Date: Thursday 6 January 2011
Time: 10:21

From: Aifs Operational Manager
Sent: Thursday, January 06, 2011 10:21:18 AM
To: weather
Subject: BOM: SEQWB Quantitative Precipitation [SEC=UNCLASSIFIED]
Auto forwarded by a Rule
IDQ10003
BUREAU OF METEOROLOGY
Queensland Region
Brisbane Office

QUANTITATIVE PRECIPITATION FORECAST FOR SEQWB/SUNWATER)
Issued at 10:21am EST on Thursday the 6th of Janua,y 2011
SOMERSET DAM AND WIVENHOE DAM CATCGMENTS:
Forecast of catchment average rainfall for the 24)hour period to $9 a \mathrm{~m}$ Friday $30-50 \mathrm{~mm}$

NORTH PINE DAM CATCHMENT

Forecast of catchment average rainfall for the 24 hour period to 9am Friday $30-50 \mathrm{~mm}$

APPENDIX C - QUANTITATIVE PRECIPITATION FORECASTS

Forecast 10

Date: Thursday 6 January 2011
Time: 16:00

From: Aifs Operational Manager
Sent: Thursday, January 06, 2011 4:00:06 PM
To: weather
Subject: BOM: SEQWB Quantitative Precipitation [SEC=UNCLASSIFIED]
Auto forwarded by a Rule
IDQ10003
BUREAU OF METEOROLOGY
Queensland Region
Brisbane Office

QUANTITATIVE PRECIPITATION FORECAST FOR SEQWB/SUNWATER)
Issued at 4:00pm EST on Thursday the 6th of January 2011
SOMERSET DAM AND WIVENHOE DAM CATCAMENTS:
Forecast of catchment average rainfall for the 2(4)hour period to 3 pm Friday $20-30 \mathrm{~mm}$

NORTH PINE DAM CATCHMENT
Forecast of catchment average rainfall for the 24 hour period to
3 pm Friday $20-30 \mathrm{~mm}$

APPENDIX C - QUANTITATIVE PRECIPITATION FORECASTS

Forecast 11

Date: Friday 7 January 2011
Time: 10:03

From: Aifs Operational Manager
Sent: Friday, January 07, 2011 10:03:06 AM
To: weather
Subject: BOM: SEQWB Quantitative Precipitation [SEC=UNCLASSIFIED]
Auto forwarded by a Rule
IDQ10003
BUREAU OF METEOROLOGY
Queensland Region
Brisbane Office

QUANTITATIVE PRECIPITATION FORECAST FOR SEQWBSUUNWATER)
Issued at 10:03am EST on Friday the 7th of January 2014
SOMERSET DAM AND WIVENHOE DAM CATCHMENTS:
Forecast of catchment average rainfall for the 24 hodur period to 10am Saturday: $20-30 \mathrm{~mm}$

NORTH PINE DAM CATCHMENT
Forecast of catchment average rainfath for the 24 hour period to
10am Saturday: 40-50mm

APPENDIX C - QUANTITATIVE PRECIPITATION FORECASTS

Forecast 12

Date: Friday 7 January 2011
Time: 16:04

From: Aifs Operational Manager
Sent: Friday, January 07, 2011 4:04:23 PM
To: weather
Subject: BOM: SEQWB Quantitative Precipitation [SEC=UNCLASSIFIED]
Auto forwarded by a Rule
IDQ10003
BUREAU OF METEOROLOGY
Queensland Region
Brisbane Office

QUANTITATIVE PRECIPITATION FORECAST FOR SEQUABISUNWATER) Issued at 4:04pm EST on Friday the 7th of January 2011

SOMERSET DAM AND WIVENHOE DAM CATCHMMENTS:
Forecast of catchment average rainfall for the 24 hour period to
4 pm Saturday: $20-30 \mathrm{~mm}$

NORTH PINE DAM CATCHMENT

Forecast of catchment average rainfgitfor the 24 hour period to
4 pm Saturday: $40-50 \mathrm{~mm}$

APPENDIX C - QUANTITATIVE PRECIPITATION FORECASTS

Forecast 13

Date: Saturday 8 January 2011
Time: 10:03

From: Aifs Operational Manager
Sent: Saturday, January 08, 2011 10:03:04 AM
To: weather
Subject: BOM: SEQWB Quantitative Precipitation [SEC=UNCLASSIFIED]
Auto forwarded by a Rule
IDQ10003
BUREAU OF METEOROLOGY
Queensland Region
Brisbane Office

QUANTITATIVE PRECIPITATION FORECAST FOR SEQWBB/SUNWATER)
Issued at 10:03am EST on Saturday the 8th of January 2 1 1 1
SOMERSET DAM AND WIVENHOE DAM CATCHNAENTS:
Forecast of catchment average rainfall for the 24 hour period to
9am Sunday: $30-50 \mathrm{~mm}$
NORTH PINE DAM CATCHMENT
Forecast of catchment average rainfatif for the 24 hour period to
9am Sunday: $40-60 \mathrm{~mm}$

APPENDIX C - QUANTITATIVE PRECIPITATION FORECASTS

Forecast 14

Date: Saturday 8 January 2011
Time: 16:00

From: Aifs Operational Manager
Sent: Saturday, January 08, 2011 4:00:05 PM
To: weather
Subject: BOM: SEQWB Quantitative Precipitation [SEC=UNCLASSIFIED] Auto forwarded by a Rule

IDQ10003
BUREAU OF METEOROLOGY
Queensland Region
Brisbane Office

QUANTITATIVE PRECIPITATION FORECAST FOR SEQWBYSUNWATER) Issued at $4: 00 \mathrm{pm}$ EST on Saturday the 8th of January 2049

SOMERSET DAM AND WIVENHOE DAM CATCHMENTS:
Forecast of catchment average rainfall for the 24 tour period to 3 pm Sunday: $30-50 \mathrm{~mm}$

NORTH PINE DAM CATCHMENT
Forecast of catchment average rainfalif for the 24 hour period to
3 pm Sunday: $40-60 \mathrm{~mm}$

APPENDIX C - QUANTITATIVE PRECIPITATION FORECASTS

Forecast 15

Date: Sunday 9 January 2011
Time: 10:03

From: Aifs Operational Manager
Sent: Sunday, January 09, 2011 10:03:02 AM
To: weather
Subject: BOM: SEQWB Quantitative Precipitation [SEC=UNCLASSIFIED]
Auto forwarded by a Rule
IDQ10003
BUREAU OF METEOROLOGY
Queensland Region
Brisbane Office

QUANTITATIVE PRECIPITATION FORECAST FOR SEQWVBISUNWATER) Issued at 10:03am EST on Sunday the 9th of January 204t

SOMERSET DAM AND WIVENHOE DAM CATCHMAENTS:
Forecast of catchment average rainfall for the 24 hodur period to 9am Monday: $40-60 \mathrm{~mm}$

NORTH PINE DAM CATCHMENT
Forecast of catchment average rainfallf for the 24 hour period to
9am Monday: $40-60 \mathrm{~mm}$

APPENDIX C - QUANTITATIVE PRECIPITATION FORECASTS
 (continued)

Forecast 16

Date: Sunday 9 January 2011
Time: 16:00

From: Aifs Operational Manager
Sent: Sunday, January 09, 2011 4:00:06 PM
To: weather
Subject: BOM: SEQWB Quantitative Precipitation [SEC=UNCLASSIFIED]
Auto forwarded by a Rule
IDQ10003
BUREAU OF METEOROLOGY
Queensland Region
Brisbane Office

QUANTITATIVE PRECIPITATION FORECAST FOR SEQWBYSUNWATER)
Issued at 4:00pm EST on Sunday the 9th of January 20113
SOMERSET DAM AND WIVENHOE DAM CATCHMENTS:
Forecast of catchment average rainfall for the 24 tiour period to 3 pm Monday: $50-80 \mathrm{~mm}$

NORTH PINE DAM CATCHMENT

Forecast of catchment average rainfalifor the 24 hour period to 3pm Monday: 60-100mm

APPENDIX C - QUANTITATIVE PRECIPITATION FORECASTS
 (continued)

Forecast 17

Date: Monday 10 January 2011
Time: 10:03

From: Aifs Operational Manager
Sent: Monday, January 10, 2011 10:03:02 AM
To: weather
Subject: BOM: SEQWB Quantitative Precipitation [SEC=UNCLASSIFIED]
Auto forwarded by a Rule
IDQ10003
BUREAU OF METEOROLOGY
Queensland Region
Brisbane Office

QUANTITATIVE PRECIPITATION FORECAST FOR SEQWBISUNWATER) Issued at 10:03am EST on Monday the 10th of January 2011

SOMERSET DAM AND WIVENHOE DAM CATCHMENTS:
Forecast of catchment average rainfall for the 24 (i)ur period to 10am Tuesday: $50-100 \mathrm{~mm}$

NORTH PINE DAM CATCHMENT
Forecast of catchment average rainfalfor the 24 hour period to
10am Tuesday: 75-150mm

APPENDIX C - QUANTITATIVE PRECIPITATION FORECASTS

Forecast 18

Date: Monday 10 January 2011
Time: 16:00

From: Aifs Operational Manager
Sent: Monday, January 10, 2011 4:00:04 PM
To: weather
Subject: BOM: SEQWB Quantitative Precipitation [SEC=UNCLASSIFIED]
Auto forwarded by a Rule
IDQ10003
BUREAU OF METEOROLOGY
Queensland Region
Brisbane Office

QUANTITATIVE PRECIPITATION FORECAST FOR SEQAMB/'SUNWATER)
Issued at 4:00pm EST on Monday the 10th of January 201才
SOMERSET DAM AND WIVENHOE DAM CATCHMIENTS:
Forecast of catchment average rainfall for the 24 hodur period to
4 pm Tuesday: $25-50 \mathrm{~mm}$, isolated falls to 100 m

NORTH PINE DAM CATCHMENT

Forecast of catchment average rainfat for the 24 hour period to
4 pm Tuesday: $25-50 \mathrm{~mm}$, isolated fálls to 100 mm

APPENDIX C - QUANTITATIVE PRECIPITATION FORECASTS

Forecast 19

Date: Tuesday 11 January 2011
Time: 10:14

From: Aifs Operational Manager
Sent: Tuesday, January 11, 2011 10:14:02 AM
To: weather
Subject: BOM: SEQWB Quantitative Precipitation [SEC=UNCLASSIFIED]
Auto forwarded by a Rule
IDQ10003
BUREAU OF METEOROLOGY
Queensland Region
Brisbane Office

QUANTITATIVE PRECIPITATION FORECAST FOR SEQWBISUNWATER)
Issued at 10:13am EST on Tuesday the 11th of January 2011
SOMERSET DAM AND WIVENHOE DAM CATCHNAENTS:
Forecast of catchment average rainfall for the 24 hour period to 10am Wednesday: Falls in excess of 100 mm

NORTH PINE DAM CATCHMENT
Forecast of catchment average rainffit for the 24 hour period to
10am Wednesday: Falls in excess of 100 mm

APPENDIX C - QUANTITATIVE PRECIPITATION FORECASTS

Forecast 20

Date: Tuesday 11 January 2011
Time: 16:13

From: Aifs Operational Manager
Sent: Tuesday, January 11, 2011 4:13:12 PM
To: weather
Subject: BOM: SEQWB Quantitative Precipitation [SEC=UNCLASSIFIED]
Auto forwarded by a Rule
IDQ10003
BUREAU OF METEOROLOGY
Queensland Region
Brisbane Office

QUANTITATIVE PRECIPITATION FORECAST FOR SEQWBBISUNWATER)
Issued at 4:13pm EST on Tuesday the 11th of January qeq. 1
SOMERSET DAM AND WIVENHOE DAM CATCHMNENTS:
Forecast of catchment average rainfall for the 24, hour period to
4 pm Wednesday: 50 to 100 mm this evening and overnight, easing to less than 30 mm during Wednesday

NORTH PINE DAM CATCHMENT
Forecast of catchment average ranfall for the 24 hour period to
4 pm Wednesday: 50 to 100 m n this evening and overnight, easing to less than 30 mm during Wednesday

APPENDIX C - QUANTITATIVE PRECIPITATION FORECASTS

Forecast 21

Date: Wednesday 12 January 2011
Time: 10:03

From: Aifs Operational Manager
Sent: Wednesday, January 12, 2011 10:03:07 AM
To: weather
Subject: BOM: SEQWB Quantitative Precipitation [SEC=UNCLASSIFIED]
Auto forwarded by a Rule
IDQ10003
BUREAU OF METEOROLOGY
Queensland Region
Brisbane Office

QUANTITATIVE PRECIPITATION FORECAST FOR SEQWB/SUNWATER) Issued at 10:03am EST on Wednesday the 12th of Janijary 2011

SOMERSET DAM AND WIVENHOE DAM CATCAMMENTS:
Forecast of catchment average rainfall for the 24hour period to 10am Thursday: 10mm

NORTH PINE DAM CATCHMENT
Forecast of catchment average rainfall for the 24 hour period to 10am Thursday: 10 mm

APPENDIX C - QUANTITATIVE PRECIPITATION FORECASTS

Forecast 22

Date: Wednesday 12 January 2011
Time: 16:00

From: Aifs Operational Manager
Sent: Wednesday, January 12, 2011 4:00:02 PM
To: weather
Subject: BOM: SEQWB Quantitative Precipitation [SEC=UNCLASSIFIED]
Auto forwarded by a Rule
IDQ10003
BUREAU OF METEOROLOGY
Queensland Region
Brisbane Office

QUANTITATIVE PRECIPITATION FORECAST FOR SEQWBBISUNWATER)
Issued at 4:00pm EST on Wednesday the 12th of January 2011
SOMERSET DAM AND WIVENHOE DAM CATCHDNENTS:
Forecast of catchment average rainfall for the 24 hodur period to 4pm Thursday: 5 mm

NORTH PINE DAM CATCHMENT
Forecast of catchment average rainfliffor the 24 hour period to 4pm Thursday: 5mm

APPENDIX C - QUANTITATIVE PRECIPITATION FORECASTS

Forecast 23

Date: Thursday 13 January 2011
Time: 14:25

From: Aifs Operational Manager
Sent: Thursday, January 13, 2011 2:25:34 PM
To: weather
Subject: BOM: SEQWB Quantitative Precipitation [SEC=UNCLASSIFIED] Auto forwarded by a Rule

IDQ10003
BUREAU OF METEOROLOGY
Queensland Region
Brisbane Office

QUANTITATIVE PRECIPITATION FORECAST FOR SEQWBISUNWATER)
Issued at $2: 25$ pm EST on Thursday the 13th of January 2011
SOMERSET DAM AND WIVENHOE DAM CATCHMAENTS:
Forecast of catchment average rainfall for the 24 hodur period to 4 pm Friday 5 mm

NORTH PINE DAM CATCHMENT
Forecast of catchment average rainfollffor the 24 hour period to
4pm Friday 5mm

APPENDIX C - QUANTITATIVE PRECIPITATION FORECASTS

Forecast 24

Date: Thursday 13 January 2011
Time: 16:00

From: Aifs Operational Manager
Sent: Thursday, January 13, 2011 4:00:05 PM
To: weather
Subject: BOM: SEQWB Quantitative Precipitation [SEC=UNCLASSIFIED]
Auto forwarded by a Rule
IDQ10003
BUREAU OF METEOROLOGY
Queensland Region
Brisbane Office

QUANTITATIVE PRECIPITATION FORECAST FOR SEQWMB/SUNWATER) Issued at 4:00pm EST on Thursday the 13th of January $\mathbf{2 0 1 1}$

SOMERSET DAM AND WIVENHOE DAM CATCHMENTS:
Forecast of catchment average rainfall for the 24 hodur period to 3pm Friday 5mm

NORTH PINE DAM CATCHMENT

Forecast of catchment average rainffill for the 24 hour period to 3pm Friday 5mm

APPENDIX C - QUANTITATIVE PRECIPITATION FORECASTS

Forecast 25

Date: Friday 14 January 2011
Time: 10:03

From: Aifs Operational Manager
Sent: Friday, January 14, 2011 10:03:06 AM
To: weather
Subject: BOM: SEQWB Quantitative Precipitation [SEC=UNCLASSIFIED] Auto forwarded by a Rule

IDQ10003
BUREAU OF METEOROLOGY
Queensland Region
Brisbane Office

QUANTITATIVE PRECIPITATION FORECAST FOR SEQWVB/SUNWATER) Issued at 10:03am EST on Friday the 14th of January 204

SOMERSET DAM AND WIVENHOE DAM CATCHENTS:
Forecast of catchment average rainfall for the 24 hodur period to
9 am Saturday $<3 \mathrm{~mm}$
NORTH PINE DAM CATCHMENT
Forecast of catchment average rainfolf for the 24 hour period to
9 am Saturday <3mm

APPENDIX C - QUANTITATIVE PRECIPITATION FORECASTS

Forecast 26

Date: Friday 14 January 2011
Time: 16:00

From: Aifs Operational Manager
Sent: Friday, January 14, 2011 4:00:05 PM
To: weather
Subject: BOM: SEQWB Quantitative Precipitation [SEC=UNCLASSIFIED]
Auto forwarded by a Rule
IDQ10003
BUREAU OF METEOROLOGY
Queensland Region
Brisbane Office

QUANTITATIVE PRECIPITATION FORECAST FOR SEQNAB/SUNWATER) Issued at 4:00pm EST on Friday the 14th of January 2014

SOMERSET DAM AND WIVENHOE DAM CATCHANENTS:
Forecast of catchment average rainfall for the 24 hdur period to
3 pm Saturday $<3 \mathrm{~mm}$
NORTH PINE DAM CATCHMENT
Forecast of catchment average rainfog for the 24 hour period to
$3 p m$ Saturday <3mm

APPENDIX C - QUANTITATIVE PRECIPITATION FORECASTS

Forecast 27

Date: Saturday 15 January 2011
Time: 10:03

From: Aifs Operational Manager
Sent: Saturday, January 15, 2011 10:03:03 AM
To: weather
Subject: BOM: SEQWB Quantitative Precipitation [SEC=UNCLASSIFIED]
Auto forwarded by a Rule
IDQ10003
BUREAU OF METEOROLOGY
Queensland Region
Brisbane Office

QUANTITATIVE PRECIPITATION FORECAST FOR SEQWAB/SUNWATER)
Issued at 10:03am EST on Saturday the 15th of January 2011
SOMERSET DAM AND WIVENHOE DAM CATCHAMENTS:
Forecast of catchment average rainfall for the 24 hodur period to
10am Sunday: < 3mm
NORTH PINE DAM CATCHMENT
Forecast of catchment average rainfâtfor the 24 hour period to 10am Sunday: < 3mm

APPENDIX C - QUANTITATIVE PRECIPITATION FORECASTS

Forecast 28

Date: Saturday 15 January 2011
Time: 16:00

From: Aifs Operational Manager
Sent: Saturday, January 15, 2011 4:00:02 PM
To: weather
Subject: BOM: SEQWB Quantitative Precipitation [SEC=UNCLASSIFIED] Auto forwarded by a Rule

IDQ10003
BUREAU OF METEOROLOGY
Queensland Region
Brisbane Office

QUANTITATIVE PRECIPITATION FORECAST FOR SEQNBB/SUNWATER)

Issued at 4:00pm EST on Saturday the 15th of January 2011
SOMERSET DAM AND WIVENHOE DAM CATCHMENTS:
Forecast of catchment average rainfall for the 24 hdur period to
4 pm Sunday: < 3mm

NORTH PINE DAM CATCHMENT

Forecast of catchment average rainfant for the 24 hour period to
4 pm Sunday: < 3mm

APPENDIX C - QUANTITATIVE PRECIPITATION FORECASTS

Forecast 29

Date: Sunday 16 January 2011
Time: 10:03

From: Aifs Operational Manager
Sent: Sunday, January 16, 2011 10:03:02 AM
To: weather
Subject: BOM: SEQWB Quantitative Precipitation [SEC=UNCLASSIFIED]
Auto forwarded by a Rule
IDQ10003
BUREAU OF METEOROLOGY
Queensland Region
Brisbane Office

QUANTITATIVE PRECIPITATION FORECAST FOR SEQWMBISUNWATER) Issued at 10:03am EST on Sunday the 16th of January 2011

SOMERSET DAM AND WIVENHOE DAM CATCHMENTS:
Forecast of catchment average rainfall for the 24, hour period to
10am Monday: $<2 \mathrm{~mm}$

NORTH PINE DAM CATCHMENT

Forecast of catchment average rainfatifor the 24 hour period to
10am Monday: <2mm

APPENDIX C - QUANTITATIVE PRECIPITATION FORECASTS

Forecast 30

Date: Sunday 16 January 2011
Time: 16:00

From: Aifs Operational Manager
Sent: Sunday, January 16, 2011 4:00:07 PM
To: weather
Subject: BOM: SEQWB Quantitative Precipitation [SEC=UNCLASSIFIED]
Auto forwarded by a Rule
IDQ10003
BUREAU OF METEOROLOGY
Queensland Region
Brisbane Office

QUANTITATIVE PRECIPITATION FORECAST FOR SEQWBISUNWATER)
Issued at 4:00pm EST on Sunday the 16th of January 20 et
SOMERSET DAM AND WIVENHOE DAM CATCHNENTS:
Forecast of catchment average rainfall for the 24 hour period to
4pm Monday: 2 to 5 mm
NORTH PINE DAM CATCHMENT
Forecast of catchment average rainfat for the 24 hour period to
4pm Monday: < 2mm

APPENDIX C - QUANTITATIVE PRECIPITATION FORECASTS

Forecast 31

Date: Monday 17 January 2011
Time: 10:03

From: Aifs Operational Manager
Sent: Monday, January 17, 2011 10:03:03 AM
To: weather
Subject: BOM: SEQWB Quantitative Precipitation [SEC=UNCLASSIFIED]
Auto forwarded by a Rule
IDQ10003
BUREAU OF METEOROLOGY
Queensland Region
Brisbane Office

QUANTITATIVE PRECIPITATION FORECAST FOR SEQWBISUNWATER)
Issued at 10:03am EST on Monday the 17th of January 2011
SOMERSET DAM AND WIVENHOE DAM CATCHMENTS:
Forecast of catchment average rainfall for the 24 tour period to 9 am Tuesday: to 5 mm

NORTH PINE DAM CATCHMENT
Forecast of catchment average rainfalifor the 24 hour period to
9am Tuesday: to 5 mm

APPENDIX C - QUANTITATIVE PRECIPITATION FORECASTS

Forecast 32

Date: Monday 17 January 2011
Time: 16:00

From: Aifs Operational Manager
Sent: Monday, January 17, 2011 4:00:03 PM
To: weather
Subject: BOM: SEQWB Quantitative Precipitation [SEC=UNCLASSIFIED]
Auto forwarded by a Rule
IDQ10003
BUREAU OF METEOROLOGY
Queensland Region
Brisbane Office

QUANTITATIVE PRECIPITATION FORECAST FOR SEQWBISUNWATER) Issued at 4:00pm EST on Monday the 17th of January 20 11

SOMERSET DAM AND WIVENHOE DAM CATCHMENTS:
Forecast of catchment average rainfall for the 24 tơur period to
3 pm Tuesday: to 5 mm
NORTH PINE DAM CATCHMENT
Forecast of catchment average rainfall for the 24 hour period to
3 pm Tuesday: to 5 mm

APPENDIX C - QUANTITATIVE PRECIPITATION FORECASTS

Forecast 33

Date: Tuesday 18 January 2011
Time: 10:50

From: Aifs Operational Manager
Sent: Tuesday, January 18, 2011 10:50:09 AM
To: weather
Subject: BOM: SEQWB Quantitative Precipitation [SEC=UNCLASSIFIED] Auto forwarded by a Rule

IDQ10003
BUREAU OF METEOROLOGY
Queensland Region
Brisbane Office

QUANTITATIVE PRECIPITATION FORECAST FOR SEQWBISUNWATER)
Issued at 10:50am EST on Tuesday the 18th of January 20.11
SOMERSET DAM AND WIVENHOE DAM CATCHMENTS:
Forecast of catchment average rainfall for the 24 nour period to 9am Wednesday: $10-15 \mathrm{~mm}$ generally, isolated @eavier falls [-40 mm]

NORTH PINE DAM CATCHMENT
Forecast of catchment average rainfalif for the 24 hour period to 9am Wednesday: $10-15 \mathrm{~mm}$, isolated heavier falls [-40 mm]

APPENDIX C - QUANTITATIVE PRECIPITATION FORECASTS
 (continued)

Forecast 34
Date: Tuesday 18 January 2011
Time: 16:00

From: Aifs Operational Manager

Sent: Tuesday, January 18, 2011 4:00:05 PM
To: weather
Subject: BOM: SEQWB Quantitative Precipitation [SEC=UNCLASSIFIED]
Auto forwarded by a Rule
IDQ10003
BUREAU OF METEOROLOGY
Queensland Region
Brisbane Office

QUANTITATIVE PRECIPITATION FORECAST FOR SEQWBISUUNWATER)
Issued at $4: 00 \mathrm{pm}$ EST on Tuesday the 18th of January $20 \% 1$
SOMERSET DAM AND WIVENHOE DAM CATCHMENTS:
Forecast of catchment average rainfall for the 24 (icur period to
3 pm Wednesday: $20-25 \mathrm{~mm}$ generally, isolated tieavier falls [$40-50 \mathrm{~mm}$]
NORTH PINE DAM CATCHMENT
Forecast of catchment average rainfarifor the 24 hour period to 3 pm Wednesday: $20-25 \mathrm{~mm}$, isolated heavier falls [$40-50 \mathrm{~mm}$]

APPENDIX C - QUANTITATIVE PRECIPITATION FORECASTS

Forecast 35

Date: Wednesday 19 January 2011
Time: 10:43

From: Aifs Operational Manager
Sent: Wednesday, January 19, 2011 10:43:15 AM
To: weather
Subject: BOM: SEQWB Quantitative Precipitation [SEC=UNCLASSIFIED]
Auto forwarded by a Rule
IDQ10003
BUREAU OF METEOROLOGY
Queensland Region
Brisbane Office

QUANTITATIVE PRECIPITATION FORECAST FOR SEQWUBISUNWATER) Issued at 10:43am EST on Wednesday the 19th of January 2011

SOMERSET DAM AND WIVENHOE DAM CATCHDNENTS:
Forecast of catchment average rainfall for the 24 hdur period to
10am Thursday: $15-25 \mathrm{~mm}$ generally, heavier falls to about 50 mm with storms
NORTH PINE DAM CATCHMENT
Forecast of catchment average rainfoght for the 24 hour period to
10am Thursday: $15-25 \mathrm{~mm}$ generality, heavier falls to about 50 mm with storms

APPENDIX C - QUANTITATIVE PRECIPITATION FORECASTS
 (continued)

Forecast 36

Date: Wednesday 19 January 2011
Time: 16:00

From: Aifs Operational Manager
Sent: Wednesday, January 19, 2011 4:00:04 PM
To: weather
Subject: BOM: SEQWB Quantitative Precipitation [SEC=UNCLASSIFIED]
Auto forwarded by a Rule
IDQ10003
BUREAU OF METEOROLOGY
Queensland Region
Brisbane Office

QUANTITATIVE PRECIPITATION FORECAST FOR SEQWBXSUNWATER)
Issued at 4:00pm EST on Wednesday the 19th of January 2011
SOMERSET DAM AND WIVENHOE DAM CATCHMENTS:
Forecast of catchment average rainfall for the 24 tour period to 4 pm Thursday: $15-25 \mathrm{~mm}$ generally, heavier falls to about 50 mm with storms

NORTH PINE DAM CATCHMENT
Forecast of catchment average rainfall/for the 24 hour period to
4 pm Thursday: $15-25 \mathrm{~mm}$ generally, heavier falls to about 50 mm with storms

APPENDIX D - CATCHMENT RAINFALL

Average rainfall for each subcatchment in the Brisbane Basin is determined by applying a weighting to the rainfall depth at each available station within the subcatchment.

Within the operational system, the Brisbane Basin is divided into the subcatchments shown in the Figure below.

The Somerset catchment represents the average catchment rainfall in the Stanley River to Somerset Dam.
The upper Brisbane River to Wivenhoe Dam, excluding the Somerset Dam catchment, is a weighted average of the upper and middle Brisbane catchments.

Two tables of catchment rainfall are provided; the first is of daily catchment rainfall in the 24 hours on the date shown, while the second corresponds to critical periods listed in the operational strategy.

Period ending 09:00	Stanley		Upper Brisbane		Lockyer		Bremer	Lower		
	Period	Σ								
	mm									
6/01	21	21	27	27	30	30		28	20	20
7/01	38	60	38	64	27	57	31	60	35	54
8/01	32	92	27	91	15	72	$\bigcirc 12$	72	10	65
9/01	56	147	21	112	5	76	3	75	9	74
10/01	225	373	131	244	66	<343	45	120	90	164
11/01	113	486	117	361	102	245	75	195	73	237
12/01	128	614	38	399	-84	328	84	279	82	319
13/01	5	619	2	401	2	330	2	280	0.	319

APPENDIXD - CATCHMENT RAINFALL (commenes)

Period Ending	Duration	Stanley		Upper Brisbane		Lockyer		Bremer	
		Period	Σ	Period	Σ	Period	Σ	Period	Σ
	hrs	nm	mm						
Thu 06/01/2011 08:00	24	21	21	25	25	23	23	23	23
Fri 07/01/2011 02:00	18	23	44	28	53	30	53	31	54
Fri 07/01/2011 09:00	7	16	60	11	64	4	57	5	60
Fri 07/01/2011 15:00	6	30	90	24	89	14	71	12	71
Sat 08/01/2011 14:00	23	5	95	3	92	1	72		-72
Sun 09/01/2011 01:00	11	16	111	8	100	3	75	2	75
Sun 09/01/2011 08:00	7	36	146	12	112	1	76	<0	75
Sun 09/01/2011 14:00	6	53	199	34	146	18	94	15	90
Sun 09/01/2011 19:00	5	106	305	62	208	22	< 116	6	96
Mon 10/01/2011 01:00	6.	38	343	24	232	14	131	6	102
Mon 10/01/2011 09:00	8	30	373	12	244	$a^{4} 12$	143	18	120
Mon 10/01/2011 15:00	6	34	407	31	274	27	169	30	149
Mon 10/01/2011 20:00	5	8	415	4	$\sqrt{270}$	5	174	3	153
Tue 11/01/2011 04:00	8	22	437	44	323	12	186	14	167
Tue 11/01/2011 08:00	4	46	483	(3)	356	54	240	16	183
Tue 11/01/2011 13:00	5	86	570	27	382	47	287	55	237
Tue 11/01/2011 19:00	6	40	616	15	397	38	325	40	278
Tue 11/01/2011 21:00	2	1	610	1	398	1	326	0	278
Wed 12/01/2011 08:00	1.1	(3)	613	1	399	3	328	1	279
Thu 13/01/2011 12:00	28	6	619	2	401	2	330	2	280
Wed 19/01/2011 12:00	144	7	626	14	415	7	337	8	288

Tanle 2 Critioat periods of operafions catonment rainfall

Figure 3 Upper Brisbane River average hounly rainfell

APPENDIX D - CATCHMENT RAINFALL

Figure 5 Lockyer Creek average houry raintall

Figure 6 Bremer River average hoully rainfall

Figure 7 Lower Brisbane River average hourly rainfall

APPENDIX E-SITUATION REPORTS

Situation Report 1

Date: Thursday 6 January 2011
Time: 08:14

From: Duty Engineer
Sent: Thursday, 6 January 2011 8:14 AM
To: Distribution List
Subject: Situation Report 0800 06/01/2011

Rainfall

Since 9 am Wednesday, there have been widespread falls of 30 mm with isolated heavy falls up to 50 mm in the Somerset and Wivenhoe catchments. Totals in the North Pine catchment have generally been below 10 mm . Falls up to 60 mm were recorded in the Leslie Harrison catchment.

The forecast for the next 24 to 48 hours is for totals up to 150 mm in SE Qld.
The catchments remain wet and are likely to generate additional runoff in the event of rain.

North Pine Dam

At 0700 Thursday, North Pine Dam was $39.60 \mathrm{~m}, 0.05 \mathrm{~m}$ below gate trigger level and having risen 0.18 m since $2 / 1 / 2011$ due to a combination of baseflow and runoff from rain in the last 24 hours.

Given the forecast rain, gate operations will commence tonight. MBRC will be advised this morning

Somerset Dam

At 0700 Thursday, Somerset Dam was $99.34 \mathrm{~m}, 0.34 \mathrm{~m}$ above FSL, and rising slowly. The rain in the Stanley River catchment has produced a small amount of runoff in the upper Stanley but there have been significant rises in Kilcoy Ck. Further regulator operations will be required later Thursday.

Wivenhoe Dam

At 0700 Thursday, Wivenhoe Dam was 67.31 m and rising slowly. This is 0.31 m above FSL and above the gate trigger level of 67.25 m . There have been rises recorded at rivers and stream upstream of Wivenhoe Dam. Gates will be opened in the next 24 hours to manage the inflows from the upper Brisbane River and the outflow from Somerset.

Impacts of Wivenhoe Dam Releases

Somerset Regional, Ipswich City and Brisbane City Councils will be advised of the potential for gate operations after a full assessment of the situation this morning. At this stage it is anticipated that peak releases from Wivenhoe will be below $500 \mathrm{~m} 3 / \mathrm{s}$ but this will depend on the forecast rain and flows downstream of the dam.
The expected Wivenhoe release and local flows will at least impact upon Twin Bridges, Savages Crossing, Kholo Bridge and Colleges Crossing for several days. At this stage,

APPENDIXE-SITUATION REPORTS

there are not expected to be any adverse impacts upon Fernvale Bridge, Burtons Bridge or Mt Crosby Weir Bridge

Leslie Harrison Dam

Following the heavy rainfall Wednesday night, gate operations commenced at Leslie Harrison Dam late Wednesday night and are continuing. Given the forecast rainfall, gate operations are expected to continue for the next 24 to 48 hours.

The next situation report will be issued at 1800 Thursday $6 / 1 / 2011$.
Engineer 2
Duty Engineer
Flood Operations Centre

Important information: This email and any attached information is intended only for the addressee and may contain confidential and/or privileged information. If you are not the addressee, you are notified that any transmission, distribution, or other use of this information is strictly prohibited. The confidentiality attached to this email is not waived, lost or destroyed by reasons of mistaken delivery to you. If you have received this email in error please contact the sender immediately and delete the material from your email system. QLD Bulk Water Supply Authority ABN75450239876 (Trading as Seqwater).

Situation Report 2

Date: Thursday 6 January 2011
Time: 14:54

From: Duty Engineer
Sent: Thursday, 6 January 2011 14:54
To: Distribution List
Cc: Distribution List
Subject: Situation Report 1500 06/02/2011

Rainfall

In the 6 hours since 9 am Wednesday, there have been general totals around 30 mm with isolated heavy falls up to 60 mm in the Somerset and Wivenhoe catchments. Totals in the North Pine catchment have generally been between 20 and 30mm. Falls between 20 and 30 mm were recorded in the Leslie Harrison catchment.

The forecast for the next 24 to 48 hours is for totals up to 100 mm in SE Qld.
The catchments remain wet and are likely to generate additional runoff in the event of rain.

North Pine Dam

At 1400 Thursday, North Pine Dam was $39.66 \mathrm{~m}, 0.01 \mathrm{~m}$ above gate trigger level. Gate operations will commence at 1900 Thursday and will impact upon Youngs Crossing. MBRC have been advised and will confirm closure of Youngs Crossing prior to gate operations. Given the forecast rainfall during Friday, gate operations may continue into Saturday.

Somerset Dam

At 0700 Thursday, Somerset Dam was $99.34 \mathrm{~m}, 0.34 \mathrm{~m}$ above FSL, and rising slowly. The rain in the Stanley River catchment has produced a small amount of runoff in the upper Stanley but there have been significant rises in Kilcoy Ck, adding to the Somerset inflows. Further regulator/sluice operations will be required in the next 24 to 48 hours. The estimated event inflow volume into Somerset Dam is $50,000 \mathrm{ML}$.

Wivenhoe Dam

At 0700 Thursday, Wivenhoe Dam was 67.31 m and rising slowly. This is 0.31 m above FSL and above the gate trigger level of 67.25 m . There have been rises recorded at rivers and stream upstream of Wivenhoe Dam. The estimated event inflow volume into Wivenhoe Dam is 180,000 ML including Somerset Dam outflow.

There has been significant rainfalls in the Lockyer Ck catchment since 0900 Thursday and a peak of about $600 \mathrm{~m} 3 / \mathrm{s}$ is expected from the Lockyer late Friday. Wivenhoe gates will be opened after flood levels in the lower Lockyer subside. At this stage Wivenhoe releases during Saturday may be as high as $1,500 \mathrm{~m} 3 / \mathrm{s}$ and continue for a couple of days.

Impacts of Wivenhoe Dam Releases

Somerset Regional, Ipswich City and Brisbane City Councils have been advised of the potential for gate operations during the next 24 hours.

The will at least impact upon Twin Bridges, Savages Crossing, Kholo Bridge and Colleges Crossing for several days. The relatively high Lockyer flows will at least impact upon Twin Bridges, Savages Crossing, Kholo Bridge and Colleges Crossing for several days and may impact upon Burtons Bridge early Saturday. At this stage, there are not expected to be any adverse impacts upon Fernvale Bridge or Mt Crosby Weir Bridge.

Leslie Harrison Dam

Following the heavy rainfall Wednesday night, gate operations commenced at Leslie Harrison Dam late Wednesday night and are continuing. Given the forecast rainfall, gate operations are expected to continue for the next 24 to 48 hours.

The next situation report will be issued at 1800 Thursday 6/1/2011.

Engineer 2
Duty Engineer
Flood Operations Centre

Important information: This email and any attached information is intended only for the addressee and may contain confidential and/or privileged information. If you are not the addressee, you are notified that any transmission, distribution, or other use of this information is strictly prohibited. The confidentiality attached to this email is not waived, lost or destroyed by reasons of mistaken delivery to you. If you have received this email in error please contact the sender immediately and delete the material from your email system. QLD Bulk Water Supply Authority ABN75450239876 (Trading as Seqwater).

Situation Report 3

Date: Thursday 6 January 2011
Time: 17:33

From: Duty Engineer
Sent: Thursday, 6 January 2011 5:33 PM
To: Distribution List
Subject: Situation Report 1800 06/01/2011

Rainfall

In the 8 hours since 9 am Wednesday, there have been general totals around 30 mm with isolated heavy falls up to 60 mm in the Somerset and Wivenhoe catchments. There have been significant rainfalls in the Lockyer Ck catchment in the last 24 hours with widespread falls of 50 mm and isolated falls up to 75 mm . Totals in the North Pine catchment have generally been about 30 mm . Falls between 20 and 30 mm were recorded in the Leslie Harrison catchment.

The forecast for the next 24 to 48 hours is for totals up to 100 mm in SE Qld.

North Pine Dam

At 1700 Thursday, North Pine Dam was $39.68 \mathrm{~m}, 0.03 \mathrm{~m}$ above gate trigger level. Gate operations will commence at 1900 Thursday and will impact upon Youngs Crossing. Moreton Bay Regional Council has been advised and will confirm closure of Youngs Crossing prior to gate operations. Given the forecast rainfall during Friday, gate operations may continue into Saturday.

Somerset Dam

At 1700 Thursday, Somerset Dam was $99.45 \mathrm{~m}, 0.45 \mathrm{~m}$ above FSL, and rising slowly. The rain in the Stanley River catchment has produced a small amount of runoff in the upper Stanley but there have been significant rises in Kilcoy Ck, adding to the Somerset inflows. Further regulator/sluice operations will be required in the next 24 to 48 hours. The estimated event inflow volume into Somerset Dam is $50,000 \mathrm{ML}$.

Wivenhoe Dam

At 1700 Thursday, Wivenhoe Dam was 67.39 m and rising slowly. This is 0.39 m above FSL and above the gate trigger level of 67.25 m . Upstream of the dam river levels are still rising at the Linville and Gregors Ck gauges. The estimated event inflow volume into Wivenhoe Dam is $180,000 \mathrm{ML}$ including Somerset Dam outflow.

A peak of about $600 \mathrm{~m} 3 / \mathrm{s}$ is expected from the Lockyer late Friday. At this stage there is some uncertainty associated with this estimate and it may or may not impact Burtons Bridge. Wivenhoe gates will be opened after the impact of Lockyer flows on Burtons Bridge has been ascertained and flood levels in the lower Lockyer subside. At this stage Wivenhoe releases will commence late Friday/early Saturday and may be as high as $1,500 \mathrm{~m} 3 / \mathrm{s}$, similar to recent events, and continue for a couple of days.

APPENDIXE-SITUATION REPORTS

Impacts of Downstream of Wivenhoe

Somerset Regional, Ipswich City and Brisbane City Councils have been advised of the potential for gate operations during the next 24 hours.

The relatively high Lockyer flows will adversely impact upon Twin Bridges, Savages Crossing, Kholo Bridge and Colleges Crossing for several days and may impact upon Burtons Bridge early Saturday. At this stage, there are not expected to be any adverse impacts upon Fernvale Bridge or Mt Crosby Weir Bridge.

Leslie Harrison Dam

Following the heavy rainfall Wednesday night, gate operations commenced at Leslie Harrison Dam late Wednesday night and are continuing. Given the forecast rainfall, gate operations are expected to continue for the next 24 to 48 hours.

The next situation report will be issued at 0600 Friday $7 / 1 / 2011$.

Engineer 2
Duty Engineer
Flood Operations Centre

Important information: This email and any attached information is intended only for the addressee and may contain confidential and/or privileged information. If you are not the addressee, you are notified that any transmission, distribution, or other use of this information is strictly prohibited. The confidentiality attached to this email is not waived, lost or destroyed by reasons of mistaken delivery to you. If you have received this email in error please contact the sender immediately and delete the material from your email system. QLD Bulk Water Supply Authority ABN75450239876 (Trading as Seqwater).

Situation Report 4

Date: Friday 7 January 2011
Time: 12:15

From: Duty Engineer
Sent: Friday, 7 January 2011 12:15 PM
To: Distribution List
Subject: SitRep
There has been falls between 15 and 30 mm in the North Pine catchment in the last 3 hours. This will cause renew rises and increased inflows.

There are no gate movements projected for the next 3 hours.

Engineer 2

Duty Engineer
Flood Operations Centre
Important information: This email and any attached information is intended only for the addressee and may contain confidential and/or privileged information. If you are not the addressee, you are notified that any transmission, distribution, or other use of this information is strictly prohibited. The confidentiality attached to this email is not waived, lost or destroyed by reasons of mistaken delivery to you. If you have received this email in error please contact the sender immediately and delete the material from your email system. QLD Bulk Water Supply Authority ABN75450239876 (Trading as Seqwater).

Situation Report 5

Date: Friday 7 January 2011
Time: 17:57

From: Duty Engineer
Sent: Friday, 7 January 2011 5:57 PM
To: Distribution List
Subject: Situation Report 1800 Friday 07/01/2011

Rainfall

Since 0900 Friday, there has been widespread 20 to 40 mm throughout North Pine, Somerset and Wivenhoe catchments with isolated higher totals of 70 mm in the upper reaches of the Brisbane R.

Advice from BoM indicates that SE Qld can expect further high rainfall totals over the next 4 days.

Saturday: Rain light at times $15-50 \mathrm{~mm}$ with higher falls along the coast
Sunday: \quad Widespread rain with totals between $50-100 \mathrm{~mm}$
Monday: Widespread rain again with totals between $50-100 \mathrm{~mm}$
Tuesday: Rain easing with totals between $25-50 \mathrm{~mm}$
Given the saturated conditions of the catchments, significant inflows to Seqwater dams will be generated, especially following the forecast rainfall on Sunday/Monday

North Pine (Full Supply Level 39.60 m AHD)

At 1700 Friday, North Pine currently has 5 gates open releasing runoff from rain on Wed/Thursday. Given the very high likelihood of significant runoff during the next 4 days, gates will be keep open to match inflows over the next few days, rather than opening and closing at various times with short notice. Youngs Crossing will remain adversely impacted for the duration of the gates being open. Moreton Bay Regional Council has been advised and concurs with this strategy.

Somerset (Full Supply Level 99.00 m AHD)

At 1700 Friday, Somerset Dam level was 100.04 m AHD and rising steadily with one regulator open 100%. However, as the Wivenhoe headwater level is rising and may impact upon the operation of the regulator, this will be closed in the next few hours and a sluice gate opened. However, this strategy may need to be reviewed if significant runoff occurs in the Stanley and Upper Brisbane. Under circumstances of high inflows to Somerset and Wivenhoe, it is the usual practice to hold flood water in Somerset until there is a high level of confidence in the estimated inflows to Wivenhoe.

Since the commencement of the event on 02/01/2011, approximately $55,000 \mathrm{ML}$ has flowed into Somerset Dam with a further $25,000 \mathrm{ML}$ expected based on the recorded rainfall to date. Approximately $16,000 \mathrm{ML}$ has been released into Wivenhoe.

Wivenhoe (Full Supply Level 67.00 m AHD)

At 1700 Friday, Wivenhoe Dam was 68.10 m AHD and rising steadily with one gate open to 1.5 metres and releasing about $168 \mathrm{~m} 3 / \mathrm{s}$. River levels upstream of Wivenhoe Dam were rising again, generating further inflow to the dam It is intended to ramp up the release from Wivenhoe to about $1,200 \mathrm{~m} 3 / \mathrm{s}$ during the next 18 hours. However, given the high likelihood of significant inflows in the next week, this may be increased later on the weekend.

Since the commencement of the event on 02/01/2011, approximately $140,000 \mathrm{ML}$ has flowed into Wivenhoe Dam with a further 160,000ML expected (including Somerset release) based on the recorded rainfall to date. Approximately $24,000 \mathrm{ML}$ has been released from Wivenhoe via the hydro and regulator at about $50 \mathrm{~m} 3 / \mathrm{s}$.

Impacts downstream of Wivenhoe

The projected Wivenhoe release of $1,200 \mathrm{~m} 3 / \mathrm{s}$ combined with Lockyer flows and local runoff will mean that all crossings downstream of Wivenhoe (Twin Bridges, Savages Crossing, Burtons Bridge, Kholo Bridge and Colleges Crossing) will be adversely impacted for several days. At this stage Fernvale and Mt Crosby Weir Bridge are not expected to be affected.

Discussions were held with Brisbane City Council and BoM with all agencies agreeing that the combined flow in the lower Brisbane R will only add 50 mm to an upper limit of 100 mm to the recorded water levels in the City Reach of the Brisbane River. However, it is noted that tides in the lower Brisbane R will be 0.4 to 0.5 metres higher than predicted tides

Somerset Regional, Ipswich City and Brisbane City Councils have been advised of the Wivenhoe operating strategy.

Leslie Harrison

Given its proximity to the coast Leslie Harrison is likely to be most impacted by the forecast rain over the next 4 days.

Engineer 2

Duty Engineer
Flood Operations Centre

Important information: This email and any attached information is intended only for the addressee and may contain confidential and/or privileged information. If you are not the addressee, you are notified that any transmission, distribution, or other use of this information is strictly prohibited. The confidentiality attached to this email is not waived, lost or destroyed by reasons of mistaken delivery to you. If you have received this email in error please contact the sender immediately and delete the material from your email system. QLD Bulk Water Supply Authority ABN75450239876 (Trading as Seqwater).

APPENDIXE - SITUATION REPORTS

Situation Report 6

Date: Friday 7 January 2011
Time: 18:59

From: Duty Engineer
Sent: Friday, 7 January 2011 6:59 PM
To: Distribution List
Cc: Distribution List
Subject: SitRep Clarification
BCC pointed out that they have not done any analysis and do not necessarily agree with the 50 to 100 mm but have accepted the BoM and Seqwater estimate.

Engineer 2
Duty Engineer
Flood Operations Centre

Important information: This email and any attached information is intended only for the addressee and may contain confidential and/or privileged information. If you are not the addressee, you are notified that any transmission, distribution, or other use of this information is strictly prohibited. The confidentiality attached to this email is not waived, lost or destroyed by reasons of mistaken delivery to you. If you have received this email in error please contact the sender immediately and delete the material from your email system. QLD Bulk Water Supply Authority ABN75450239876 (Trading as Seqwater).

Situation Report 7

Date: Saturday 8 January 2011
Time: 06:32

From: Duty Engineer
Sent: Saturday, 8 January 2011 6:32 AM
To: Distribution List
Subject: Situation Report 0600 Saturday 08/01/2011

Rainfall

Since 0900 Friday, there has been widespread 20 to 40 mm throughout North Pine, Somerset and Wivenhoe catchments with isolated higher totals of 70 mm in the upper reaches of the Brisbane R. No significant rain has fallen in the past 12 hours.

Advice from BoM indicates that SE Qld can expect further high rainfall totals over the next 4 days.

Saturday: Rain light at times 5 -50mm with higher falls along the coast
Sunday: Widespread rain with totals between $50-100 \mathrm{~mm}$
Monday: Widespread rain again with totals between $50-100 \mathrm{~mm}$
Tuesday: Rain easing with totals between $25-50 \mathrm{~mm}$
Given the saturated conditions of the catchments, significant inflows to Seqwater dams will be generated, especially following the forecast rainfall on Sunday/Monday

North Pine (Full Supply Level 39.60 m AHD)

At 0600 Saturday, North Pine Lake Level was 39.46 m AHD and slowly rising. Currently 3 gates are open to release runoff from rain on Wed/Thursday/Friday. Given the very high likelihood of significant runoff during the next 4 days, gates will be keep open to match inflows over the next few days, rather than opening and closing at various times with short notice. Youngs Crossing will remain adversely impacted for the duration of the gates being open. Moreton Bay Regional Council has been advised and concurs with this strategy.

Somerset (Full Supply Level 99.00 m AHD)

At 0500 Saturday, Somerset Dam level was 100.42 m AHD and rising. The Dam is releasing into Wivenhoe through one open sluice gate. Water will be temporarily held in Somerset to allow the inflow from the upper Brisbane is passed through the system. However, this strategy may need to be reviewed if significant runoff occurs in the Stanley and Upper Brisbane. Under circumstances of high inflows to Somerset and Wivenhoe, it is the usual practice to hold flood water in Somerset until there is a high level of confidence in the estimated inflows to Wivenhoe.

Since the commencement of the event on 02/01/2011, approximately $85,000 \mathrm{ML}$ has flowed into Somerset Dam with a further 20,000ML expected based on the recorded rainfall to date. Approximately $25,000 \mathrm{ML}$ has been released into Wivenhoe.

At 0600 Saturday, Wivenhoe Dam was 68.45 m AHD and rising steadily with all five gates open and releasing about $890 \mathrm{~m} 3 / \mathrm{s}$. River levels upstream of Wivenhoe Dam were rising again, generating further inflow to the dam It is intended to ramp up the release from Wivenhoe to $1,200 \mathrm{~m} 3 / \mathrm{s}$ by midday Saturday $08 / 01 / 2011$. Further assessments will be undertaken to determine increases above this level. However, given the high likelihood of significant inflows in the next week, this may be increased.

Since the commencement of the event on 02/01/2011, approximately $200,000 \mathrm{ML}$ has flowed into Wivenhoe Dam (including Somerset releases) with a further 180,000ML expected based on the recorded rainfall to date. Approximately $50,000 \mathrm{ML}$ has been released from Wivenhoe via the hydro and regulator at about $50 \mathrm{~m} 3 / \mathrm{s}$.

Impacts downstream of Wivenhoe

The projected Wivenhoe release of $1,200 \mathrm{~m} 3 / \mathrm{s}$ combined with Lockyer flows and local runoff will mean that all crossings downstream of Wivenhoe (Twin Bridges, Savages Crossing, Burtons Bridge, Kholo Bridge and Colleges Crossing) will be adversely impacted for several days. At this stage Fernvale and Mt Crosby Weir Bridge are not expected to be affected but they could potentially be affected if the predicted rainfall totals eventuate.

The current available assessments indicate that the combined flow in the lower Brisbane R would only add 50 mm to an upper limit of 100 mm to the recorded water levels in the City Reach of the Brisbane Rive. However, it is noted that tides in the lower Brisbane R will be 0.4 to 0.5 metres higher than predicted tides

Somerset Regional, Ipswich City and Brisbane City Councils have been advised of the Wivenhoe operating strategy.

Engineer 3
Duty Engineer
Flood Operations Centre

Important information: This email and any attached information is intended only for the addressee and may contain confidential and/or privileged information. If you are not the addressee, you are notified that any transmission, distribution, or other use of this information is strictly prohibited. The confidentiality attached to this email is not waived, lost or destroyed by reasons of mistaken delivery to you. If you have received this email in error please contact the sender immediately and delete the material from your email system. QLD Bulk Water Supply Authority ABN75450239876 (Trading as Seqwater).

Situation Report 8

Date: Saturday 8 January 2011
Time: 14:22

From: Duty Engineer
Sent: Saturday, 8 January 2011 2:22 PM
To: Distribution List
Subject: Seqwater Situation Report at 12:00 on Saturday 8 January 201,1
Dam Safety Regulator
I have added you to the distribution list of the Situation Report for Seqwater dams. This is distributed every 12 hours (approximately) during gate releases. Let me know if you do not wish to get this.

Rainfall

No significant rain has fallen over the dam catchments in the past 18 hours.
Advice from BoM indicates that SE Qld can expect further high rainfall totals over the next 4 days.

Saturday: Rain light at times 5 -50mm with higher falls along the coast
Sunday: \quad Widespread rain with totals between $50-100 \mathrm{~mm}$
Monday: \quad Widespread rain again with totals between $50-100 \mathrm{~mm}$
Tuesday: \quad Rain easing with totals between $25-50 \mathrm{~mm}$
Given the saturated conditions of the catchments, significant inflows to Seqwater dams will be generated, especially following the forecast rainfall on Sunday/Monday.

North Pine (Full Supply Level $\mathbf{3 9 . 6 0} \mathbf{~ m ~ A H D) ~}$

At 1200 Saturday, North Pine Lake Level was 39.46 m AHD and is steady. Currently 2 gates are open to release runoff generated from rainfall over the last three days. Given the very high likelihood of significant runoff during the next 4 days, gates will be kept open to match inflows over the next few days, rather than opening and closing at various times with short notice. Lake Kurwongbah spillway flows are also contributing to the adverse impacts experienced at Youngs Crossing.

Youngs Crossing will remain adversely impacted for the duration of the gates being open.
Moreton Bay Regional Council has been advised and concurs with this strategy.

Somerset (Full Supply Level 99.00 m AHD)

At 1000 Saturday, Somerset Dam level peaked at 100.47 m AHD and is now slowly falling. At 1200 it is now 100.45 m . Somerset Dam is releasing into Wivenhoe through two open sluice gates and over the fixed crest at a rate of about $415 \mathrm{~m} 3 / \mathrm{s}$.

Since the commencement of the event on 02/01/2011, approximately $91,000 \mathrm{ML}$ has flowed into Somerset Dam with a further $20,000 \mathrm{ML}$ expected based on the recorded rainfall to date. Approximately $29,000 \mathrm{ML}$ has been released into Wivenhoe.

Wivenhoe (Full Supply Level 67.00 m AHD)

At 1200 Saturday, Wivenhoe Dam was 68.60 m AHD and rising steadily with all five gates open and releasing about $1,150 \mathrm{~m} 3 / \mathrm{s}$. River levels upstream of Wivenhoe Dam have peaked and are now receding. However the further inflows into the dam has led to elevated levels It is intended to increase the release from Wivenhoe to $1,250 \mathrm{~m} 3 / \mathrm{s}$ by $14: 00$ on Saturday $08 / 01 / 2011$. This will maintain flows of up to $1,600 \mathrm{~m} 3 / \mathrm{s}$ in the midBrisbane River throughout the afternoon.
Further assessments will be undertaken to determine increases above this level given the high likelihood of significant inflows in the next few days. The interaction with runoff from the Bremer River and Warrill Creek catchment will also be assessed to determine an appropriate release strategy. Projections based upon the forecast rainfalls suggest flows of up to $1,200 \mathrm{~m} 3 / \mathrm{s}$ will emanate from the Bremer River catchment.

Since the commencement of the event on 02/01/2011, approximately 202,000ML has flowed into Wivenhoe Dam (including Somerset releases) with a further 210,000ML expected based on the recorded rainfall to date. Approximately $66,000 \mathrm{ML}$ has been released from Wivenhoe via the radial gates, hydro and regulator.

Impacts downstream of Wivenhoe

The projected Wivenhoe release of $1,250 \mathrm{~m} 3 / \mathrm{s}$ and combined with Lockyer flows and local runoff will mean that all low level crossings downstream of Wivenhoe (Twin Bridges, Savages Crossing, Burtons Bridge, Kholo Bridge and Colleges Crossing) will be adversely impacted for several days. At this stage Fernvale and Mt Crosby Weir Bridge are not expected to be affected, but they could potentially be affected if the predicted rainfall totals eventuate and higher releases from Wivenhoe Dam are considered necessary.

The current available assessments indicate that the combined flow in the lower Brisbane River would only add 50 mm to an upper limit of 100 mm to the recorded water levels in the City Reach of the Brisbane River. However, it is noted that tides in the lower Brisbane R will be 0.4 to 0.5 metres higher than predicted tides. The tide level at the Port Office Gauge at 1200 Saturday was 1.56 m and rising.

Somerset Regional, Ipswich City and Brisbane City Councils have been advised of the Wivenhoe operating strategy.

Regards

Engineer 1

Duty Engineer
Flood Operations Centre

Important information: This email and any attached information is intended only for the addressee and may contain confidential and/or privileged information. If you are not the addressee, you are notified that any transmission, distribution, or other use of this information is strictly prohibited. The confidentiality attached to this email is not waived, lost or destroyed by reasons of mistaken delivery to you. If you have received this email in error please contact the sender immediately and delete the material from your email system. QLD Bulk Water Supply Authority ABN75450239876 (Trading as Seqwater).

Situation Report 8

Date: Saturday 8 January 2011
Time: 14:22

From: Duty Engineer
Sent: Saturday, 8 January 2011 2:22 PM
To: Distribution List
Subject: Seqwater Situation Report at 12:00 on Saturday 8 January 201,1
Dam Safety Regulator
I have added you to the distribution list of the Situation Report for Seqwater dams. This is distributed every 12 hours (approximately) during gate releases. Let me know if you do not wish to get this.

Rainfall

No significant rain has fallen over the dam catchments in the past 18 hours.
Advice from BoM indicates that SE Qld can expect further high rainfall totals over the next 4 days.

Saturday: Rain light at times $5-50 \mathrm{~mm}$ with higher falls along the coast
Sunday: Widespread rain with totals between $50-100 \mathrm{~mm}$
Monday: Widespread rain again with totals between $50-100 \mathrm{~mm}$
Tuesday: Rain easing with totals between $25-50 \mathrm{~mm}$
Given the saturated conditions of the catchments, significant inflows to Seqwater dams will be generated, especially following the forecast rainfall on Sunday/Monday.

North Pine (Full Supply Level 39.60 m AHD)

At 1200 Saturday, North Pine Lake Level was 39.46 m AHD and is steady. Currently 2 gates are open to release runoff generated from rainfall over the last three days. Given the very high likelihood of significant runoff during the next 4 days, gates will be kept open to match inflows over the next few days, rather than opening and closing at various times with short notice. Lake Kurwongbah spillway flows are also contributing to the adverse impacts experienced at Youngs Crossing.

Youngs Crossing will remain adversely impacted for the duration of the gates being open.
Moreton Bay Regional Council has been advised and concurs with this strategy.

Somerset (Full Supply Level 99.00 m AHD)

At 1000 Saturday, Somerset Dam level peaked at 100.47 m AHD and is now slowly falling. At 1200 it is now 100.45 m . Somerset Dam is releasing into Wivenhoe through two open sluice gates and over the fixed crest at a rate of about $415 \mathrm{~m} 3 / \mathrm{s}$.

Since the commencement of the event on 02/01/2011, approximately $91,000 \mathrm{ML}$ has flowed into Somerset Dam with a further $20,000 \mathrm{ML}$ expected based on the recorded rainfall to date. Approximately $29,000 \mathrm{ML}$ has been released into Wivenhoe.

Wivenhoe (Full Supply Level 67.00 m AHD)

At 1200 Saturday, Wivenhoe Dam was 68.60 m AHD and rising steadily with all five gates open and releasing about $1,150 \mathrm{~m} 3 / \mathrm{s}$. River levels upstream of Wivenhoe Dam have peaked and are now receding. However the further inflows into the dam has led to elevated levels It is intended to increase the release from Wivenhoe to $1,250 \mathrm{~m} 3 / \mathrm{s}$ by 14:00 on Saturday $08 / 01 / 2011$. This will maintain flows of up to $1,600 \mathrm{~m} 3 / \mathrm{s}$ in the midBrisbane River throughout the afternoon.
Further assessments will be undertaken to determine increases above this level given the high likelihood of significant inflows in the next few days. The interaction with runoff from the Bremer River and Warrill Creek catchment will also be assessed to determine an appropriate release strategy. Projections based upon the forecast rainfalls suggest flows of up to $1,200 \mathrm{~m} 3 / \mathrm{s}$ will emanate from the Bremer River catchment.

Since the commencement of the event on 02/01/2011, approximately 202,000ML has flowed into Wivenhoe Dam (including Somerset releases) with a further $210,000 \mathrm{ML}$ expected based on the recorded rainfall to date. Approximately $66,000 \mathrm{ML}$ has been released from Wivenhoe via the radial gates, hydro and regulator.

Impacts downstream of Wivenhoe

The projected Wivenhoe release of $1,250 \mathrm{~m} 3 / \mathrm{s}$ and combined with Lockyer flows and local runoff will mean that all low level crossings downstream of Wivenhoe (Twin Bridges, Savages Crossing, Burtons Bridge, Kholo Bridge and Colleges Crossing) will be adversely impacted for several days. At this stage Fernvale and Mt Crosby Weir Bridge are not expected to be affected, but they could potentially be affected if the predicted rainfall totals eventuate and higher releases from Wivenhoe Dam are considered necessary.

The current available assessments indicate that the combined flow in the lower Brisbane River would only add 50 mm to an upper limit of 100 mm to the recorded water levels in the City Reach of the Brisbane River. However, it is noted that tides in the lower Brisbane R will be 0.4 to 0.5 metres higher than predicted tides. The tide level at the Port Office Gauge at 1200 Saturday was 1.56 m and rising.

Somerset Regional, Ipswich City and Brisbane City Councils have been advised of the Wivenhoe operating strategy.

Regards
Engineer 1
Duty Engineer
Flood Operations Centre

Important information: This email and any attached information is intended only for the addressee and may contain confidential and/or privileged information. If you are not the addressee, you are notified that any transmission, distribution, or other use of this information is strictly prohibited. The confidentiality attached to this email is not waived, lost or destroyed by reasons of mistaken delivery to you. If you have received this email in error please contact the sender immediately and delete the material from your email system. QLD Bulk Water Supply Authority ABN75450239876 (Trading as Seqwater).

Situation Report 9

Date: Sunday 9 January 2011
Time: 06:15

From: Duty Engineer
Sent: Sun 9/01/2011 6:15 AM
To: Distribution List
Subject: FOC Situation Report at 06:00 on Sunday 9 January 2011

Rainfall

Catchment average rainfall for the past 12 hours is; North Pine Dam (less than 10 mm); Somerset Dam (40 mm); Wivenhoe Dam (less than 10 mm). The bulk of the rain that has fallen in the Somerset Dam catchment has occurred in the last two hours, with recorded falls exceeding 60 mm in some areas. The BOM forecast for the next seven days issued at 0450 this morning is:-

Sunday: Rain periods.
Monday: Rain periods.
Tuesday: Rain periods.
Wednesday A few showers.
Thursday A shower or two. Friday A shower or two.
Saturday Mostly fine.
A severe whether warning remains current for heavy rainfall in the dam catchment areas. The dam catchments are relatively saturated and significant inflows will be generated if the forecast rainfall eventuates.

North Pine Dam (Full Supply Level 39.60 m AHD)

The dam level is currently 39.47 m AHD and steady. Two radial gates remain open to release runoff generated from recent rainfall. Based on rainfall forecasts, the radial gates have been kept open in anticipation of further inflows over the next few days. However unless significant rain falls today, consideration will be given to closing the gates late this afternoon or early tomorrow morning and discussions to finalise a decision on the timing of radial gate closure will be held with the Moreton Bay Regional Council later today. Youngs crossing will remain closed while releases are in progress.

Somerset Dam (Full Supply Level 99.00 m AHD)

The dam level is currently falling slowly, with the current level being 100.27 m AHD. However the rain that has fallen in the dam catchment over the last two hours (recorded falls exceed 60 mm in some areas) will result in significant inflows later today. The current release rate into Wivenhoe Dam is $35,000 \mathrm{ML} /$ day. Since the commencement of the event on 02/01/2011approximately $56,000 \mathrm{ML}$ has been released from the dam, with a total at least $150,000 \mathrm{ML}$ to be released based on the currently recorded rainfall. The total release for the event is likely to increase significantly over the next few days based on the current rainfall forecasts. At this stage, releases will continue until at least Tuesday.

Wivenhoe Dam (Full Supply Level 67.00 m AHD)

The dam level is currently falling slowly, with the current level being 68.58m AHD. River levels upstream of the dam are receding, however further inflows will result from any additional rainfall. The current gate operation strategy will maintain flows of around $1,600 \mathrm{~m}^{3} / \mathrm{s}$ in the mid-Brisbane River. The current release rate from Wivenhoe Dam is $116,000 \mathrm{ML} / \mathrm{day}$. Since the commencement of the event on 02/01/2011approximately $150,000 \mathrm{ML}$ has been released from the dam, with a total of at least $450,000 \mathrm{ML}$ to be released based on the currently recorded rainfall. The total release for the event is likely to increase over the next few days based on the current rainfall forecasts. At this stage, releases will continue until at least Wednesday.

Impacts downstream of Wivenhoe Dam

The current Wivenhoe Dam release combined with Lockyer flows and local runoff will mean that all low level crossings downstream of Wivenhoe (Twin Bridges, Savages Crossing, Burtons Bridge, Kholo Bridge and Colleges Crossing) will be adversely impacted until at least Wednesday 12 January. At this stage Fernvale and Mt Crosby Weir Bridge are not expected to be affected, but this may be revised if the predicted rainfall totals eventuate and higher releases from Wivenhoe Dam are considered necessary.

Somerset Regional, Ipswich City and Brisbane City Councils have been advised of the Wivenhoe operating strategy.

Engineer 4
Duty Engineer
Flood Operations Centre

Important information: This email and any attached information is intended only for the addressee and may contain confidential and/or privileged information. If you are not the addressee, you are notified that any transmission, distribution, or other use of this information is strictly prohibited. The confidentiality attached to this email is not waived, lost or destroyed by reasons of mistaken delivery to you. If you have received this email in error please contact the sender immediately and delete the material from your email system. QLD Bulk Water Supply Authority ABN75450239876 (Trading as Seqwater).

Situation Report 10

Date: Sunday 9 January 2011
Time: 17:51

From: Duty Engineer
Sent: Sunday, 9 January 2011 5:51 PM
To: Distribution List
Cc: Distribution List
Subject: Situation Report 1700 Sunday 9/1/2011

Rainfall

Catchment average rainfall for the past 12 hours is; North Pine Dam (60 mm); Somerset Dam (150 mm); Wivenhoe Dam (80 mm). The bulk of the rain that has fallen in the upper reaches of the Stanley and Brisbane Rivers.

The BOM rainfall forecast for the next few days is:-
Monday: Very heavy rain periods with totals up to 300 mm centred around North
Pine.
Tuesday: \quad Rain periods with totals up to 150 mm centred around North Pine.
Wednesday A few showers less than 10 mm
Thursday A shower or two.
Friday A shower or two.
Saturday Mostly fine.
A severe whether warning remains current for heavy rainfall in the dam catchment areas. The dam catchments are relatively saturated and significant inflows will be generated if the forecast rainfall eventuates.

North Pine Dam (Full Supply Level 39.60 m AHD)

The dam level is currently 39.65 m AHD and rising at 1600 . Following the rain in the 9 hours, the number of open gates has been increased from 2 to 5 which are expected to remain open for the next 12 hours. Youngs Crossing will remain closed while releases are in progress.

Somerset Dam (Full Supply Level 99.00 m AHD)

The dam level is 100.75 m AHD and rising quickly. Estimated peak inflow to the dam is about $3,000 \mathrm{~m} 3 / \mathrm{s}$. Five sluice gates are open releasing about $1,100 \mathrm{~m} 3 / \mathrm{s}(95,000 \mathrm{Ml} / \mathrm{d}$) into Wivenhoe Dam. At this stage the dam will reach at least 101.5 during early Tuesday morning.

Since the commencement of the event on 02/01/2011approximately $80,000 \mathrm{ML}$ has been released from the dam, with an event total of at least $320,000 \mathrm{ML}$ based on the recorded rainfall to date. The event total is expected to increase significantly due to the forecast rain in the next 24 to 48 hours. At this stage, releases will continue until at least Wednesday.

Wivenhoe Dam (Full Supply Level 67.00 m AHD)

The dam level is currently rising again, with the current level being 68.70 m AHD. Estimated peak inflow to the dam just from the Upper Brisbane R is about $5,000 \mathrm{~m} 3 / \mathrm{s}$ and, at this stage, the dam will reach at least 72.5 m AHD during. Wednesday morning. River levels upstream of the dam are rising quickly with significant inflow being generated from the intense heavy rainfall. The current gate operation strategy will maintain flows of around $1,600 \mathrm{~m}^{3} / \mathrm{s}$ in the mid-Brisbane River for the next 24 hours. This may mean temporarily reducing releases from Wivenhoe Dam as Lockyer flows increase. However, releases may have to be increased significantly during Monday depending on the rain in the next 12 to 24 hours. The current release rate from Wivenhoe Dam is $1,400 \mathrm{~m} 3 / \mathrm{s}(120,000 \mathrm{ML} /$ day $)$.

Since the commencement of the event on 02/01/2011 approximately $210,000 \mathrm{ML}$ has been released from the dam, with an event total approaching 1,000,000ML (including Somerset outflow) based on the recorded rainfall to date. The total release for the event is likely to increase over the next few days based on the current rainfall forecasts. At this stage, releases will continue until at least Saturday $15^{\text {th }}$ January 2011.

Impacts downstream of Wivenhoe Dam

The current Wivenhoe Dam release combined with Lockyer flows and local runoff will mean that all low level crossings downstream of Wivenhoe (Twin Bridges, Savages Crossing, Burtons Bridge, Kholo Bridge and Colleges Crossing) will be adversely impacted until at least Saturday 15 January.

At this stage Fernvale and Mt Crosby Weir Bridge will not be affected for the next 24 hours but there is a strong possibility that, if the predicted rainfall totals eventuate in the next 12 to $\mathbf{2 4}$ hours, higher releases from Wivenhoe Dam will be necessary. This may adversely impact upon Fernvale and Mt Crosby Weir Bridges as early as Tuesday morning.

Water levels in the lower Brisbane R will be impacted by the combined flows of Lockyer Ck, Bremer River, local runoff and releases from Wivenhoe Dam.

Somerset Regional, Ipswich City and Brisbane City Councils have been advised of the Wivenhoe operating strategy.

Engineer 2

Duty Engineer
Flood Operations Centre

Important information: This email and any attached information is intended only for the addressee and may contain confidential and/or privileged information. If you are not the addressee, you are notified that any transmission, distribution, or other use of this information is strictly prohibited. The confidentiality attached to this email is not waived, lost or destroyed by reasons of mistaken delivery to you. If you have received this email in error please contact the sender immediately and delete the material from your email system. QLD Bulk Water Supply Authority ABN75450239876 (Trading as Seqwater).

Situation Report 11

Date: Sunday 9 January 2011
Time: 21:04

From: Duty Engineer
Sent: Sunday, 9 January 2011 9:04 PM
To: Distribution List
Cc: Distribution List
Subject: Situation Report 2100 9/01/2011
Importance: High

Rainfall

Very heavy rainfall has been recorded in the upper reaches of the Brisbane and Stanley in the last 6 hours with totals up 100 to 140 mm . Totals for the last 24 hours range from 100 to 300 mm .

Rainfall of similar magnitudes is expected in the 12 to 24 hours, especially around the Bremer/Warrill catchments as the system tracks south.

A severe weather warning remains current for heavy rainfall in the dam catchment areas.

Somerset Dam (Full Supply Level 99.00 m AHD)

The dam level is 101.68 m AHD (about $500,000 \mathrm{ML}$ currently in storage) and rising quickly. Peak inflow to the dam is estimated to be about $4,000 \mathrm{~m} 3 / \mathrm{s}$ based on observed rainfall and could be as high as $5,000 \mathrm{~m} 3 / \mathrm{s}$ with additional forecast rainfall. Five sluice gates are open releasing about $1,100 \mathrm{~m} 3 / \mathrm{s}(95,000 \mathrm{Ml} / \mathrm{d})$ into Wivenhoe Dam. At this stage the dam will reach at least 103.5 early Tuesday morning which will adversely impact areas around Kilcoy.

Since the commencement of the event on 02/01/2011approximately $100,000 \mathrm{ML}$ has been released from the dam into Wivenhoe, with an event total of the order of $520,000 \mathrm{ML}$ expected. This may increase due to the forecast rain in the next 24 to 48 hours. At this stage, releases will continue until at least Thursday.

Wivenhoe Dam (Full Supply Level 67.00 m AHD)

River levels upstream of the dam are rising quickly with significant inflow being generated from the intense heavy rainfall. Flows in the Brisbane River at Gregor's Ck have already reached $6,700 \mathrm{~m} 3 / \mathrm{s}$ and the river is still rising.

The dam level is rising again, with the current level being 69.10 m AHD ($1,410,000 \mathrm{ML}$ with about 300,00 of flood storage). Estimated peak inflow to the dam just from the Upper Brisbane R alone may reach as high as $7,500 \mathrm{~m} 3 / \mathrm{s}$ and, at this stage, the dam will reach at least 73.0 m AHD during Tuesday morning. Given the rapid increase in inflow volumes, it will be necessary to increase the release from Wivenhoe Monday morning.

The objective for dam operations will be to minimise the impact of urban flooding in areas downstream of the dam and, at this stage, releases will be kept below $3,500 \mathrm{~m} 3 / \mathrm{s}$ and the
combined flows is the lower Brisbane will be limited to $4,000 \mathrm{~m} 3 / \mathrm{s}$. This is below the limit of urban damages in the City reaches.

The current release rate from Wivenhoe Dam is $1,400 \mathrm{~m} 3 / \mathrm{s}(120,000 \mathrm{ML} / \mathrm{day})$. Gate opening will start to be increased from noon Monday and the release is expected increase to at least $2,600 \mathrm{~m} 3 / \mathrm{s}$ during Tuesday morning.

Since the commencement of the event on 02/01/2011 approximately $220,000 \mathrm{ML}$ has been released from the dam, with an event total approaching $1,000,000 \mathrm{ML}$ without further rain and as much as $1,500,000 \mathrm{ML}$ with forecast rainfall of (both including Somerset outflow). At this stage, releases will continue until at least Sunday $16^{\text {th }}$ January 2011.

Impacts downstream of Wivenhoe Dam

The projected Wivenhoe Dam releases combined with Lockyer flows and local runoff will mean that all crossings downstream of Wivenhoe (Twin Bridges, Fernvale, Savages Crossing, Burtons Bridge, Kholo Bridge, Mt Crosby Weir and Colleges Crossing) will be adversely impacted until at least Saturday 15 January in varying degrees.

Water levels in the lower Brisbane R will be impacted by the combined flows of Lockyer Ck, Bremer River, local runoff and releases from Wivenhoe Dam.

Somerset Regional, Ipswich City and Brisbane City Councils have been advised of the updated Wivenhoe operating strategy.

Engineer 2
Duty Engineer
Flood Operations Centre

Important information: This email and any attached information is intended only for the addressee and may contain confidential and/or privileged information. If you are not the addressee, you are notified that any transmission, distribution, or other use of this information is strictly prohibited. The confidentiality attached to this email is not waived, lost or destroyed by reasons of mistaken delivery to you. If you have received this email in error please contact the sender immediately and delete the material from your email system. QLD Bulk Water Supply Authority ABN75450239876 (Trading as Seqwater).

Situation Report 12

Date: Monday 10 January 2011
Time: 01:14

From: Duty Engineer
Sent: Monday, 10 January 2011 1:14 AM
To: Distribution List
Cc: Distribution List
Subject: FOC Situation Report at 01:00 hrs on Monday 10 January 2011

Rainfall

Very heavy rainfall has been recorded in the Upper Brisbane and Stanley Rivers in the last 12 hours with totals up 100 to 240 mm . Totals for the last 24 hours range from 100 to 300 mm .

Rainfall of similar magnitudes is expected in the 12 to 24 hours around the downstream catchments as the system tracks south.

A severe weather warning remains current for heavy rainfall in the dam catchment areas.

North Pine Dam (Full Supply Level 39.60 m AHD)

The dam level was 39.95 m and steady. Five gates are open releasing $445 \mathrm{~m} 3 / \mathrm{s}$. The inflow into the dam since the commencement of the event is $42,000 \mathrm{ML}$. Estimated event volume is $57,000 \mathrm{ML}$ assuming no further rainfall. Gate operations will continue until at least Tuesday 11 January 2011.

Somerset Dam (Full Supply Level 99.00 m AHD)

The dam level is 102.22 m AHD and rising quickly (storing $157,000 \mathrm{ML}$ above FSL). Peak inflow to the dam is estimated to be about $4,200 \mathrm{~m} 3 / \mathrm{s}$ based on observed rainfall and could be as high as $5,000 \mathrm{~m} 3 / \mathrm{s}$ with additional forecast rainfall. Five sluice gates are open releasing about $1,100 \mathrm{~m} 3 / \mathrm{s}(95,000 \mathrm{M} / \mathrm{d})$ into Wivenhoe Dam. At this stage the dam will reach at least 103.5 on Monday afternoon which will adversely impact areas around Kilcoy.

Since the commencement of the event on 02/01/2011approximately $115,000 \mathrm{ML}$ has been released from the dam into Wivenhoe, with an event total of the order of $520,000 \mathrm{ML}$ expected. This is expected to increase due to the forecast rain in the next 24 to 48 hours. At this stage, releases will continue until at least Thursday.

Wivenhoe Dam (Full Supply Level 67.00 m AHD)

River levels upstream of the dam are rising quickly with significant inflow being generated from the intense heavy rainfall. Flows in the Brisbane River at Gregor's Ck have already reached $7,350 \mathrm{~m} 3 / \mathrm{s}$ and the river has just peaked at $23: 00$ on Sunday 9 January.

The dam level is rising quickly, with the current level being 69.60 m AHD (storing 301,000 ML). Estimated peak inflow to the dam just from the Upper Brisbane R alone may reach
as high as $8,800 \mathrm{~m} 3 / \mathrm{s}$ and, at this stage, the dam will reach at least 73.3 m AHD during Tuesday morning. Given the rapid increase in inflow volumes, it will be necessary to increase the release from Wivenhoe during Monday morning.

The objective for dam operations will be to minimise the impact of urban flooding in areas downstream of the dam and, at this stage, releases will be kept below 3,500m3/s and the combined flows in the lower Brisbane will be limited to $4,000 \mathrm{~m} 3 / \mathrm{s}$ if possible.

Fernvale Bridge approaches and Mt Crosby Weir Bridge have been inundated and both bridges are now closed or are in the process of being closed.

The current release rate from Wivenhoe Dam is $1,400 \mathrm{~m} 3 / \mathrm{s}(120,000 \mathrm{ML} /$ day $)$. Gate opening will start to be increased during early Monday morning and the release is expected to increase to at least $2,600 \mathrm{~m} 3 / \mathrm{s}$.

Since the commencement of the event on 02/01/2011 approximately $240,000 \mathrm{ML}$ has been released from the dam, with an event total approaching $1,500,000 \mathrm{ML}$ without further rain and as much as $2,100,000 \mathrm{ML}$ with forecast rainfall of (both including Somerset outflow). At this stage, releases will continue until at least Sunday $16^{\text {th }}$ January 2011.

Impacts downstream of Wivenhoe Dam

The projected Wivenhoe Dam releases combined with Lockyer flows and local runoff will mean that all crossings downstream of Wivenhoe (Twin Bridges, Fernvale, Savages Crossing, Burtons Bridge, Kholo Bridge, Mt Crosby Weir and Colleges Crossing) will be adversely impacted until at least Saturday 15 January in varying degrees.

Water levels in the lower Brisbane R will be impacted by the combined flows of Lockyer Ck , Bremer River, local runoff and releases from Wivenhoe Dam. If the predicted rainfall eventuates in the downstream tributary catchments the resultant combined flows in the lower Brisbane may exceed the threshold of damaging discharge in the urban areas within the next 24 to 48 hours.

Somerset Regional, Ipswich City and Brisbane City Councils have been advised of the updated Wivenhoe operating strategy.

Regards
Engineer 3
Duty Engineer
Flood Operations Centre

Important information: This email and any attached information is intended only for the addressee and may contain confidential and/or privileged information. If you are not the addressee, you are notified that any transmission, distribution, or other use of this information is strictly prohibited. The confidentiality attached to this email is not waived, lost or destroyed by reasons of mistaken delivery to you. If you have received this email in error please contact the sender immediately and delete the material from your email system. QLD Bulk Water Supply Authority ABN75450239876 (Trading as Seqwater).

Situation Report 13

Date: Monday 10 January 2011
Time: 06:30

From: Duty Engineer
Sent: Monday, 10 January 2011 6:30 AM
To: Distribution List
Cc: Distribution List
Subject: FOC Situation Report at 06:00 on Monday 10 January 2011

Rainfall

Moderate to heavy rainfall has been recorded in the Upper Brisbane and Stanley Rivers in the last 12 hours with totals up to 90 mm . Totals for the last 24 hours range from 100 to 325 mm .

Mt Glorious recorded 100 mm in the last 12 hours.
Rainfall of similar magnitudes is expected in the 12 to 24 hours around the downstream catchments as the system tracks south.

A severe weather warning remains current for heavy rainfall in the dam catchment areas.

North Pine Dam (Full Supply Level 39.60 m AHD)

The dam level was 39.97 m and steady. Five gates are open releasing $475 \mathrm{~m} 3 / \mathrm{s}$. The inflow into the dam since the commencement of the event is $52,000 \mathrm{ML}$. Estimated event volume is $72,000 \mathrm{ML}$ assuming no further rainfall. Gate operations will continue until at least Tuesday 11 January 2011.

Somerset Dam (Full Supply Level 99.00 m AHD)

The dam level at 05:00 was 102.84 m AHD and rising (storing 193,000 ML above FSL). Peak inflow to the dam is estimated to be about $4,200 \mathrm{~m} 3 / \mathrm{s}$ based on observed rainfall and could be as high as $5,000 \mathrm{~m} 3 / \mathrm{s}$ with additional forecast rainfall. Five sluice gates are open releasing about $1,100 \mathrm{~m} 3 / \mathrm{s}(95,000 \mathrm{MI} / \mathrm{d})$ into Wivenhoe Dam. At this stage the dam lake level will reach about 103.5 mAHD on Monday afternoon. Areas around Kilcoy will continue to be adversely affected.

Since the commencement of the event on 02/01/2011approximately 142,000ML has been released from the dam into Wivenhoe, with an event total of the order of $520,000 \mathrm{ML}$ expected. This is expected to increase due to the forecast rain in the next 24 to 48 hours. At this stage, releases will continue until at least Thursday.

Wivenhoe Dam (Full Supply Level 67.00 m AHD)

River levels upstream of the dam have peaked and are falling slowly with significant inflow being generated from the intense heavy rainfall. Flows in the Brisbane River at Gregor's Ck have peaked at $7,350 \mathrm{~m} 3 / \mathrm{s}$ at 23:00 on Sunday 9 January. This peak is bigger than January 1974 and February 1999 at this location.

The dam level is rising quickly, with the current level being 70.77m AHD (storing 450,000 ML). Estimated peak inflow to the dam just from the Upper Brisbane R is around $8,800 \mathrm{~m} 3 / \mathrm{s}$ and, at this stage, the dam will reach at least 73.3 m AHD during Tuesday morning. Given the rapid increase in inflow volumes, it was necessary to start to increase the release from Wivenhoe during Monday morning.

The objective for dam operations will be to minimise the impact of urban flooding in areas downstream of the dam and, at this stage, releases will be kept below 3,500m3/s and the combined flows in the lower Brisbane will be limited to $4,000 \mathrm{~m} 3 / \mathrm{s}$ if possible. This is significantly less than the current estimated combined pre-dam peak inflow of 12,000 $\mathrm{m} 3 / \mathrm{s}$.

Fernvale Bridge approaches and Mt Crosby Weir Bridge have been inundated and both bridges are now closed.

The current release rate from Wivenhoe Dam is $1,753 \mathrm{~m} 3 / \mathrm{s}(150,000 \mathrm{ML} / \mathrm{day})$. Gate opening will continue to be increased during Monday and the release is expected to increase to at least $2,600 \mathrm{~m} 3 / \mathrm{s}$ in the next 12 to 24 hours.

Since the commencement of the event on 02/01/2011 approximately $275,000 \mathrm{ML}$ has been released from the dam, with an event total approaching $1,600,000 \mathrm{ML}$ without further rain and as much as $2,100,000 \mathrm{ML}$ with forecast rainfall of (both including Somerset outflow). At this stage, releases will continue until at least Sunday $16^{\text {th }}$ January 2011.

Impacts downstream of Wivenhoe Dam

The projected Wivenhoe Dam releases combined with Lockyer flows and local runoff will mean that all crossings downstream of Wivenhoe (Twin Bridges, Fernvale, Savages Crossing, Burtons Bridge, Kholo Bridge, Mt Crosby Weir and Colleges Crossing) will be adversely impacted until at least Saturday 15 January in varying degrees.

Water levels in the lower Brisbane R will be impacted by the combined flows of Lockyer Ck , Bremer River, local runoff and releases from Wivenhoe Dam. If the predicted rainfall eventuates in the downstream tributary catchments the resultant combined flows in the lower Brisbane may exceed the threshold of damaging discharge in the urban areas within the next 24 to 48 hours. Currently the estimate peak flow in the lower Brisbane River will be the highest since Wivenhoe Dam was completed in 1984 but still well below flows the 1974 levels. Somerset Regional, Ipswich City and Brisbane City Councils have been advised of the updated Wivenhoe operating strategy.

Outlook

Heavy rainfall continues throughout South East Queensland and the situation could deteriorate rapidly over the next 24 hours. The flood operation centre will continue to monitor the situation and provide every six hours until the situation stabilizes.

Engineer 3
Duty Engineer
Flood Operations Centre
Important information: This email and any attached information is intended only for the addressee and may contain confidential and/or privileged information. If you are not the addressee, you are notified that any transmission, distribution, or other use of this information is strictly prohibited. The confidentiality attached to this email is not waived,
lost or destroyed by reasons of mistaken delivery to you. If you have received this email in error please contact the sender immediately and delete the material from your email system. QLD Bulk Water Supply Authority ABN75450239876 (Trading as Seqwater).

Situation Report 14

Date: Monday 10 January 2011
Time: 12:16

From: Duty Engineer
Sent: Monday, 10 January 2011 12:16 PM
To: Distribution List
Cc: Distribution List
Subject: FOC Situation Report at 12:00 on Monday 10 January 2011

Rainfall

Rainfall has continued in the dam catchments over the last 6 hours, with approximate catchment averages as follows: North Pine (30 mm); Wivenhoe Dam (20 mm); Somerset Dam (40 mm). A severe weather warning remains current for heavy rainfall in the dam catchment areas. The QPF issued by BOM at 10:00 estimates rainfalls for the 24 hours to 10:00 Tuesday as North Pine Dam (75 mm to 150 mm); Wivenhoe/Somerset Dam Catchments ($50 \mathrm{~mm}-100 \mathrm{~mm}$).

North Pine Dam (Full Supply Level 39.60 m AHD)

The dam level is 40.00 m AHD and relatively steady (storing $9,000 \mathrm{ML}$ above FSL). Five gates are open and releasing $500 \mathrm{m3} / \mathrm{s}$. The inflow into the dam since the commencement of the event is $63,000 \mathrm{ML}$. Estimated event volume is $77,000 \mathrm{ML}$ assuming no further rainfall. Gate operations will continue until at least Wednesday 12 January 2011.

Somerset Dam (Full Supply Level 99.00 m AHD)

The dam level is 103.11 m AHD and rising (storing 210,000 ML above FSL). Peak inflow to the dam is estimated to be about $4,200 \mathrm{~m} 3 / \mathrm{s}$. Five sluice gates are open releasing about $1,100 \mathrm{~m} 3 / \mathrm{s}$ ($95,000 \mathrm{ML} / \mathrm{day}$) into Wivenhoe Dam. At this stage the dam lake level will reach about 103.5 m AHD on Monday afternoon. Areas around Kilcoy will continue to be adversely affected.

Since the commencement of the event on 02/01/2011approximately $182,000 \mathrm{ML}$ has been released from the dam into Wivenhoe, with an event total of the order of $520,000 \mathrm{ML}$ expected. This is expected to increase due to the forecast rain in the next 24 to 48 hours. At this stage, releases will continue until at least Thursday 13 January 2011.

Wivenhoe Dam (Full Supply Level 67.00 m AHD)

The dam level is 71.95 m AHD and rising quickly (storing 610,000 ML above FSL). Peak inflow to the dam is estimated to be about $8,800 \mathrm{~m} 3 / \mathrm{s}$. Five radial gates are open releasing about $2000 \mathrm{~m} 3 / \mathrm{s}(170,000 \mathrm{ML} /$ day $)$ into the Brisbane River. At this stage, the dam will reach about 73.5 m AHD during Tuesday morning. Flows in the Brisbane River above the dam at Gregor's Creek peaked at $7,350 \mathrm{~m} 3 / \mathrm{s}$ and this peak is bigger than both the January 1974 and February 1999 flood events at this location.

The objective for dam operations is to minimise the impact of urban flooding in areas downstream of the dam and the current aim is to keep river flows in the lower Brisbane

River below $3,500 \mathrm{~m} 3 / \mathrm{s}$ if possible. This is significantly less than the current estimated combined pre-dam peak inflow of $12,000 \mathrm{~m} 3 / \mathrm{s}$.

Since the commencement of the event on 02/01/2011 approximately $325,000 \mathrm{ML}$ has been released from the dam, with an event total approaching $1,600,000 \mathrm{ML}$ without further rain and as much as $2,100,000 \mathrm{ML}$ with forecast rainfall of (both including Somerset outflow). At this stage, releases will continue until at least Sunday 16 January 2011.

The volume between the expected peak (73.5 m AHD) and the level at which the safety of the dam becomes the primary objective in managing flood releases (74.0m AHD) is $75,000 \mathrm{ML}$. The volume between the expected peak (73.5 m AHD) and initiation of the first Fuse Plug is $330,000 \mathrm{ML}$.

Impacts downstream of Wivenhoe Dam

The projected Wivenhoe Dam releases combined with Lockyer Creek flows and local runoff will mean that all crossings downstream of Wivenhoe (Twin Bridges, Fernvale, Savages Crossing, Burtons Bridge, Kholo Bridge, Mt Crosby Weir and Colleges Crossing) will be adversely impacted until at least Saturday 15 January in varying degrees.

Water levels in the lower Brisbane River will be impacted by the combined flows of Lockyer Creek, Bremer River, local runoff and releases from Wivenhoe Dam. If the predicted rainfall eventuates in the downstream tributary catchments the resultant combined flows in the lower Brisbane may exceed the threshold of damaging discharge in the urban areas within the next 24 to 48 hours. Currently the estimate peak flow in the lower Brisbane River will be the highest since Wivenhoe Dam was completed in 1984 but still well below flows the 1974 levels.

Somerset Regional, Ipswich City and Brisbane City Councils have been advised of the updated Wivenhoe operating strategy.

Outlook

Heavy rainfall continues throughout South East Queensland and the situation could deteriorate rapidly over the next 24 hours. The flood operation centre will continue to monitor the situation and provide every six hours until the situation stabilizes.

Engineer 2
 Duty Engineer
 Flood Operations Centre

Important information: This email and any attached information is intended only for the addressee and may contain confidential and/or privileged information. If you are not the addressee, you are notified that any transmission, distribution, or other use of this information is strictly prohibited. The confidentiality attached to this email is not waived, lost or destroyed by reasons of mistaken delivery to you. If you have received this email in error please contact the sender immediately and delete the material from your email system. QLD Bulk Water Supply Authority ABN75450239876 (Trading as Seqwater).

Situation Report 15

Date: Monday 10 January 2011
Time: 18:43

From: Duty Engineer
Sent: Monday, 10 January 2011 6:43 PM
To: Distribution List
Cc: Distribution List
Subject: FOC Situation Report at 18:00 on Monday 10 January 2011

Rainfall

Only minor rainfall has been experienced in the North Pine Dam and Somerset Dam catchments with a catchment averages of less than 20 mm .

However, significant rain has fallen in the Wivenhoe Dam catchment over the last 6 hours, with isolated falls exceeding 100 mm . This rainfall has significantly increase inflows into the dam. A severe weather warning remains current for heavy rainfall in the dam catchment areas. The QPF issued by BOM at 10:00 estimates rainfalls for the 24 hours to $10: 00$ Tuesday as North Pine Dam (25 mm to 50 mm , with isolated falls to 100 mm); Wivenhoe/Somerset Dam Catchments (25 mm to 50 mm , with isolated falls to 100 mm). Potentially significant rain moving towards the dam catchments is currently evident on the BOM radar.

North Pine Dam (Full Supply Level 39.60 m AHD)

The dam level is 39.84 m AHD and falling slowly (storing 9,000ML above FSL). Five gates are open and releasing $362 \mathrm{~m} 3 / \mathrm{s}$. The inflow into the dam since the commencement of the event is $72,000 \mathrm{ML}$. Estimated event volume is $84,000 \mathrm{ML}$ assuming no further rainfall. Releases from the dam will continue until at least Wednesday 12 January 2011.

Somerset Dam (Full Supply Level 99.00 m AHD)

The dam level is 103.46 m AHD and rising slowly. Peak inflow to the dam is estimated to be about $4,200 \mathrm{~m} 3 / \mathrm{s}$. Total discharge into Wivenhoe Dam is currently $1700 \mathrm{~m} 3 / \mathrm{s}$ and this discharge will decrease slowly in the next 24 hours to be around $1200 \mathrm{~m} 3 / \mathrm{s}$ late Tuesday. The dam level will peak at 103.5 m AHD in the next few hours, unless further significant rainfall is experienced. Areas around Kilcoy will continue to be adversely affected.

Wivenhoe Dam (Full Supply Level 67.00 m AHD)

The dam level is 72.92 m AHD and rising quickly. Releases from the dam have been increased over the last 3 hours in accordance with Flood Mitigation procedures and to ensure that a fuse plug is not initiated. The initiation of a fuse plug will result in a rapid uncontrolled outflow from the dam of $2,000 \mathrm{~m} 3 / \mathrm{s}$ being added to the gate release outflow. Outflows into the Brisbane River from both Lockyer Creek and the Bremer River are also increasing. The flash flooding experienced in the upper areas of Lockyer Creek have been examined and are not expected to significantly increase Brisbane River flows above the current projection of $4000 \mathrm{~m} 3 / \mathrm{s}$ at Moggill.

Five radial gates are currently open at the dam releasing about $2,400 \mathrm{~m} 3 / \mathrm{s}$ into the Brisbane River and this will need to be increased steadily to an outflow of $2,800 \mathrm{~m} 3 / \mathrm{s}$. At this stage, the dam will reach about 73.8 m AHD during Tuesday morning.

The objective for dam operations is currently to minimise the impact of urban flooding in areas downstream of the dam and to keep river flows in the lower Brisbane River below $4,000 \mathrm{~m} 3 / \mathrm{s}$ if possible. This is significantly less than the current estimated combined predam peak inflow of $12,000 \mathrm{~m} 3 / \mathrm{s}$. If further rainfall occurs, dam releases may need to be increased further and this may result in river flows in the lower Brisbane River approaching or exceeding $5,000 \mathrm{~m} 3 / \mathrm{s}$.

Impacts downstream of Wivenhoe Dam

The projected Wivenhoe Dam releases combined with Lockyer Creek flows and local runoff will mean that all crossings downstream of Wivenhoe (Twin Bridges, Fernvale, Savages Crossing, Burtons Bridge, Kholo Bridge, Mt Crosby Weir and Colleges Crossing) will be adversely impacted until at least Sunday 16 January in varying degrees.

Water levels in the lower Brisbane River will be impacted by the combined flows of Lockyer Creek, Bremer River, local runoff and releases from Wivenhoe Dam.

Outlook

Heavy rainfall continues throughout South East Queensland and the situation could deteriorate rapidly over the next 24 hours. The flood operation centre will continue to monitor the situation and provide every six hours until the situation stabilizes.

Engineer 2

Duty Engineer
Flood Operations Centre

Important information: This email and any attached information is intended only for the addressee and may contain confidential and/or privileged information. If you are not the addressee, you are notified that any transmission, distribution, or other use of this information is strictly prohibited. The confidentiality attached to this email is not waived, lost or destroyed by reasons of mistaken delivery to you. If you have received this email in error please contact the sender immediately and delete the material from your email system. QLD Bulk Water Supply Authority ABN75450239876 (Trading as Seqwater).

Situation Report 16

Date: Monday 10 January 2011
Time: 23:56

From: Duty Engineer
Sent: Monday, 10 January 2011 11:56 PM
To: Distribution List
Cc: Distribution List
Subject: FOC Situation Report at 00:00 Tuesday 11 January 2011

Rainfall

Rainfall continues in the North Pine Dam, Somerset Dam and Wivenhoe Dam catchments with falls of generally less than 20 mm since $18: 00$ today. However, some isolated falls in the Upper Brisbane River of up to 110 mm have been recorded at Monsildale in this time. This rainfall will increase inflows into the dam.

A severe weather warning remains current for heavy rainfall in the dam catchment areas. The QPF issued by BOM at 16:00 estimates rainfalls for the 24 hours to 10:00 Tuesday as North Pine Dam (25 mm to 50 mm , with isolated falls to 100 mm); Wivenhoe/Somerset Dam Catchments (25 mm to 50 mm , with isolated falls to 100 mm).

North Pine Dam (Full Supply Level 39.60 m AHD)

The dam level is 39.80 m AHD and falling slowly (storing 4,400ML above FSL). Five gates are open, releasing $153 \mathrm{m3} / \mathrm{s}$. The inflow into the dam since the commencement of the event is $74,000 \mathrm{ML}$. Estimated event volume is $84,000 \mathrm{ML}$ assuming no further rainfall. Releases from the dam will continue until at least Wednesday 12 January 2011.

Somerset Dam (Full Supply Level 99.00 m AHD)

The dam level is 103.40 m AHD and falling slowly. Peak inflow to the dam is estimated to be about $4,200 \mathrm{~m} 3 / \mathrm{s}$. Total discharge into Wivenhoe Dam is currently $1700 \mathrm{~m} 3 / \mathrm{s}$ and this discharge will decrease slowly in the next 24 hours to be around $1200 \mathrm{~m} 3 / \mathrm{s}$ late Tuesday. The dam level peaked at 103.52m AHD at 19:00 on Monday 10 January 2011, unless further significant rainfall is experienced. Areas around Kilcoy will continue to be adversely affected.

Wivenhoe Dam (Full Supply Level 67.00 m AHD)

The dam level is 73.22 m AHD and rising at about $50 \mathrm{~mm} /$ hour. Releases from the dam have been held at a rate of $2,750 \mathrm{~m} 3 / \mathrm{s}$ since $19: 30$ hours. Outflows into the Brisbane River from both Lockyer Creek and the Bremer River are also increasing.

The BoM has provided further advice about the flash flooding experienced in the upper areas of Lockyer Creek. The rainfall responsible for this event was not observed at any rainfall stations but it is considered to be very significant. Flood levels in the Lockyer Creek catchment will exceed maximum recorded levels in some stations in the upper catchment. This flow may result in increases in Brisbane River levels below the junction of Lockyer Creek.

APPENDIXE-SITUATION REPORTS

Five radial gates are currently open at the dam releasing about $2,750 \mathrm{~m} 3 / \mathrm{s}$ into the Brisbane River. At this stage, the dam will reach about 73.8 m AHD during Tuesday afternoon.

The objective for dam operations is currently to minimise the impact of urban flooding in areas downstream of the dam and to keep river flows in the lower Brisbane River below $4,000 \mathrm{~m} 3 / \mathrm{s}$ if possible. This is significantly less than the current estimated combined predam peak inflow of $12,000 \mathrm{~m} 3 / \mathrm{s}$. If further rainfall occurs, dam releases may need to be increased further and this may result in river flows in the lower Brisbane River approaching or exceeding $5,000 \mathrm{~m} 3 / \mathrm{s}$.

Impacts downstream of Wivenhoe Dam

The projected Wivenhoe Dam releases combined with Lockyer Creek flows and local runoff will mean that all crossings downstream of Wivenhoe (Twin Bridges, Fernvale, Savages Crossing, Burtons Bridge, Kholo Bridge, Mt Crosby Weir and Colleges Crossing) will be adversely impacted until at least Sunday 16 January in varying degrees.

Water levels in the lower Brisbane River will be impacted by the combined flows of Lockyer Creek, Bremer River, local runoff and releases from Wivenhoe Dam.

The BoM will provide further information regarding the magnitude of the flash flood event occurring in Lockyer Creek early Tuesday morning. Consideration will be given to modifying the releases from Wivenhoe Dam to try to moderate the peak flows emanating from Lockyer Creek.

Outlook

Heavy rainfall continues throughout South East Queensland and the situation could deteriorate over the next 24 hours. The flood operation centre will continue to monitor the situation and provide situation reports every six hours until the situation stabilizes.

Regards

Engineer 1
Duty Engineer
Flood Operations Centre

Important information: This email and any attached information is intended only for the addressee and may contain confidential and/or privileged information. If you are not the addressee, you are notified that any transmission, distribution, or other use of this information is strictly prohibited. The confidentiality attached to this email is not waived, lost or destroyed by reasons of mistaken delivery to you. If you have received this email in error please contact the sender immediately and delete the material from your email system. QLD Bulk Water Supply Authority ABN75450239876 (Trading as Seqwater).

Situation Report 17

Date: Tuesday 11 January 2011
Time: 06:12

From: Duty Engineer
Sent: Tuesday, 11 January 2011 6:12 AM
To: Distribution List
Cc: Distribution List
Subject: FOC Situation Report at 06:00 on Tuesday 11 January 2011

Rainfall

Rainfall continues in the North Pine Dam, Somerset Dam and Wivenhoe Dam catchments. Isolated falls in the Upper Brisbane River of up to 125 mm have been recorded with widespread falls of 40 to 70 mm in the Somerset Dam catchment. This rainfall will increase inflows into the dam.

There has also been 20 to 60 mm in the Lockyer Creek catchment in the last 12 hours with falls of up to 30 mm in the Bremer River.

A severe weather warning remains current for heavy rainfall in the dam catchment areas. The QPF issued by BOM at 16:00 estimates rainfalls for the 24 hours to 10:00 Tuesday as North Pine Dam (25 mm to 50 mm , with isolated falls to 100 mm); Wivenhoe/Somerset Dam Catchments (25 mm to 50 mm , with isolated falls to 100 mm).

North Pine Dam (Full Supply Level 39.60 m AHD)

The dam level is 39.80 m AHD and has commenced rising again (storing 4,400ML above FSL). Five gates are open releasing $177 \mathrm{~m} 3 / \mathrm{s}$. The inflow into the dam since the commencement of the event is $77,000 \mathrm{ML}$. Estimated event volume is $88,000 \mathrm{ML}$ assuming no further rainfall. Releases from the dam will continue until at least Wednesday 12 January 2011.

Somerset Dam (Full Supply Level 99.00 m AHD)

The dam level is 103.27 m AHD and falling slowly. Peak inflow to the dam is estimated to be about $4,200 \mathrm{~m} 3 / \mathrm{s}$. Total discharge into Wivenhoe Dam is currently $1400 \mathrm{~m} 3 / \mathrm{s}$ and this discharge will be decreased in the next few hours to be around $500 \mathrm{m3} / \mathrm{s}$ later on Tuesday. This is to ensure that the combined flood mitigation capacity in Somerset and Wivenhoe Dam is maximized.

The dam level peaked at 103.52m AHD at 19:00 on Monday 10 January 2011, (unless further significant rainfall is experienced). Areas around Kilcoy will continue to be adversely affected.

Wivenhoe Dam (Full Supply Level 67.00 m AHD)

The dam level is 73.51 m AHD and rising at about $25 \mathrm{~mm} /$ hour. Releases from the dam have been held at a rate of $2,750 \mathrm{~m} 3 / \mathrm{s}$ since 19:30 hours on Monday 10 January 2011. Outflows into the Brisbane River from both Lockyer Creek and the Bremer River are also increasing.

The BoM has provided further advice about the flash flooding experienced in the upper areas of Lockyer Creek. The rainfall responsible for this event was not observed at any rainfall stations but it is considered to be extreme. Flood levels in the Lockyer Creek catchment will exceed maximum recorded levels in some stations in the upper catchment. This flow will result in increases in Brisbane River levels below the junction of Lockyer Creek.

Five radial gates are currently open at the dam releasing about $2,750 \mathrm{~m} 3 / \mathrm{s}$ into the Brisbane River. At this stage, the dam will reach just over 74.0m AHD during Tuesday evening.

Above EL 74.0m AHD the objective for dam operations is to maintain the security of the dam and minimise downstream flood flows if possible.

If further rainfall occurs, dam releases may need to be increased further and this may result in river flows in the lower Brisbane River approaching or exceeding $5,000 \mathrm{~m} 3 / \mathrm{s}$.

Impacts downstream of Wivenhoe Dam

The projected Wivenhoe Dam releases combined with Lockyer Creek flows and local runoff will mean that all crossings downstream of Wivenhoe (Twin Bridges, Fernvale, Savages Crossing, Burtons Bridge, Kholo Bridge, Mt Crosby Weir and Colleges Crossing) will be adversely impacted until at least Sunday 16 January in varying degrees.

Water levels in the lower Brisbane River will be impacted by the combined flows of Lockyer Creek, Bremer River, local runoff and releases from Wivenhoe Dam.

The BoM will provide further information regarding the magnitude of the flash flood event occurring in Lockyer Creek early Tuesday morning. Consideration was given to modifying the releases from Wivenhoe Dam to try to moderate the peak flows emanating from Lockyer Creek but the rainfall in the past 12 hours in the catchment above the dam makes this option not possible. Therefore instead of decreasing releases to accommodate the Lockyer Creek flows, the strategy will endeavour to maintain the current releases until Lockyer Creek peaks.

Outlook

Heavy rainfall continues throughout South East Queensland and the situation could deteriorate over the next 24 hours. The flood operation centre will continue to monitor the situation and provide situation reports every six hours until the situation stabilizes.

Duty Engineer
Flood Operations Centre

Important information: This email and any attached information is intended only for the addressee and may contain confidential and/or privileged information. If you are not the addressee, you are notified that any transmission, distribution, or other use of this information is strictly prohibited. The confidentiality attached to this email is not waived, lost or destroyed by reasons of mistaken delivery to you. If you have received this email in error please contact the sender immediately and delete the material from your email system. QLD Bulk Water Supply Authority ABN75450239876 (Trading as Seqwater).

Situation Report 18

Date: Tuesday 11 January 2011
Time: 12:11

From: Duty Engineer
Sent: Tuesday, 11 January 2011 12:11 PM
To: Distribution List
Subject: SitRep 1200 11/1/2011

Somerset/Wivenhoe

Our current strategy revolves around trying to prevent initiation of the first fuse plug at EL 75.6 m . If this happens we will get a rapid increase of about $2,000 \mathrm{~m} 3 / \mathrm{s}$ in outflow from the dam in addition to the gate release which could be as high as 4,500 to $5,000 \mathrm{~m} 3 / \mathrm{s}$ at the time. However, it may be that fuse plug initiation might provide a lower outflow than increasing the gate outflow to protect it. In this case, we would adopt an alternate scenario.

Sluices have been closed at Somerset and this will result in high upstream water levels affecting Kilcoy.

1. With no further rainfall, Wivenhoe will approach 75.0 m AHD and there will be an attempt to limit the dam outflow to $4,500 \mathrm{~m} 3 / \mathrm{s}$, however this strategy currently being reviewed on an hour by hour basis. The release will be $4,000 \mathrm{~m} 3 / \mathrm{s}$ by 1300 .
2. With 50 mm rainfall in the Stanley and Upper Brisbane in the next 12 to 24 hours, the release will need to be significantly increased to be in the order $6,000 \mathrm{~m} 3 / \mathrm{s}$.

It should be noted that the flow in the lower Brisbane River in 1974 was about $9,500 \mathrm{~m} 3 / \mathrm{s}$
Wivenhoe has lost incoming mains power and are on backup power. Energex are attempting to rectify.

North Pine

Inflows and outflows are increasing very rapid and will exceed 2,000m3/s.

Duty Engineer
 Flood Operations Centre

Important information: This email and any attached information is intended only for the addressee and may contain confidential and/or privileged information. If you are not the addressee, you are notified that any transmission, distribution, or other use of this information is strictly prohibited. The confidentiality attached to this email is not waived, lost or destroyed by reasons of mistaken delivery to you. If you have received this email in error please contact the sender immediately and delete the material from your email system. QLD Bulk Water Supply Authority ABN75450239876 (Trading as Seqwater).

Situation Report 19

Date: Tuesday 11 January 2011
Time: 18:00

From: Duty Engineer
Sent: Tuesday, 11 January 2011 6:00 PM
To: Distribution List
Subject: Situation Report 180012 January 2011
In the last twelve hours totals of up to 370 mm have fallen in the area around Wivenhoe Dam. In the last hour, rainfalls between 15 and 30 mm have been recorded in the same area. At 1600, the BoM advised that falls between 50 to 100 mm are still forecast for the 24 hrs to 1600 Wednesday 12 January 2011 for the North Pine and Somerset/Wivenhoe catchments.

At 1730 Wivenhoe Dam was 74.92 m AHD and rising slowly and releasing about $6,700 \mathrm{~m} 3 / \mathrm{s}$.

The current expectation is that the dam will reach a steady state (outflow equals inflow) within the next 3 hours without further significant rainfall. At this time, release from the dam will be about $8,000 \mathrm{~m} 3 / \mathrm{s}$.

If there is no further rainfall, it may be possible to then slowly reduce this release overnight.

The dam is expected to peak below 75.5 m AHD which is 100 mmm below the first fuse plug initiation level.

Note that the automatic recorder as indicated on the BoM website is affected by drawdown and is not reflecting the actual lake level and tendency.

The Flood Operations Centre is continuing to monitor rainfalls and water levels through the Brisbane and Pine catchments and reviewing operating strategy every 30 minutes. The FOC is also maintaining close contact with warning agencies and local councils.

The next report will be issued at 210012 January 2011.

Engineer 2

Duty Engineer
Flood Operations Centre

Important information: This email and any attached information is intended only for the addressee and may contain confidential and/or privileged information. If you are not the addressee, you are notified that any transmission, distribution, or other use of this information is strictly prohibited. The confidentiality attached to this email is not waived, lost or destroyed by reasons of mistaken delivery to you. If you have received this email in error please contact the sender immediately and delete the material from your email system. QLD Bulk Water Supply Authority ABN75450239876 (Trading as Seqwater).

Situation Report 20

Date: Wednesday 12 January 2011
Time: 05:49

From: Duty Engineer
Sent: Wednesday, 12 January 2011 5:49 AM
To: Distribution List
Subject: Situation Report 0600 Wed 12/01/2011
No significant rain has fallen over the catchments in the past twelve hours. Less than 10 to 15 millimeters of rainfall is expected over the next $24-48$ hours.

Wivenhoe Dam peaked on the $11^{\text {th }}$ January, Tuesday night at 19:00 at 74.97 mAHD with a corresponding discharge of $7,450 \mathrm{~m} 3 / \mathrm{s}$. The release have now been scaled back to $4,300 \mathrm{~m} 3 / \mathrm{s}$ at 05:00 am. Wivenhoe Dam is currently 74.77 m AHD and falling slowly.

The releases from Wivenhoe Dam will be temporarily reduced to $2,500 \mathrm{~m} 3 / \mathrm{s}$ to allow the peak of Lockyer Creek to enter the Brisbane River, after which they will be increased to maximum of $3,500 \mathrm{~m} 3 / \mathrm{s}$. This release will then be maintained to drain the flood storage component within the required 7 days.

Somerset Dam is at 105.10 mAHD and slowly rising. The dam is discharging $1,230 \mathrm{~m} 3 / \mathrm{s}$ over the spillway. The dam is expected to peak this morning near its current level. Sluice gates will be utilised to assist the draining of the flood storage compartment commencing on Thursday. The combined flood event volume in Somerset and Wivenhoe Dams is estimated to be in excess of 2 million megalitres.

North Pine Dam is currently releasing $105 \mathrm{~m} 3 / \mathrm{s}$ through five gates. At 17:00 the lake was 39.78 mAHD . The event has a volume of around $200,000 \mathrm{ML}$. The peak discharge from the dam was $2,800 \mathrm{~m} 3 / \mathrm{s}$. This is categorised as an extreme event in the order of 1 in 10,000 .

The Flood Operations Centre is continuing to monitor rainfalls and water levels through the Brisbane and Pine catchments and reviewing operating strategy every 30 minutes. The FOC is also maintaining close contact with warning agencies and local councils.

The next report will be issued at 08:00 12 January 2011.

Regards

Engineer 1

Duty Engineer
Flood Operations Centre
Important information: This email and any attached information is intended only for the addressee and may contain confidential and/or privileged information. If you are not the addressee, you are notified that any transmission, distribution, or other use of this information is strictly prohibited. The confidentiality attached to this email is not waived, lost or destroyed by reasons of mistaken delivery to you. If you have received this email in

APPENDIX E - SITUATION REPORTS

error please contact the sender immediately and delete the material from your email system. QLD Bulk Water Supply Authority ABN75450239876 (Trading as Seqwater).

Situation Report 21

Date: Wednesday 12 January 2011
Time: 07:57

From: Duty Engineer
Sent: Wednesday, 12 January 2011 7:57 AM
To: Distribution List
Subject: RE: Situation Report 0800 Wed 12/01/2011

Rainfall

No significant rain has fallen over the catchments in the past twelve hours. Less than 10 to 15 millimeters of rainfall is expected over the next $24-48$ hours.

Somerset/Wivenhoe

Somerset Dam has peaked at 105.11 mAHD at 06:00 on 12 January 2011 and the dam is discharging $1,230 \mathrm{~m} 3 / \mathrm{s}$ over the spillway. Sluice gates will be utilised to assist the draining of the flood storage compartment commencing later Wednesday.

Wivenhoe Dam peaked at 74.97 mAHD at 19:00 on 11 January 2011 with a corresponding discharge of $7,450 \mathrm{~m} 3 / \mathrm{s}$. Wivenhoe Dam was 74.75 m AHD at 07:30 and generally falling slowly.

The releases from Wivenhoe Dam have been temporarily reduced to $2,500 \mathrm{~m} 3 / \mathrm{s}$ at 07:30 to allow the peak of Lockyer Creek to enter the Brisbane River. After the downstream peak in the lower Brisbane River has passed, releases will be increased to maximum of $3,500 \mathrm{~m} 3 / \mathrm{s}$. This release will then be maintained to drain the flood storage component within the required 7 days.

The combined flood event volume in Somerset and Wivenhoe Dams is estimated to be in excess of 2 million megalitres.

North Pine

At 07:00 North Pine Dam was 39.78 mAHD falling and releasing about $105 \mathrm{~m} 3 / \mathrm{s}$. North Pine has peaked at 41.11 mAHD at 14:00 on 11 January 1974 with peak release of 2,800 $\mathrm{m} 3 / \mathrm{s}$. The event has a volume of around $200,000 \mathrm{ML}$. It is expected that gates will be close later Wednesday or early Thursday.

Strategy

The Flood Operations Centre is continuing to monitor rainfalls and water levels through the Brisbane and Pine catchments and reviewing operating strategy every 30 minutes. The FOC is maintaining close contact with warning agencies and local councils.

The next report will be issued at 12:00 12 January 2011.
Regards

APPENDIX E - SITUATION REPORTS

Engineer 2

Duty Engineer
Flood Operations Centre

Important information: This email and any attached information is intended only for the addressee and may contain confidential and/or privileged information. If you are not the addressee, you are notified that any transmission, distribution, or other use of this information is strictly prohibited. The confidentiality attached to this email is not waived, lost or destroyed by reasons of mistaken delivery to you. If you have received this email in error please contact the sender immediately and delete the material from your email system. QLD Bulk Water Supply Authority ABN75450239876 (Trading as Seqwater).

APPENDIX E-SITUATIONREPORTS

Situation Report 22

Date: Wednesday 12 January 2011
Time: 15:18

From: Duty Engineer
Sent: Wednesday, 12 January 2011 3:18 PM
To: Distribution List
Cc: Distribution List
Subject: Situation Report 1500 Wed 12/01/2011

Rainfall

Rainfall in the last 12 hours is generally below 5 mm with a couple of 10 mm falls in the Stanley and North Pine catchments. There is no significant rain expected fin the next 4 days.

Somerset/Wivenhoe

Somerset Dam has peaked at 105.11 mAHD at 06:00 on 12 January 2011. One sluice was opened at 103012 January 2011 and the dam is discharging $1,440 \mathrm{~m} 3 / \mathrm{s}$. Sluice gates will be utilised to drain of the flood storage compartment during the next 5 days.

Wivenhoe Dam peaked at 74.97 mAHD at 19:00 on 11 January 2011 with a corresponding discharge of $7,450 \mathrm{m3} / \mathrm{s}$. Wivenhoe Dam was 74.81 m AHD at 15:00 and steady.

The releases from Wivenhoe Dam have been temporarily reduced to $2,500 \mathrm{~m} 3 / \mathrm{s}$ at $07: 30$ 12 January 2011 to allow the peak of Lockyer Creek to enter the Brisbane River. After the downstream peak in the lower Brisbane River has passed, releases will be increased to maximum of $3,500 \mathrm{~m} 3 / \mathrm{s}$. This release will then be maintained to drain the flood storage component within the required 7 days.

The combined flood event volume in Somerset and Wivenhoe Dams is estimated to be in excess of 2 million megalitres.

North Pine

At 15:00 North Pine Dam was 39.74 mAHD falling with all gates open 1 increment, releasing about $80 \mathrm{~m} 3 / \mathrm{s}$. North Pine peaked at 41.11 mAHD at 14:00 on 11 January 1974 with peak release of $2,800 \mathrm{~m} 3 / \mathrm{s}$. The event has a volume of around $200,000 \mathrm{ML}$. It is expected that gates will be closed on Thursday or Thursday.

Strategy

The Flood Operations Centre is continuing to monitor rainfalls and water levels through the Brisbane and Pine catchments and reviewing operating strategy every 30 minutes. The FOC is maintaining close contact with warning agencies and local councils.

The next report will be issued at 18:00 12 January 2011.
Regards

Engineer 2

Duty Engineer
 Flood Operations Centre

Important information: This email and any attached information is intended only for the addressee and may contain confidential and/or privileged information. If you are not the addressee, you are notified that any transmission, distribution, or other use of this information is strictly prohibited. The confidentiality attached to this email is not waived, lost or destroyed by reasons of mistaken delivery to you. If you have received this email in error please contact the sender immediately and delete the material from your email system. QLD Bulk Water Supply Authority ABN75450239876 (Trading as Seqwater).

Situation Report 23

Date: Wednesday 12 January 2011
Time: 17:57

From: Duty Engineer
Sent: Wednesday, 12 January 2011 5:57 PM
To: Distribution List
Cc: Distribution List
Subject: Situation Report 1800 Wed 12/01/2011

Rainfall

Rainfall in the last 12 hours is generally below 5 mm with a couple of 10 mm falls in the Stanley and North Pine catchments. There is no significant rain expected fin the next 4 days.

Somerset/Wivenhoe

Somerset Dam has peaked at 105.11 mAHD at 06:00 on 12 January 2011. One sluice was opened at 103012 January 2011. Somerset Dam was 104.87 mAHD at 170012 January 2011 and discharging $1,410 \mathrm{~m} 3 / \mathrm{s}$. Sluice gates will be utilised to drain of the flood storage compartment during the next 5 days.

Wivenhoe Dam peaked at 74.97 mAHD at 19:00 on 11 January 2011 with a corresponding discharge of $7,450 \mathrm{~m} 3 / \mathrm{s}$. Wivenhoe Dam was 74.82 m AHD at 17:00 and steady.

The release from Wivenhoe Dam was reduced to $2,500 \mathrm{~m} 3 / \mathrm{s}$ at 07:30 12 January 2011 to allow the peak of Lockyer Creek to enter the Brisbane River and this release has been maintained since. After the downstream peak in the lower Brisbane River has passed, releases will be increased to maximum of $3,500 \mathrm{~m} 3 / \mathrm{s}$. The release is expected to commence Thursday and then be maintained at this level to drain the flood storage component within the required 7 days. The releases will not result in any renewed rises at downstream locations.

The combined flood event volume in Somerset and Wivenhoe Dams is estimated to be 2.6 million megalitres.

North Pine

At 17:00 North Pine Dam was 39.74 mAHD steady with all gates open 1 increment, releasing about $80 \mathrm{~m} 3 / \mathrm{s}$. North Pine peaked at 41.11 mAHD at 14:00 on 11 January 1974 with peak release of $2,800 \mathrm{~m} 3 / \mathrm{s}$. The event has a volume of around $200,000 \mathrm{ML}$. It is expected that gates will be closed on Thursday or Friday.

Strategy

The Flood Operations Centre is continuing to monitor rainfalls and water levels through the Brisbane and Pine catchments and reviewing operating strategy regularly. The FOC is maintaining close contact with warning agencies and local councils.

APPENDIX E-SITUATION REPORTS

The next report will be issued at 06:00 13 January 2011.

Regards

Engineer 2
Duty Engineer
Flood Operations Centre

Important information: This email and any attached information is intended only for the addressee and may contain confidential and/or privileged information. If you are not the addressee, you are notified that any transmission, distribution, or other use of this information is strictly prohibited. The confidentiality attached to this email is not waived, lost or destroyed by reasons of mistaken delivery to you. If you have received this email in error please contact the sender immediately and delete the material from your email system. QLD Bulk Water Supply Authority ABN75450239876 (Trading as Seqwater).

Situation Report 24

Date: Thursday 13 January 2011
Time: 05:43

From: DutyEngineer
Sent: Thursday, 13 January 2011 5:43 AM
To: 'DutyEngineer'
Subject: Situation Report 060013 January 2011

Rainfall

Rainfall in the last 12 hours is generally below 5 mm with isolated falls of up to 15 mm in the Stanley, Lockyer and Pine River catchments. There is no significant rain expected fin the next 4 days.

Somerset/Wivenhoe

Somerset Dam peaked at 105.11 mAHD at 06:00 on Wednesday 12 January 2011. The current level is 104.34 mAHD. One sluice was opened at 10:30 on 12 January 2011 and the dam is currently discharging $1,130 \mathrm{~m} 3 / \mathrm{s}$. Sluice gates will be utilised to drain of the flood storage compartment during the next 5 days.

Wivenhoe Dam peaked at 74.97 mAHD at 19:00 on Tuesday 11 January 2011 with a corresponding discharge of $7,450 \mathrm{~m} 3 / \mathrm{s}$. Wivenhoe Dam was 74.72 m AHD at $06: 00$ and commence to fall slowly.

The releases from Wivenhoe Dam have been temporarily reduced to $2,500 \mathrm{~m} 3 / \mathrm{s}$ at 07:30 on Wednesday 12 January 2011 to allow the peak of Lockyer Creek to enter the Brisbane River. The Brisbane River has peaked at the Port Office Gauge early Thursday morning. Releases from Wivenhoe Dam will be managed to achieve a target flow of around 3,500 $\mathrm{m} 3 / \mathrm{s}$ at Moggill. This release will then be maintained to drain the flood storage component within the required 7 days.

The combined flood event volume in Somerset and Wivenhoe Dams is estimated to be in excess of 2.6 million megalitres.

North Pine

At 06:00 North Pine Dam was 39.70 mAHD falling with all gates open 1 increment, releasing about $80 \mathrm{~m} 3 / \mathrm{s}$. North Pine peaked at 41.11 mAHD at 14:00 on Tuesday 11 January 2011 with peak release of $2,800 \mathrm{~m} 3 / \mathrm{s}$. The event has a volume of around $200,000 \mathrm{ML}$. It is expected that all gates will be closed on Friday.

Strategy

The Flood Operations Centre is continuing to monitor rainfalls and water levels throughout the Brisbane and Pine River catchments and reviewing operating strategy. The FOC will continue to maintain close contact with warning agencies and local councils.

The next report will be issued at 18:00 on Thursday 13 January 2011.

APPENDIXE - SITUATION REPORTS

Regards

Engineer 1

Duty Engineer
Flood Operations Centre

Important information: This email and any attached information is intended only for the addressee and may contain confidential and/or privileged information. If you are not the addressee, you are notified that any transmission, distribution, or other use of this information is strictly prohibited. The confidentiality attached to this email is not waived, lost or destroyed by reasons of mistaken delivery to you. If you have received this email in error please contact the sender immediately and delete the material from your email system. QLD Bulk Water Supply Authority ABN75450239876 (Trading as Seqwater).

Situation Report 25

Date: Thursday 13 January 2011
Time: 18:43

From: Duty Engineer
Sent: Thursday, 13 January 2011 6:43 PM
To: Distribution List
Subject: Situation Report 183013 January 2011

Rainfall

There has been no significant rainfall in the last 12 hours and none is expected for the next 5 days.

Somerset/Wivenhoe

Somerset Dam peaked at 105.11 mAHD at 18:00 on Wednesday 12 January 2011. The current level is 103.60 mAHD and falling. Four sluices are open and the dam is currently discharging $1,528 \mathrm{~m} 3 / \mathrm{s}$.

Wivenhoe Dam peaked at 74.97 mAHD at 19:00 on Tuesday 11 January 2011 with a corresponding discharge of $7,450 \mathrm{~m} 3 / \mathrm{s}$. Wivenhoe Dam was 74.5 mAHD at 18:00 and continuing to fall slowly.

The releases from Wivenhoe Dam are currently $2,888 \mathrm{~m} 3 / \mathrm{s}$ and are being managed to achieve a target flow of around $3,500 \mathrm{~m} 3 / \mathrm{s}$ at Moggill. This release will then be maintained to drain the flood storage component within the required 7 days.

The combined flood event volume in Somerset and Wivenhoe Dams is estimated to be in excess of 2.6 million megalitres.

North Pine

At 18:00 North Pine Dam was 39.60 mAHD and falling with 5 gates open, releasing about $151 \mathrm{~m} 3 / \mathrm{s}$. North Pine peaked at 41.11 mAHD at 14:00 on Tuesday 11 January 2011 with a peak release of $2,800 \mathrm{~m} 3 / \mathrm{s}$. The flood event volume is estimated to be around 200,000 ML.

All gates will be closed at 05:00 Friday to enable MMRC to consider reopening Youngs Crossing.

Strategy

The Flood Operations Centre is continuing to monitor rainfalls and water levels throughout the Brisbane and Pine River catchments and reviewing operating strategy. The FOC will continue to maintain close contact with warning agencies and local councils.

The next report will be issued at 06:00 on Friday 14 January 2011.
Engineer 2
Duty Engineer
Flood Operations Centre

Situation Report 26

Date: Friday 14 January 2011
Time: 05:35

From: Duty Engineer
Sent: Friday, 14 January 2011 5:35 AM
To: Distribution List
Subject: FOC Situation Report at 06:00 on Friday 14 January 2011

Rainfall

There has been no significant rainfall in the last 12 hours and falls of only 5 mm is expected in the next twenty-four hours. Mostly fine conditions are expected over the weekend, but showers will return early next week.

Somerset/Wivenhoe

Somerset Dam peaked at 105.11 mAHD at 18:00 on Wednesday 12 January 2011. The current level is $102: 87 \mathrm{mAHD}$ and falling. Four sluices are open and the dam is currently discharging about $1,300 \mathrm{m3} / \mathrm{s}$.

Wivenhoe Dam peaked at 74.97 mAHD at 19:00 on Tuesday 11 January 2011 with a corresponding discharge of $7,450 \mathrm{~m} 3 / \mathrm{s}$. At 05:00 Wivenhoe Dam was 74.74 .08 mAHD and continuing to fall.

The releases from Wivenhoe Dam are currently about $3,500 \mathrm{~m} 3 / \mathrm{s}$ and are being managed to achieve a target flow of around $3,500 \mathrm{~m} 3 / \mathrm{s}$ at Moggill. This release will then be maintained to drain the flood storage component by Wednesday.

The combined flood event volume in Somerset and Wivenhoe Dams is estimated to be in excess of 2.6 million megalitres.

North Pine

At 05:00 North Pine Dam was 39.40 mAHD and gate operations have ceased. The current level is expected to increase to just over 39.5 mAHD in the next few days due to base-flow. This could be higher if further rainfall occurs.
Fish recovery has commenced and MBRC have been advised that the gates have been closed. MBRC will inspect Youngs Crossing to determine if the crossing can be reopened.

North Pine peaked at 41.11 mAHD at 14:00 on Tuesday 11 January 2011 with a peak release of $2,800 \mathrm{~m} 3 / \mathrm{s}$. The flood event volume is estimated to be around $200,000 \mathrm{ML}$.

Strategy

The Flood Operations Centre is continuing to monitor rainfalls and water levels throughout the Brisbane and Pine River catchments. The FOC will continue to maintain close contact with warning agencies and local councils.

The next report will be issued at 18:00 on Friday 14 January 2011.

APPENDIX E-SITUATION REPORTS

Regards
Engineer 1
Duty Engineer
Flood Operations Centre

Important information: This email and any attached information is intended only for the addressee and may contain confidential and/or privileged information. If you are not the addressee, you are notified that any transmission, distribution, or other use of this information is strictly prohibited. The confidentiality attached to this email is not waived, lost or destroyed by reasons of mistaken delivery to you. If you have received this email in error please contact the sender immediately and delete the material from your email system. QLD Bulk Water Supply Authority ABN75450239876 (Trading as Seqwater).

APPENDIXE - SITUATIONREPORTS

Situation Report 27

Date: Saturday 15 January 2011
Time: 06:36

From: Duty Engineer
Sent: Saturday, 15 January 2011 6:36 AM
To: Distribution List
Subject: Situation Report 0630 Saturday 15 January 2011

Rainfall

There has been no significant rainfall in the last 24 hours and no significant rainfall is expected in the next twenty-four hours. Mostly fine conditions are expected over the weekend, but showers will return early next week.

Somerset/Wivenhoe

At 06:00 Somerset Dam was 101.35 mAHD and falling. Four sluices are open and the dam is currently discharging about $920 \mathrm{m3} / \mathrm{s}$. Somerset Dam peaked at 105.11 mAHD at 18:00 on Wednesday 12 January 2011.

At 05:00 Wivenhoe Dam was 72.86 mAHD and continuing to fall. The releases from Wivenhoe Dam are currently about $3,500 \mathrm{~m} 3 / \mathrm{s}$ and are being managed to achieve a target flow of around $3,500 \mathrm{m3} / \mathrm{s}$ at Moggill. This release level is being maintained to drain the flood storage component by Wednesday.

Wivenhoe Dam peaked at 74.97 mAHD at 19:00 on Tuesday 11 January 2011 with a corresponding discharge of $7,450 \mathrm{~m} 3 / \mathrm{s}$.

The combined flood event volume in Somerset and Wivenhoe Dams is estimated to be in excess of 2.6 million megalitres.

North Pine

At 05:00 North Pine Dam was 39.40 mAHD and gate operations have ceased. This level is expected to increase to just over 39.5 mAHD in the next few days due to base-flow. This could be higher if further rainfall occurs.

North Pine peaked at 41.11 mAHD at 14:00 on Tuesday 11 January 2011 with a peak release of $2,800 \mathrm{~m} 3 / \mathrm{s}$. The flood event volume is estimated to be around $200,000 \mathrm{ML}$.

Strategy

The Flood Operations Centre is continuing to monitor rainfalls and water levels throughout the Brisbane and Pine River catchments and is maintaining close contact with warning agencies and local councils.

The next report will be issued at 18:00 on Saturday 15 January 2011.

Engineer 2

Duty Engineer
Flood Operations Centre

Situation Report 28

Date: Sunday 16 January 2011
Time: 06:09

From: Duty Engineer
Sent: Sunday, 16 January 2011 6:09 AM
To: Distribution List
Subject: Situation Report 0600 Sunday 16 January 2011

Rainfall

There has been no significant rainfall in the last 24 hours and no significant rainfall is expected in the next twenty-four hours. Mostly fine conditions are expected over the weekend, but showers will return early next week.

Somerset/Wivenhoe

At 06:00 Somerset Dam was 100.01 mAHD and falling. Four sluices are open and the dam is currently discharging about $820 \mathrm{~m} 3 / \mathrm{s}$. Somerset Dam peaked at 105.11 mAHD at 18:00 on Wednesday 12 January 2011.

At 06:00 Wivenhoe Dam was 71.3 mAHD and continuing to fall. The releases from Wivenhoe Dam are currently about $3,477 \mathrm{~m} 3 / \mathrm{s}$ and are being managed to achieve a target flow of around $3,500 \mathrm{m3} / \mathrm{s}$ at Moggill. This release level is being maintained to drain the flood storage component by Wednesday.

Wivenhoe Dam peaked at 74.97 mAHD at 19:00 on Tuesday 11 January 2011 with a corresponding discharge of $7,450 \mathrm{~m} 3 / \mathrm{s}$.

The combined flood event volume in Somerset and Wivenhoe Dams is estimated to be in excess of 2.6 million megalitres.

North Pine

At 06:00 North Pine Dam was 39.46 mAHD. All gates are closed. The lake level is expected to increase to just over 39.5 mAHD in the next few days due to base-flow. This could be higher if further rainfall occurs.

North Pine peaked at 41.11 mAHD at 14:00 on Tuesday 11 January 2011 with a peak release of $2,800 \mathrm{~m} 3 / \mathrm{s}$. The flood event volume is estimated to be around $200,000 \mathrm{ML}$.

Strategy

The Flood Operations Centre is continuing to monitor rainfalls and water levels throughout the Brisbane and Pine River catchments and is maintaining close contact with warning agencies and local councils.

The next report will be issued at 18:00 on Sunday 16 January 2011.

Engineer 3

Duty Engineer
Flood Operations Centre

Situation Report 29

Date: Monday 17 January 2011
Time: 16:56

From: Duty Engineer
Sent: Monday, 17 January 2011 4:56 PM
To: Distribution List
Subject: Situation Report 1700 Monday 16 January 2011

Rainfall

There has been no significant rainfall in the last 24 hours and no significant rainfall is expected in the next twenty-four hours. Mostly fine conditions are expected over the weekend, but showers will return early next week.

Somerset/Wivenhoe

At 16:00 Somerset Dam was 99.02 mAHD and steady. The last sluice gate was closed at 7:00 17/01/2011 and one regulator was opened the base-flow into the Dam. Somerset Dam peaked at 105.11 mAHD at 18:00 on Wednesday 12 January 2011.

At 16:00 Wivenhoe Dam was 68.66 mAHD and continuing to fall. The releases from Wivenhoe Dam are currently about $2946 \mathrm{~m} 3 / \mathrm{s}$. Releases will be steadily reduced before final closure on Thursday morning. The Dam will be near full supply and releases will be made through the regulator to account for ongoing base-flow.

Wivenhoe Dam peaked at 74.97 mAHD at 19:00 on Tuesday 11 January 2011 with a corresponding discharge of $7,450 \mathrm{~m} 3 / \mathrm{s}$.

The combined flood event volume in Somerset and Wivenhoe Dams is estimated to be in excess of 2.6 million megalitres.

It should be noted that the automatic recorder currently being reported on the BoM website is currently incorrect and has been since early Tuesday 112011.

North Pine

At 09:00 North Pine Dam was 39.5 mAHD . All gates are closed. No further gate operations are expected unless additional rainfall falls.

North Pine peaked at 41.11 mAHD at 14:00 on Tuesday 11 January 2011 with a peak release of $2,800 \mathrm{~m} 3 / \mathrm{s}$. The flood event volume is estimated to be around $200,000 \mathrm{ML}$.

Strategy

The Flood Operations Centre is continuing to monitor rainfalls and water levels throughout the Brisbane and Pine River catchments and is maintaining close contact with warning agencies and local councils. Councils have been informed of the current release strategy. The bridges below Wivenhoe Dam will progressively come out of water over the next few days.

APPENDIX E - SITUATION REPORTS

Engineer 3
Duty Engineer
Flood Operations Centre

Important information: This email and any attached information is intended only for the addressee and may contain confidential and/or privileged information. If you are not the addressee, you are notified that any transmission, distribution, or other use of this information is strictly prohibited. The confidentiality attached to this email is not waived, lost or destroyed by reasons of mistaken delivery to you. If you have received this email in error please contact the sender immediately and delete the material from your email system. QLD Bulk Water Supply Authority ABN75450239876 (Trading as Seqwater).

Situation Report 30

Date: Tuesday 18 January 2011
Time: 06:17

From: Duty Engineer
Sent: Tuesday, 18 January 2011 6:17 AM
To: Distribution List
Subject: Situation Report 0615 Tuesday 18 January 2011

Rainfall

There has been no significant rainfall in the last 24 hours and no significant rainfall is expected in the next twenty-four hours. Mostly fine conditions are expected over the weekend, but showers will return early next week.

Somerset/Wivenhoe

At 16:00 Monday Somerset Dam was 99.02 mAHD and steady. The last sluice gate was closed at 07:00 17/01/2011 and one regulator remains open managing the base-flow into the Dam. Somerset Dam peaked at 105.11 mAHD at 18:00 on Wednesday 12 January 2011.

At 06:00 Tuesday Wivenhoe Dam was 67.82 mAHD and continuing to fall slowly. Releases were held constant overnight at about $2,050 \mathrm{~m} 3 / \mathrm{s}$ to assist water supply pumping at Lowood. Following discussions with water supply operators, it has been decided to resume closing gates at 09:00 Tuesday before final closure on Thursday morning. The Dam will be near full supply and releases will be made through the regulator to account for ongoing base-flow.

Wivenhoe Dam peaked at 74.97 mAHD at 19:00 on Tuesday 11 January 2011 with a corresponding discharge of $7,450 \mathrm{~m} 3 / \mathrm{s}$.

The combined flood event volume in Somerset and Wivenhoe Dams is estimated to be in excess of 2.6 million megalitres.

It should be noted that the Seqwater water level gauge currently being reported on the BoM website is currently slightly under reading by about 50 mm .

North Pine

At 09:00 North Pine Dam was 39.5 mAHD . All gates are closed. No further gate operations are expected unless additional rainfall falls.

North Pine peaked at 41.11 mAHD at 14:00 on Tuesday 11 January 2011 with a peak release of $2,800 \mathrm{~m} 3 / \mathrm{s}$. The flood event volume is estimated to be around $200,000 \mathrm{ML}$.

Strategy

The Flood Operations Centre is continuing to monitor rainfalls and water levels throughout the Brisbane and Pine River catchments and is maintaining close contact with warning
agencies and local councils. Councils have been informed of the current release strategy.

At 05:00, the Wivenhoe Dam operator reported that the Fernvale Bridge was out of water but water remained over the approaches from Fernvale. He also advised that there were power lines on the bridge and that Energex was advised.

The remaining bridges below Wivenhoe Dam will progressively come out of water over the next few days.

Engineer 2
Duty Engineer
Flood Operations Centre

Important information: This email and any attached information is intended only for the addressee and may contain confidential and/or privileged information. If you are not the addressee, you are notified that any transmission, distribution, or other use of this information is strictly prohibited. The confidentiality attached to this email is not waived, lost or destroyed by reasons of mistaken delivery to you. If you have received this email in error please contact the sender immediately and delete the material from your email system. QLD Bulk Water Supply Authority ABN75450239876 (Trading as Seqwater).

Situation Report 31

Date: Tuesday 18 January 2011
Time: 17:40

From: Duty Engineer
Sent: Tuesday, 18 January 2011 5:40 PM
To: Distribution List
Cc: Distribution List
Subject: FOC Situation Report at 18:00 on Tuesday 18 January 2011

Rainfall

Severe thunderstorms are passing over Wivenhoe, Somerset and North Pine Dams this afternoon. To 17:00 falls of 20 to 30 mm where recorded at isolated locations including Mt Pechey and Kluvers Lookout.

A severe thunderstorm warning remains in place for the Stanley River Valley near Kilcoy.

Somerset/Wivenhoe

At 16:00 Tuesday Somerset Dam was 98.95 mAHD and steady. The last sluice gate was closed at 07:00 17/01/2011 and one regulator remains open managing the base-flow into the Dam. Somerset Dam peaked at 105.11 mAHD at 18:00 on Wednesday 12 January 2011.

At 16:00 Tuesday Wivenhoe Dam was 67.31 mAHD and continuing to fall slowly. Releases were held constant since 15:00 at about $1,450 \mathrm{~m} 3 / \mathrm{s}$ to assist water supply pumping at Lowood. The shutdown sequence is scheduled to re-commence at 03:00 on Wednesday 19 January 2011 morning before final closure on Thursday morning. The Dam will be lowered to 66.5 mAHD (95% capacity) and releases will be made through the regulator to account for ongoing base-flow.

Wivenhoe Dam peaked at 74.97 mAHD at 19:00 on Tuesday 11 January 2011 with a corresponding discharge of $7,450 \mathrm{~m} 3 / \mathrm{s}$.

The combined flood event volume in Somerset and Wivenhoe Dams is estimated to be in excess of 2.6 million megalitres.

It should be noted that the Seqwater water level gauge currently being reported on the BoM website is currently slightly under reading by about 50 mm .

North Pine

At 09:00 North Pine Dam was 39.56 mAHD and rising slowly. All gates are closed. No further gate operations are expected unless additional rainfall falls. This situation will be closely monitored whilst storms remain in the vicinity.

North Pine peaked at 41.11 mAHD at 14:00 on Tuesday 11 January 2011 with a peak release of $2,800 \mathrm{~m} 3 / \mathrm{s}$. The flood event volume is estimated to be around $200,000 \mathrm{ML}$.

Strategy

The Flood Operations Centre is continuing to monitor rainfalls and water levels throughout the Brisbane and Pine River catchments and is maintaining close contact with warning agencies and local councils. Councils have been informed of the current release strategy.

The remaining bridges below Wivenhoe Dam will progressively come out of water over the next few days.

Regards
Engineer 1
Duty Engineer
Flood Operations Centre

Important information: This email and any attached information is intended only for the addressee and may contain confidential and/or privileged information. If you are not the addressee, you are notified that any transmission, distribution, or other use of this information is strictly prohibited. The confidentiality attached to this email is not waived, lost or destroyed by reasons of mistaken delivery to you. If you have received this email in error please contact the sender immediately and delete the material from your email system. QLD Bulk Water Supply Authority ABN75450239876 (Trading as Seqwater).

Situation Repor 32

Date: Wednesday 19 January 2011
Time: 05:28

From: Duty Engineer
Sent: Wednesday, 19 January 2011 5:28 AM
To: Distribution List
Cc: Distribution List)
Subject: FOC Situation Report at 06:00 on Wednesday 19 January 2011

Rainfall

Severe thunderstorms passed over the Wivenhoe, Somerset and North Pine dam catchments yesterday afternoon and evening. Falls of 20 mm to 30 mm where recorded at isolated locations.

North Pine

A decision was made at 1900 yesterday to drain the dam down to 39.40 m AHD overnight to cater for the inflow resulting from yesterday's storms and ensure that Youngs Crossing remains open during the day today. All gates were closed at 0500 today and a fish recovery operation also commenced at this time. Youngs Crossing will be reopened by the MBRC at around 0700. The dam level will rise slowly during the day and further releases may be required again tonight with more rainfall forecast. The current lake level is 39.42 m AHD.

Somerset Dam

All regulators were closed at 2000 yesterday. The dam level is currently 98.95 m AHD and rising slowly. Further regulator releases will take place today and again over the next few days to maintain the dam at the full supply level. Somerset Dam peaked at 105.11 mAHD at 18:00 on Wednesday 12 January 2011; all sluice gates were closed on Monday 17 January 2011.

Wivenhoe Dam

The Lowood temporary pump station was relocated at 2100 yesterday. This relocation removed the need to continue high flow releases from the dam to ensure treated water supplies to Lowood are maintained. Discussions with BCC last night also concluded that tidal variations are primarily back to normal patterns and having a greater impact on the foundation conditions of Coronation Drive than the tapering of releases from the dam. Accordingly the radial gate close down sequence recommenced at 21:45 last night and all gates will be closed by 1600 today. The dam level when the last gate is closed will be around 66.90 m AHD and a fish recovery operation will continue through most of the day during the close down sequence. Releases will continue through the regulator cone valve and possibly the Mini-Hydro (depending on when it can be re-started) to account for ongoing base-flow once all radial gates are closed.

Wivenhoe Dam peaked at 74.97 mAHD at 19:00 on Tuesday 11 January 2011 with a corresponding discharge of $7,450 \mathrm{~m} 3 / \mathrm{s}$. The combined flood event volume in Somerset and Wivenhoe Dams is estimated to be in excess of 2.6 million megalitres. It should be
noted that the Seqwater water level gauge currently being reported on the BoM website is currently slightly under reading by about 50 mm .

Strategy

The Flood Operations Centre is continuing to monitor rainfalls and water levels throughout the Brisbane and Pine River catchments and is maintaining close contact with warning agencies and local councils. Councils have been informed of the current release strategy. A summary of the bridge status along the Brisbane River between Wivenhoe Dam and Moggill is as follows, with the exact timing of water coming clear of bridges depending on how the radial gate close down sequence progresses during the day:

- Water is clear of Fernvale Bridge and Mt Crosby Weir Bridge.
- Water should be clear of Burtons Bridge, Kholo Bridge and Savages Crossing tonight.
- Water should be clear of Colleges Crossing tomorrow.
- It is not yet certain when water will be clear of Twin Bridges as this will depend on base flow draining requirements and a decision will be made on this later today. The earliest that Twin Bridges would be clear of water is late this afternoon.

Engineer 4
 Duty Engineer
 Flood Operations Centre

Important information: This email and any attached information is intended only for the addressee and may contain confidential and/or privileged information. If you are not the addressee, you are notified that any transmission, distribution, or other use of this information is strictly prohibited. The confidentiality attached to this email is not waived, lost or destroyed by reasons of mistaken delivery to you. If you have received this email in error please contact the sender immediately and delete the material from your email system. QLD Bulk Water Supply Authority ABN75450239876 (Trading as Seqwater).

Situation Report 33

Date: Wednesday 19 January 2011
Time: 13:45

From: Duty Engineer
Sent: Wednesday, 19 January 2011 1:45 PM
To: Distribution List
Subject: Situation Report 1345 Wednesday 2011

Rainfall

No significant rainfall has been recorded in Wivenhoe, Somerset and North Pine dam catchments since 0900 Thursday. The forecast rainfall indicates that falls between 15 to 25 mm with isolated heavier falls to 50 mm are expected in the next 24 hours.

North Pine

A decision was made at 1900 Wednesday to drain the dam down to 39.40 m AHD overnight to cater for the inflow resulting from Wednesday's storms and ensure that Youngs Crossing remains open during the day Thursday. All gates were closed at 0500 Thursday and a fish recovery operation also commenced at this time. Youngs Crossing was expected to be reopened by the MBRC at around 0700 . The dam level will rise slowly during the day and further releases may be required again tonight with more rainfall forecast. The lake level was 39.43 m AHD at 0700 .

Somerset Dam

All regulators were closed at 2000 Wednesday. The dam level was 99.00 m AHD at 0700 Thursday and rising slowly. Further regulator releases may take place over the next few days to maintain the dam at the full supply level. Somerset Dam peaked at 105.11 mAHD at 18:00 on Wednesday 12 January 2011; all sluice gates were closed on Monday 17 January 2011.

Wivenhoe Dam

All gates were closed at Wivenhoe at 1200 Thursday, with the dam level at 66.89 m AHD at 1300. Following fish recovery and inspections, minor ongoing releases will be made for through the centre gate to account for ongoing small inflows. It is intended to drain down to 95%, approximately 66.5 m AHD.

Wivenhoe Dam peaked at 74.97 mAHD at 19:00 on Tuesday 11 January 2011 with a corresponding discharge of $7,450 \mathrm{~m} 3 / \mathrm{s}$. The combined flood event volume in Somerset and Wivenhoe Dams is estimated to be in excess of 2.6 million megalitres.

Strategy

A summary of the bridge status along the Brisbane River between Wivenhoe Dam and Moggill is as follows, with the exact timing of water coming clear of bridges depending on how the radial gate close down sequence progresses during the day:

- Water is clear of Fernvale Bridge and Mt Crosby Weir Bridge.
- Water should be clear of Burtons Bridge, Kholo Bridge and Savages Crossing tonight.
- Water should be clear of Colleges Crossing tomorrow.
- It is not yet certain when water will be clear of Twin Bridges as this will depend on base flow draining requirements and a decision will be made on this later Thursday.

The Flood Operations Centre is now closed and control of the dams has reverted to normal Seqwater operations. However, the FOC will continue to monitor rainfalls and water levels throughout the Brisbane and Pine River catchments.

Engineer 2
Duty Engineer
Flood Operations Centre

Important information: This email and any attached information is intended only for the addressee and may contain confidential and/or privileged information. If you are not the addressee, you are notified that any transmission, distribution, or other use of this information is strictly prohibited. The confidentiality attached to this email is not waived, lost or destroyed by reasons of mistaken delivery to you. If you have received this email in error please contact the sender immediately and delete the material from your email system. QLD Bulk Water Supply Authority ABN75450239876 (Trading as Seqwater).

APPENDIX F - COMMUNICATION PROTOCOL TECHNICAL SITUATION REPORTS

Technical Situation Report 1

Date: Monday 27 December 2010
Time: 08:14

The Flood Centre will keep you informed or leave messages on your phones.
Below is the current strategy.
Any comments or assessments let me know.

Rainfall

Reasonably significant rainfalls in the order of 40 to 50 mm have been experienced in the dam catchments in the last 24 hours, but the rainfall has only been in the order of 5 to 10 mm in the last 6 hours. The QPF issued at 1600 yesterday was for 50 to 100 mm and the severe weather warning associated with possible widespread rainfall in the dam catchments remains current and was re-issued by BOM at 0445 today. The current BOM forecast is:

Monday 27 December Rain periods
Tuesday 28 December Rain at times
Wednesday 29 December Rain at times
Thursday 30 December Shower or two
Friday 31 December Fine
Saturday 31 December Fine
Sunday 1 January Fine
With the current wet catchments, there is a high probability that the forecast rain will result in further flood releases from the dams over the coming week.

Somerset Dam

Two regulators were opened yesterday morning, to provide a release of $12000 \mathrm{ML} /$ day. Since that time the lake has continued to rise steadily to currently be around 99.60 m or 600 mm above the full supply level. Another regulator was opened this morning. Further gate operations may be necessary today if forecast rainfall results in subsequent river rises. Draining will take at least until Wednesday. The next update will be provided at around 1200 today.

Currently at 107.7% with $30,000 \mathrm{ML}$ over FSL.

Wivenhoe Dam

Radial Gate operations recommenced yesterday at 0900 and since that time the lake has risen steadily to currently be around 67.57 m or 570 mm above the full supply level. Because of outflows from Lockyer Creek, outflows from Wivenhoe Dam have been steadily reduced during the night to ensure Burtons Bridge remained open (current river levels have water at Burtons Bridge deck level and falling slowly). Radial gates at Wivenhoe Dam are being progressively wound back this morning as the Lockyer Creek outflows into the Brisbane River increase above 250 cumecs. This will keep Burtons Bridge open until late this afternoon. However it is anticipated that Lockyer Creek

APPENDIX F - COMMUNICATION PROTOCOL TECHNICAL SITUATION REPORTS

outflows will peak above 500 cumecs later today or early tomorrow and these flows will inundate Burtons Bridge. As this occurs, outflows from Wivenhoe Dam will be increased to drain the lake to near full supply level. Draining will take at least until Thursday. Further gate operations may be necessary in coming days if forecast rainfall results in subsequent river rises.

Wivenhoe is around 105.6% and $65,000 \mathrm{ML}$ over FSL.

Impacts of Wivenhoe Dam Releases

Twin Bridges, Savages Crossing and Colleges Crossing are currently closed and will remain so until at least Thursday. Burtons Bridge is currently open, but will be closed late today or early tomorrow and is likely to remain closed until at least Wednesday. However, the length of time that Burtons Bridge will be closed is dependant upon the rainfall experienced over the next several days. Kholo Bridge remains unserviceable due to flood damage. There is no current expectation that either Mt Crosby Weir Bridge or Fernvale Bridge will be impacted by the current event.

An updated estimate of the time of closure of Burtons Bridge this afternoon will be provided to Council, but at this stage it is not expected to be before 1600 today. This may change as rainfall is experienced during the day.

Tide levels in Brisbane are decreasing generally so Wivenhoe releases should have minimal impact.

Dam Operations Manager
Water Delivery
Queensland Bulk Water Supply Authority trading as Seqwater

APPENDIX F - COMMUNICATION PROTOCOL TECHNICAL SITUATION REPORTS

Technical Situation Report 2

Date: Tuesday 28 December 2010
Time: 07:12

The Flood Centre will keep you informed or leave messages on your phones.
Below is the current strategy.
Any comments or assessments let me know.
Basically with all the rain in the Lockyer we have not ramped up until it peaks and starts to drop to ensure there is no impact on Fernvale or Mt Crosby bridges.
This should still be later today as the Lockyer starts to drop.

Rainfall

Rainfalls in the order of 20 to 40 mm have been experienced in the dam catchments in the last 24 hours, but the rainfall has only been in the order of 5 mm in the last 12 hours. The QPF issued at 1600 yesterday was reduced to 25 to 35 mm and the severe weather warning associated with possible widespread rainfall in the dam catchments is no longer current. The current BOM forecast is:

Tuesday 28 December Shower or two.
Wednesday 29 December Shower or two.
Thursday 30 December Fine.
Friday 31 December Fine
Saturday 31 December Mostly Fine
Sunday 1 January Few showers
Monday 27 December Showers
Although the dam catchments are saturated, BOM forecasts are currently indicating that dam inflows have peaked for the current event.

North Pine Dam - Just FYI

A flood release commenced at 2000 on Sunday 26 December 2010 and is now likely to continue until 0500 on Wednesday 29 December 2010 (tomorrow morning). This will allow Youngs Crossing to reopen by 0700 on Wednesday. Current outflows from Lake Kurwongbah would also be sufficient to inundate Youngs Crossing, regardless of releases from North Pine Dam, but these outflows should also subside by Wednesday morning. The current level in North Pine Dam is around 39.72 m AHD and falling, with all gates currently open. The situation will be reviewed throughout today, with the next update to be provided at around 1600 today.

Somerset Dam

A flood release through the regulator cone valves at the dam commenced at 0900 on Sunday 26 December 2010. The current release rate is $18000 \mathrm{ML} / \mathrm{day}$. Since commencing the release the lake has continued to rise steadily to currently be around 99.96 m AHD or 960 mm above the full supply level. Inflows into the dam are subsiding and unless further rainfall in the dam catchment is experienced, the lake will soon start to

APPENDIX F - COMMUNICATION PROTOCOL TECHNICAL SITUATION REPORTS

fall slowly to be back near the dam full supply level by Thursday. Sluice gate operations will commence this morning as Wivenhoe levels are approaching the point at which the regulator cone valves should not be used due to back water impacts. The total volume of water released since the release commenced on 26 December 2010 is $37,000 \mathrm{ML}$, with the current projected total release volume for this event being $80,000 \mathrm{ML}$.

Wivenhoe Dam

Radial Gate operations for the current event commenced at 0900 on Sunday 26 December 2010. After scaling up to an initial release rate of $30,000 \mathrm{ML}$ /day, the release was scaled back yesterday to the minimum radial gate release rate of $4,000 \mathrm{ML} /$ day to ensure that Burtons Bridge remained open until yesterday afternoon and to reduce flooding impacts in the Brisbane River caused by oufflows into the river from Lockyer Creek. The current release rate remains at $4,000 \mathrm{ML}$ /day, but will be scaled up later today as Lockyer Creek flows subside. The current lake level is 68.55 m AHD or 1550 mm above the full supply level. Inflows into the dam are subsiding and unless further rainfall in the dam catchment is experienced, the lake will fall slowly once to release rate is scaled up, for the level to be back near the dam full supply level by around Sunday. The total volume of water released since the release commenced on 26 December 2010 is $28,000 \mathrm{ML}$, with the current projected total release volume for this event being in the order of $375,000 \mathrm{ML}$ (includes inflows from Somerset Dam).

Impacts of Wivenhoe Dam Releases

Twin Bridges, Savages Crossing, Colleges Crossing, Burtons Bridge and Kholo Bridge are currently closed and will remain so until at least Friday. There is no current expectation that either Mt Crosby Weir Bridge or Fernvale Bridge will be impacted by the current event, but Lockyer Creek outflows are being closely monitored and will come close to impacting upon the Mt Crosby Weir Bridge. An updated estimate of the likely time of opening of Burtons Bridge will be provided tomorrow.

Tide levels in Brisbane are decreasing generally so Wivenhoe releases should have minimal impact. BoM advice confirms this. Impacts from Bremer and other inflows should have mostly passed by the time any release from Wivenhoe gets to downstream river reaches.

[^10]
APPENDIX F - COMMUUNICATION PROTOCOL TECHNICAL SITUATION REPORTS

Technical Situation Report 3

Date: Wednesday 29 December 2010
Time: 07:16

The Flood Centre will keep you informed or leave messages on your phones.
Below is the current strategy.
Any comments or assessments let me know.

Rainfall

No rainfall has fallen in the past 12 hours to 0600 Wednesday with the exception of 2-4 mm in the upper Somerset Dam catchment.
The rainfall forecast issued by BOM at 1600 Tuesday indicated only $3-5 \mathrm{~mm}$ in the Somerset and Wivenhoe catchments and $5-10 \mathrm{~mm}$ in the North Pine catchment for the next 24 hours. The current BOM forecast for SE Qld over the next few days is mostly fine with a few showers

However, catchments remain saturated and are primed for additional runoff in the event of rain.

Somerset Dam

A flood release through the regulator cone valves at the dam commenced at 0900 on Sunday 26 December 2010. Early Tuesday the regulators were closed and sluices progressively opened throughout the day. At 1800 Tuesday 2 sluices were open, releasing about $35,000 \mathrm{ML} /$ day into Wivenhoe. A further two sluice gates where opened overnight in an attempt to bring the lake level down to 99.75 to enable recreational use of Somerset water activities to resume on Wednesday. At 1800, the lake level was 99.83 m AHD and falling slowly. Two sluice gates will be closed by 12:00 29/12/2010 and two sluice gates are expected to remain open until Thursday and will be closed when the lake returns to the full supply level of 99 m AHD. The total volume of water released since the event commenced on 26 December 2010 is $66,000 \mathrm{ML}$, with the current projected total release volume for this event approaching $110,000 \mathrm{ML}$.

Wivenhoe Dam

Radial gate operations for the current event commenced at 0900 on Sunday 26 December 2010. After scaling up to an initial release rate of $30,000 \mathrm{ML} / \mathrm{day}$, the release was scaled back Monday to the minimum radial gate release rate of $4,000 \mathrm{ML} / \mathrm{day}$ to ensure that Burtons Bridge remained open and to reduce flooding impacts in the Brisbane River caused by flows from Lockyer Creek. Lockyer Ck outflow peaked at midday Tuesday and Wivenhoe gates were commenced to be re-opened at 1500 Tuesday, releasing on the back of the Lockyer recession. It is intended to gradually increase the Wivenhoe releases during Tuesday and Wednesday so that the combined release and Lockyer flow is maintained at about $1600 \mathrm{~m} 3 / \mathrm{s}(140,000 \mathrm{ML} /$ day $)$ in the mid Brisbane R. Note this is similar to the flows in the mid Brisbane in mid October and mid December 2010. This will be maintained until at least Saturday when it is expected that shut down procedure will commence. Gate closure sequencing will be such that the releases will mimic the natural pre-dam flows.

APPENDIX F - COMMUNICATION PROTOCOL TECHNICAL SITUATION REPORTS

At 0600, the Wivenhoe water level was 69.26 m AHD and rising slowly with the current release rate at $60,000 \mathrm{ML} /$ day. Inflows into the dam are subsiding and the lake will fall slowly once the release rate is scaled up 130,000 ML/day during Wednesday. It is aimed to return the dam to full supply level by Sunday. The total volume of water released since the event commenced on 26 December 2010 is $56,000 \mathrm{ML}$, with the current projected total release volume for this event being in the order of $385,000 \mathrm{ML}$ (includes inflows from Somerset Dam).

Impacts of Wivenhoe Dam Releases

Twin Bridges, Savages Crossing, Colleges Crossing, Burtons Bridge and Kholo Bridge are currently closed and will remain so until at least Sunday. There is no current expectation that either Mt Crosby Weir Bridge or Fernvale Bridge will be impacted by the current event. At this stage, it is estimated that the flow at Burtons Bridge will fall below the bridge deck on Sunday morning.

Tide levels in Brisbane are decreasing generally so Wivenhoe releases should have minimal impact. BoM advice confirms this. Impacts from Bremer and other inflows should have mostly passed by the time any release from Wivenhoe gets to downstream river reaches.

Dam Operations Manager
Water Delivery
Queensland Bulk Water Supply Authority trading as Seqwater

APPENDIX F - COMMUNICATION PROTOCOL TECHNICAL SITUATION REPORTS
 (continued)

Technical Situation Report 4

Date: Thursday 30 December 2010
Time: 07:03

The Flood Centre will keep you informed or leave messages on your phones.
Below is the current strategy.
Any comments or assessments let me know.

Rainfall

There has been no significant rainfall in the North Pine, Somerset and Wivenhoe catchments since 09:00 on Wednesday 29 December 2010. The current BOM forecast for SE QId over the next few days is mostly fine with a few light showers, although there is a chance of storms on Tuesday and Wednesday next week.

The catchments remain saturated and are primed for additional runoff in the event of rain.

Somerset Dam

At 06:00 Thursday 30 December 2010, two sluices remain open, releasing about 35,000 ML / d into Lake Wivenhoe and are expected to remain open until Thursday afternoon when the lake returns to the full supply level of 99.00 m AHD. The total volume of water released since the event commenced on 26 December 2010 is $104,000 \mathrm{ML}$, with the current projected total release volume for this event approaching $123,000 \mathrm{ML}$.

Wivenhoe Dam

Releases were gradually increased during Wednesday and Thursday morning until the combined release and Lockyer flow reached about 1,600m3/s (140,000 ML/d) in the middle Brisbane River. (Note this is similar to the flows in the releases made in midOctober and earlier in December 2010). This release will be maintained until mid-day Friday 31 December 2010, when the shut down procedure will commence and gates are expected to be fully closed by Sunday morning 2 January 2010. The proposed gate closure sequence will be such that the releases will mimic the natural pre-dam recessional flows.

Gauge board readings indicate that the Wivenhoe dam water level peaked at 69.33 m at noon Wednesday 29 December 2010, about 2.3 m above the full supply level. At this level, the dam was temporarily storing over $270,000 \mathrm{ML}$ of flood water. At 06:00 on Thursday 30 December 2010, the level had fallen slightly to 69.07 m AHD and was releasing about $1,530 \mathrm{~m} 3 / \mathrm{s}(132,000 \mathrm{ML} / \mathrm{d})$. The total volume of water released from Wivenhoe dam since the event commenced on 26 December 2010 is $160,000 \mathrm{ML}$, with the current projected total release volume for this event being in the order of $425,000 \mathrm{ML}$ (includes inflows from Somerset Dam).

Impacts of Wivenhoe Dam Releases

Twin Bridges, Savages Crossing, Colleges Crossing, Burtons Bridge and Kholo Bridge are currently closed due to inundation and will remain so until at least Sunday 2 January

APPENDIX F - COMMUNICATION PROTOCOL TECHNICAL SITUATION REPORTS

2011. There is no current expectation that either Mt Crosby Weir Bridge or Fernvale Bridge will be impacted by this event. At this stage, it is estimated that the flow at Burtons Bridge will fall below the bridge deck on Sunday morning.
Wivenhoe releases should have minimal impact on tides based on planned releases. BoM advice confirmed this earlier in the week. Impacts from Bremer and other inflows should have mostly passed by the time any release from Wivenhoe gets to downstream river reaches.

Dam Operations Manager
Water Delivery
Queensland Bulk Water Supply Authority trading as Seqwater

APPENDIX F - COMMUNICATION PROTOCOL TECHNICAL SITUATION REPORTS
 (continued)

Technical Situation Report 5

Date: Friday 31 December 2010
Time: 06:51

The Flood Centre will keep you informed or leave messages on your phones of any issues or major changes.

Below is the current strategy.
Any comments or assessments let me know.

Rainfall

There has been no significant rainfall in the North Pine, Somerset and Wivenhoe catchments since 0900 on Wednesday 29 December 2010. The current BOM forecast for SE QId over the next few days is mostly fine with a few light showers, although there is a chance of storms on Tuesday and Wednesday next week.

The catchments remain wet and are likely to generate additional runoff in the event of rain.

Somerset Dam

At 0500 on Friday 31 December 2010, the lake level was 99.01 m AHD falling from a peak of 100.0 m AHD reached around noon Tuesday 28 December 2010. Two regulators are currently operating and will remain open until the lake returns to the full supply level of 99.00 m AHD. The total volume of water released since the event commenced on 26 December 2010 is $126,000 \mathrm{ML}$, with the current projected total release volume for this event approaching $130,000 \mathrm{ML}$.

Wivenhoe Dam

Releases were gradually increased during Wednesday and Thursday morning until the combined release and Lockyer flow reached about $1,600 \mathrm{~m} 3 / \mathrm{s}(140,000 \mathrm{ML} / \mathrm{d})$ in the middle Brisbane River. (Note this is similar to the flows in the releases made in midOctober and earlier in December 2010). Flow measurement carried out by the Department of Environment and Heritage during Thursday has confirmed this flow. This release will be maintained until late Friday 31 December 2010, when the shut down procedure will commence and gates are expected to be fully closed by Sunday 2 January 2010. The proposed gate closure sequence will be such that the releases will mimic the natural pre-dam recessional flows.

Gauge board readings indicate that the Wivenhoe dam water level peaked at 69.33 m at noon Wednesday 29 December 2010, about 2.3 m above the full supply level. At this level, the dam was temporarily storing over $270,000 \mathrm{ML}$ of flood water. At 0500 on Friday 31 December 2010, the level had fallen slightly to 68.40 m AHD and was releasing about $1,550 \mathrm{~m} 3 / \mathrm{s}(132,000 \mathrm{ML} / \mathrm{d})$. The total volume of water released from Wivenhoe dam since the event commenced on 26 December 2010 is $293,000 \mathrm{ML}$, with the current projected total release volume for this event being in the order of $450,000 \mathrm{ML}$ (includes inflows from Somerset Dam).

APPENDIX F - COMMUNICATION PROTOCOL TECHNICAL SITUATION REPORTS

Impacts of Wivenhoe Dam Releases

Twin Bridges, Savages Crossing, Colleges Crossing, Burtons Bridge and Kholo Bridge are currently closed due to inundation and will remain so until at least Sunday 2 January 2011. There is no current expectation that either Mt Crosby Weir Bridge or Fernvale Bridge will be impacted by this event. At this stage, it is estimated that the flow at Burtons Bridge will fall below the bridge deck on Sunday morning.

Wivenhoe releases should have minimal impact on tides based on planned releases. BoM advice confirmed this earlier in the week. Impacts from Bremer and other inflows should have mostly passed by the time any release from Wivenhoe gets to downstream river reaches.

Dam Operations Manager
Water Delivery
Queensland Bulk Water Supply Authority trading as Seqwater

APPENDIX F - COMMUUNICATION PROTOCOL TECHNICAL SITUATION REPORTS

Technical Situation Report 6

Date: Sunday 2 January 2011
Time: 09:37

This is the last update.
Let me know of any issues.

Many thanks for everyone's support.

Rainfall

There has been light falls of up to 30 mm in the North Pine and Somerset Dam catchments in the 24 hours to 06:00 Sunday 2 January 2011 which has resulted in some runoff in the Stanley and Pine Rivers. The current BOM forecast for SE Qld over the next week is for light showers, although there is a chance of storms on Wednesday and Thursday next week.

The catchments remain wet and are likely to generate additional runoff in the event of rain.

Somerset Dam

The rain in the Stanley River catchment has produced minor inflows and one regulator is partially open, managing the small inflows.

At 07:30 on Sunday 2 January 2010, the lake level was EL 99.10m AHD and rising slowly. The peak of the event occurred around noon on Tuesday 28 December 2010 with a level of EL 100.0 m . The total volume of water released since the event commenced on 26 December 2010 is $135,000 \mathrm{ML}$.

Wivenhoe Dam

At 09:00 on Sunday 2 January 2011, Wivenhoe Dam level was EL 67.10 m and gates are fully closed and fish recovery has commenced. Upon completion of this operation, a regulator will be fully opened to manage continuing low inflows to the dam.

The total volume of water released from Wivenhoe dam since the event commenced on 26 December 2010 is 480,000 ML (includes inflows from Somerset Dam).

Impacts of Wivenhoe Dam Releases

Somerset Regional, Ipswich City and Brisbane City Councils have been advised of the closure.

It is expected that the flow in the mid Brisbane R will fall below Burtons Bridge on Sunday morning and below Colleges Crossing by Monday morning. Twin Bridge will continue to be impact by the continuing low releases for several days.

APPENDIX F - COMMUNICATION PROTOCOL TECHNICAL SITUATION REPORTS

Technical Situation Report 7

Date: Thursday 6 January 2011
Time: 12:16

The Flood Centre will keep you informed or leave messages on your phones.
Below is the current strategy.
Any comments or assessments let me know.

Rainfall

Since 9am Wednesday, there have been widespread falls of 30 mm with isolated heavy falls up to 50 mm in the Somerset and Wivenhoe catchments. Totals in the North Pine catchment have generally been below 10 mm . Falls up to 60 mm were recorded in the Leslie Harrison catchment.

The forecast for the next 24 to 48 hours is for totals up to 150 mm in SE Qld.
The catchments remain wet and are likely to generate additional runoff in the event of rain.

North Pine Dam

At 0700 Thursday, North Pine Dam was $39.60 \mathrm{~m}, 0.05 \mathrm{~m}$ below gate trigger level and having risen 0.18 m since $2 / 1 / 2011$ due to a combination of baseflow and runoff from rain in the last 24 hours.

Given the forecast rain, gate operations will commence tonight. MBRC will be advised this morning

Somerset Dam

At 0700 Thursday, Somerset Dam was $99.34 \mathrm{~m}, 0.34 \mathrm{~m}$ above FSL, and rising slowly. The rain in the Stanley River catchment has produced a small amount of runoff in the upper Stanley but there have been significant rises in Kilcoy Ck. Further regulator operations will be required later Thursday.

Wivenhoe Dam

At 0700 Thursday, Wivenhoe Dam was 67.31 m and rising slowly. This is 0.31 m above FSL and above the gate trigger level of 67.25 m . There have been rises recorded at rivers and stream upstream of Wivenhoe Dam. Gates will be opened in the next 24 hours to manage the inflows from the upper Brisbane River and the outflow from Somerset.

Impacts of Wivenhoe Dam Releases

Based upon rain to date, expecting about 70,000ML from upper Brisbane. Lockyer Ck peak of about $100 \mathrm{~m} 3 / \mathrm{s}$ Friday afternoon. This will take out Twin Bridges and nearly inundate Savages Crossing. Colleges Crossing could be taken out by a combined Lockyer and local runoff.

APPENDIX F - COMMUNICATION PROTOCOL TECHNICAL SITUATION REPORTS

Current strategy is to keep Burton Bridge free. On this basis, we will commence opening Wivenhoe at 1800 Thursday and ramp up to about $300 \mathrm{~m} 3 / \mathrm{s}$ by 2200 . This would limit mid Brisbane flows to just under $400 \mathrm{~m} 3 / \mathrm{s}$ (Burtons capacity $450 \mathrm{~m} 3 / \mathrm{s}$).
If rainfall increases and Lockyer and local runoff also increase, we can close/reduce Wivenhoe accordingly to ensure that that $450 \mathrm{~m} 3 / \mathrm{s}$ is not exceeded unless necessary.

Councils have been advised of this strategy and are contacting residents
Dam Operations Manager
Water Delivery
Queensland Bulk Water Supply Authority trading as Seqwater

APPENDIX F - COMMUNICATION PROTOCOL TECHNICAL SITUATION REPORTS

Technical Situation Report 8

Date: Saturday 8 January 2011
Time: 07:51

The Flood Centre will keep you informed or leave messages on your phones. Give them a call if you need further information.

Below is the current strategy.
Any comments or assessments let me know.

Rainfall

Since 0900 Friday, there has been widespread 20 to 40 mm throughout North Pine, Somerset and Wivenhoe catchments with isolated higher totals of 70 mm in the upper reaches of the Brisbane R. No significant rain has fallen in the past 12 hours.

Advice from BoM indicates that SE Qld can expect further high rainfall totals over the next 4 days.

Saturday: Rain light at times $5-50 \mathrm{~mm}$ with higher falls along the coast
Sunday: Widespread rain with totals between $50-100 \mathrm{~mm}$
Monday: Widespread rain again with totals between $50-100 \mathrm{~mm}$
Tuesday: \quad Rain easing with totals between $25-50 \mathrm{~mm}$
Given the saturated conditions of the catchments, significant inflows to Seqwater dams will be generated, especially following the forecast rainfall on Sunday/Monday.

North Pine (Full Supply Level 39.60 m AHD)

At 0600 Saturday, North Pine Lake Level was 39.46 m AHD and slowly rising. Currently 3 gates are open to release runoff from rain on Wed/Thursday/Friday. Given the very high likelihood of significant runoff during the next 4 days, gates will be keep open to match inflows over the next few days, rather than opening and closing at various times with short notice. Youngs Crossing will remain adversely impacted for the duration of the gates being open. Moreton Bay Regional Council has been advised and concurs with this strategy.

Somerset (Full Supply Level 99.00 m AHD)

At 0500 Saturday, Somerset Dam level was 100.42 m AHD and rising. The Dam is releasing into Wivenhoe through one open sluice gate. Water will be temporarily held in Somerset to allow the inflow from the upper Brisbane is passed through the system. However, this strategy may need to be reviewed if significant runoff occurs in the Stanley and Upper Brisbane. Under circumstances of high inflows to Somerset and Wivenhoe, it is the usual practice to hold flood water in Somerset until there is a high level of confidence in the estimated inflows to Wivenhoe.

Since the commencement of the event on 02/01/2011, approximately $85,000 \mathrm{ML}$ has flowed into Somerset Dam with a further 20,000ML expected based on the recorded rainfall to date. Approximately $25,000 \mathrm{ML}$ has been released into Wivenhoe.

APPENDIX F - COMMUNICATION PROTOCOL TECHNICAL SITUATION REPORTS

Wivenhoe (Full Supply Level 67.00 m AHD)

At 0600 Saturday, Wivenhoe Dam was 68.45 m AHD and rising steadily with all five gates open and releasing about $890 \mathrm{~m} 3 / \mathrm{s}$. River levels upstream of Wivenhoe Dam were rising again, generating further inflow to the dam It is intended to ramp up the release from Wivenhoe to $1,200 \mathrm{~m} 3 / \mathrm{s}$ by midday Saturday $08 / 01 / 2011$. Further assessments will be undertaken to determine increases above this level. However, given the high likelihood of significant inflows in the next week, this may be increased.

Since the commencement of the event on 02/01/2011, approximately 200,000ML has flowed into Wivenhoe Dam (including Somerset releases) with a further 180,000ML expected based on the recorded rainfall to date. Approximately $50,000 \mathrm{ML}$ has been released from Wivenhoe via the hydro and regulator at about $50 \mathrm{~m} 3 / \mathrm{s}$.

Impacts downstream of Wivenhoe

The projected Wivenhoe release of $1,200 \mathrm{~m} 3 / \mathrm{s}$ combined with Lockyer flows and local runoff will mean that all crossings downstream of Wivenhoe (Twin Bridges, Savages Crossing, Burtons Bridge, Kholo Bridge and Colleges Crossing) will be adversely impacted for several days. At this stage Fernvale and Mt Crosby Weir Bridge are not expected to be affected but they could potentially be affected if the predicted rainfall totals eventuate.

The current available assessments indicate that the combined flow in the lower Brisbane R would only add 50 mm to an upper limit of 100 mm to the recorded water levels in the City Reach of the Brisbane River. However, it is noted that tides in the lower Brisbane R will be 0.4 to 0.5 metres higher than predicted tides

Somerset Regional, Ipswich City and Brisbane City Councils have been advised of the Wivenhoe operating strategy.

Dam Operations Manager
Water Delivery
Queensland Bulk Water Supply Authority trading as Seqwater

APPENDIX F - COMMUNICATION PROTOCOL TECHNICAL SITUATION REPORTS
 (continued)

Technical Situation Report 9

Date: Sunday 9 January 2011
Time: 07:32

The Flood Centre will keep you informed or leave messages on your phones. Give them a call if you need further information.

Below is the current strategy.
Any comments or assessments let me know.

Rainfall

Catchment average rainfall for the past 12 hours is; North Pine Dam (less than 10 mm); Somerset Dam (40 mm); Wivenhoe Dam (less than 10 mm). The bulk of the rain that has fallen in the Somerset Dam catchment has occurred in the last two hours, with recorded falls exceeding 60 mm in some areas. The BOM forecast for the next seven days issued at 0450 this morning is:-

Sunday:	Rain periods.
Monday:	Rain periods.
Tuesday:	Rain periods.
Wednesday	A few showers.
Thursday	A shower or two.
Friday	A shower or two.
Saturday	Mostly fine.

A severe whether warning remains current for heavy rainfall in the dam catchment areas. The dam catchments are relatively saturated and significant inflows will be generated if the forecast rainfall eventuates.

North Pine Dam (Full Supply Level 39.60 m AHD)

The dam level is currently 39.47 m AHD and steady. Two radial gates remain open to release runoff generated from recent rainfall. Based on rainfall forecasts, the radial gates have been kept open in anticipation of further inflows over the next few days. However unless significant rain falls today, consideration will be given to closing the gates late this afternoon or early tomorrow morning and discussions to finalise a decision on the timing of radial gate closure will be held with the Moreton Bay Regional Council later today. Youngs crossing will remain closed while releases are in progress.

Somerset Dam (Full Supply Level 99.00 m AHD)

The dam level is currently falling slowly, with the current level being 100.27 m AHD. However the rain that has fallen in the dam catchment over the last two hours (recorded falls exceed 60 mm in some areas) will result in significant inflows later today. The current release rate into Wivenhoe Dam is $35,000 \mathrm{ML} / \mathrm{day}$. Since the commencement of the event on 02/01/2011 approximately $56,000 \mathrm{ML}$ has been released from the dam, with a total of at least $150,000 \mathrm{ML}$ to be released based on the currently recorded rainfall. The total release for the event is likely to increase significantly over the next few days based on the current rainfall forecasts. At this stage, releases will continue until at least Tuesday.

APPENDIX F - COMMUNICATION PROTOCOL TECHNICAL SITUATION REPORTS

Wivenhoe Dam (Full Supply Level 67.00 m AHD)

The dam level is currently falling slowly, with the current level being 68.58 m AHD. River levels upstream of the dam are receding, however further inflows will result from any additional rainfall. The current gate operation strategy will maintain flows of around $1,600 \mathrm{~m}^{3} / \mathrm{s}$ in the mid-Brisbane River. The current release rate from Wivenhoe Dam is $116,000 \mathrm{ML} / \mathrm{day}$. Since the commencement of the event on 02/01/2011approximately $150,000 \mathrm{ML}$ has been released from the dam, with a total of at least $450,000 \mathrm{ML}$ to be released based on the currently recorded rainfall. The total release for the event is likely to increase over the next few days based on the current rainfall forecasts. At this stage, releases will continue until at least Wednesday.

Impacts downstream of Wivenhoe Dam

The current Wivenhoe Dam release combined with Lockyer flows and local runoff will mean that all low level crossings downstream of Wivenhoe (Twin Bridges, Savages Crossing, Burtons Bridge, Kholo Bridge and Colleges Crossing) will be adversely impacted until at least Wednesday 12 January. At this stage Fernvale and Mt Crosby Weir Bridge are not expected to be affected, but this may be revised if the predicted rainfall totals eventuate and higher releases from Wivenhoe Dam are considered necessary.

Somerset Regional, Ipswich City and Brisbane City Councils have been advised of the Wivenhoe operating strategy.

The current available assessments indicate that the combined flow in the lower Brisbane R would only add 50 mm to an upper limit of 100 mm to the recorded water levels in the City Reach of the Brisbane River. However, it is noted that tides in the lower Brisbane R will be 0.4 to 0.5 metres higher than predicted tides

Dam Operations Manager
Water Delivery
Queensland Bulk Water Supply Authority trading as Seqwater

APPENDIX F - COMMMUNICATION PROTOCOL TECHNICAL SITUATION REPORTS
 (conlmued)

Technical Situation Report 10

Date: Monday 10 January 2011
Time: 06:23

The Flood Centre has kept you informed (and discussed with the BCC Flood Centre) of where we are at but below is a summary as at 1 am this morning.

I will send off another Technical Report this morning so if you have any assessments or actions you are undertaking that you want included send them in.

Rainfall

Very heavy rainfall has been recorded in the Upper Brisbane and Stanley Rivers in the last 12 hours with totals up 100 to 240 mm . Totals for the last 24 hours range from 100 to 300 mm .

Rainfall of similar magnitudes is expected in the 12 to 24 hours around the downstream catchments as the system tracks south.

A severe weather warning remains current for heavy rainfall in the dam catchment areas.

North Pine Dam (Full Supply Level 39.60 m AHD)

The dam level was 39.95 m and steady. Five gates are open releasing $445 \mathrm{~m} 3 / \mathrm{s}$. The inflow into the dam since the commencement of the event is $42,000 \mathrm{ML}$. Estimated event volume is $57,000 \mathrm{ML}$ assuming no further rainfall. Gate operations will continue until at least Tuesday 11 January 2011.

Somerset Dam (Full Supply Level 99.00 m AHD)

The dam level is 102.22 m AHD and rising quickly (storing $157,000 \mathrm{ML}$ above FSL). Peak inflow to the dam is estimated to be about $4,200 \mathrm{~m} 3 / \mathrm{s}$ based on observed rainfall and could be as high as $5,000 \mathrm{~m} 3 / \mathrm{s}$ with additional forecast rainfall. Five sluice gates are open releasing about $1,100 \mathrm{~m} 3 / \mathrm{s}(95,000 \mathrm{MI} / \mathrm{d})$ into Wivenhoe Dam. At this stage the dam will reach at least 103.5 on Monday afternoon which will adversely impact areas around Kilcoy.

Since the commencement of the event on 02/01/2011approximately $115,000 \mathrm{ML}$ has been released from the dam into Wivenhoe, with an event total of the order of $520,000 \mathrm{ML}$ expected: This is expected to increase due to the forecast rain in the next 24 to 48 hours. At this stage, releases will continue until at least Thursday.

Wivenhoe Dam (Full Supply Level 67.00 m AHD)

River levels upstream of the dam are rising quickly with significant inflow being generated from the intense heavy rainfall. Flows in the Brisbane River at Gregor's Ck have already reached $7,350 \mathrm{~m} 3 / \mathrm{s}$ and the river has just peaked at 23:00 on Sunday 9 January.

APPENDIX F - COMMUNICATION PROTOCOL TECHNICAL SITUATION REPORTS

The dam level is rising quickly, with the current level being 69.60 m AHD (storing 301,000 ML). Estimated peak inflow to the dam just from the Upper Brisbane R alone may reach as high as $8,800 \mathrm{~m} 3 / \mathrm{s}$ and, at this stage, the dam will reach at least 73.3 m AHD during Tuesday morning. Given the rapid increase in inflow volumes, it will be necessary to increase the release from Wivenhoe during Monday morning.
The objective for dam operations will be to minimise the impact of urban flooding in areas downstream of the dam and, at this stage, releases will be kept below $3,500 \mathrm{~m} 3 / \mathrm{s}$ and the combined flows in the lower Brisbane will be limited to $4,000 \mathrm{~m} 3 / \mathrm{s}$ if possible.

Fernvale Bridge approaches and Mt Crosby Weir Bridge have been inundated and both bridges are now closed or are in the process of being closed.

The current release rate from Wivenhoe Dam is $1,400 \mathrm{~m} 3 / \mathrm{s}$ ($120,000 \mathrm{ML} /$ day). Gate opening will start to be increased during early Monday morning and the release is expected to increase to at least $2,600 \mathrm{~m} 3 / \mathrm{s}$.

Since the commencement of the event on 02/01/2011 approximately $240,000 \mathrm{ML}$ has been released from the dam, with an event total approaching $1,500,000 \mathrm{ML}$ without further rain and as much as $2,100,000 \mathrm{ML}$ with forecast rainfall of (both including Somerset outflow). At this stage, releases will continue until at least Sunday $16^{\text {th }}$ January 2011.

Impacts downstream of Wivenhoe Dam

The projected Wivenhoe Dam releases combined with Lockyer flows and local runoff will mean that all crossings downstream of Wivenhoe (Twin Bridges, Fernvale, Savages Crossing, Burtons Bridge, Kholo Bridge, Mt Crosby Weir and Colleges Crossing) will be adversely impacted until at least Saturday 15 January in varying degrees.

Water levels in the lower Brisbane R will be impacted by the combined flows of Lockyer Ck, Bremer River, local runoff and releases from Wivenhoe Dam.
Somerset Regional, Ipswich City and Brisbane City Councils have been advised of the Wivenhoe operating strategy.

Dam Operations Manager
Water Delivery
Queensland Bulk Water Supply Authority trading as Seqwater

APPENDIX F - COMMUNICATION PROTOCOL TECHNICAL SITUATION REPORTS

Technical Situation Report 11

Date: Monday 10 January 2011
Time: 15:27

The Flood Centre will keep you informed or leave messages on your phones. Give them a call if you need further information.

Below is the current strategy.
Any comments or assessments let me know.

Rainfall

Significant rainfall has fallen in the Wivenhoe Dam catchment over the last 3 hours, with falls exceeding 100 mm . This rainfall will significantly increase inflows into the dam. A severe weather warning remains current for heavy rainfall in the dam catchment areas. The QPF issued by BOM at 10:00 estimates rainfalls for the 24 hours to 10:00 Tuesday as North Pine Dam (75 mm to 150 mm); Wivenhoe/Somerset Dam Catchments (50 mm 100 mm). Potentially significant rain moving towards the dam catchments is currently evident on the BOM radar.

Somerset Dam (Full Supply Level 99.00 m AHD)

The dam level is 103.41 m AHD and rising. Peak inflow to the dam is estimated to be about $4,200 \mathrm{~m} 3 / \mathrm{s}$. Five sluice gates are open releasing about 1,100m3/s ($95,000 \mathrm{ML} /$ day) into Wivenhoe Dam. At this stage the dam lake level will reach about 103.5 m AHD on Monday afternoon. Areas around Kilcoy will continue to be adversely affected.

Wivenhoe Dam (Full Supply Level 67.00 m AHD)

The dam level is 72.41 m AHD and rising quickly. The rainfall experienced over the last 2 to 3 hours will result in significant further inflows into the dam and releases from the dam will need to be increased in accordance with Flood Mitigation procedures and to ensure that a fuse plug is not initiated. The initiation of a fuse plug will result in a rapid uncontrolled outflow from the dam of $2,000 \mathrm{~m} 3 / \mathrm{s}$ being added to the gate release outflow.
Oufflows into the Brisbane River from both Lockyer Creek and the Bremer River are also increasing.

Five radial gates are currently open at the dam releasing about $2,000 \mathrm{~m} 3 / \mathrm{s}$ into the Brisbane River and this will need to be increased steadily to an outflow of $2,800 \mathrm{~m} 3 / \mathrm{s}$ over the next 9 hours (commencing at 1500). At this stage, the dam will reach about 73.8 m AHD during Tuesday morning.

The objective for dam operations is currently to minimise the impact of urban flooding in areas downstream of the dam and to keep river flows in the lower Brisbane River below $4,000 \mathrm{~m} 3 / \mathrm{s}$ if possible. This is significantly less than the current estimated combined predam peak inflow of $12,000 \mathrm{~m} 3 / \mathrm{s}$. If further rainfall occurs, dam releases may need to be increased further and this may result in river flows in the lower Brisbane River approaching or exceeding $5,000 \mathrm{~m} 3 / \mathrm{s}$.

APPENDIX F - COMMUNICATION PROTOCOL TECHNICAL SITUATION REPORTS

The projected Wivenhoe Dam releases combined with Lockyer Creek flows and local runoff will mean that all crossings downstream of Wivenhoe (Twin Bridges, Fernvale, Savages Crossing, Burtons Bridge, Kholo Bridge, Mt Crosby Weir and Colleges Crossing) will be adversely impacted until at least Sunday 16 January in varying degrees.

Water levels in the lower Brisbane River will be impacted by the combined flows of Lockyer Creek, Bremer River, local runoff and releases from Wivenhoe Dam.

Outlook

Heavy rainfall continues throughout South East Queensland and the situation could deteriorate rapidly over the next 24 hours. The flood operation centre will continue to monitor the situation and provide every six hours until the situation stabilizes.

[^11]
APPENDIX F - COMMUNICATION PROTOCOL TECHNICAL SITUATION REPORTS
 (continued)

Technical Situation Report 12

Date: Tuesday 11 January 2011
Time: 06:38

The Flood Centre has kept you informed (and discussed with the BCC Flood Centre) of where we are at but below is a summary as at 6am this morning.

I will send off another Technical Report this morning so if you have any assessments or actions you are undertaking that you want included send them in.

Rainfall

Rainfall continues in the North Pine Dam, Somerset Dam and Wivenhoe Dam catchments. Isolated falls in the Upper Brisbane River of up to 125 mm have been recorded with widespread falls of 40 to 70 mm in the Somerset Dam catchment. This rainfall will increase inflows into the dam.

There has also been 20 to 60 mm in the Lockyer Creek catchment in the last 12 hours with falls of up to 30 mm in the Bremer River.

A severe weather warning remains current for heavy rainfall in the dam catchment areas. The QPF issued by BOM at 16:00 estimates rainfalls for the 24 hours to 10:00 Tuesday as North Pine Dam (25 mm to 50 mm , with isolated falls to 100 mm); Wivenhoe/Somerset Dam Catchments (25 mm to 50 mm , with isolated falls to 100 mm).

North Pine Dam (Full Supply Level 39.60 m AHD)

The dam level is 39.80 m AHD and has commenced rising again (storing 4,400ML above FSL). Five gates are open releasing $177 \mathrm{~m} 3 / \mathrm{s}$. The inflow into the dam since the commencement of the event is $77,000 \mathrm{ML}$. Estimated event volume is $88,000 \mathrm{ML}$ assuming no further rainfall. Releases from the dam will continue until at least Wednesday 12 January 2011.

Somerset Dam (Full Supply Level 99.00 m AHD)

The dam level is 103.27 m AHD and falling slowly. Peak inflow to the dam is estimated to be about $4,200 \mathrm{~m} 3 / \mathrm{s}$. Total discharge into Wivenhoe Dam is currently $1400 \mathrm{~m} 3 / \mathrm{s}$ and this discharge will be decreased in the next few hours to be around $500 \mathrm{~m} 3 / \mathrm{s}$ later on Tuesday. This is to ensure that the combined flood mitigation capacity in Somerset and Wivenhoe Dam is maximized.

The dam level peaked at 103.52 m AHD at 19:00 on Monday 10 January 2011, (unless further significant rainfall is experienced). Areas around Kilcoy will continue to be adversely affected.

Wivenhoe Dam (Full Supply Level 67.00 m AHD)

The dam level is 73.51 m AHD and rising at about $25 \mathrm{~mm} /$ hour. Releases from the dam have been held at a rate of $2,750 \mathrm{~m} 3 / \mathrm{s}$ since 19:30 hours on Monday 10 January

APPENDIX F - COMMUNICATION PROTOCOL TECHNICAL SITUATION REPORTS
 (continued)

2011. Outflows into the Brisbane River from both Lockyer Creek and the Bremer River are also increasing.

The BoM has provided further advice about the flash flooding experienced in the upper areas of Lockyer Creek. The rainfall responsible for this event was not observed at any rainfall stations but it is considered to be extreme. Flood levels in the Lockyer Creek catchment will exceed maximum recorded levels in some stations in the upper catchment. This flow will result in increases in Brisbane River levels below the junction of Lockyer Creek.

Five radial gates are currently open at the dam releasing about $2,750 \mathrm{~m} 3 / \mathrm{s}$ into the Brisbane River. At this stage, the dam will reach just over 74.0 m AHD during Tuesday evening.

Above EL 74.0 m AHD the objective for dam operations is to maintain the security of the dam and minimise downstream flood flows if possible.

If further rainfall occurs, dam releases may need to be increased further and this may result in river flows in the lower Brisbane River approaching or exceeding 5,000m3/s.

Impacts downstream of Wivenhoe Dam

The projected Wivenhoe Dam releases combined with Lockyer Creek flows and local runoff will mean that all crossings downstream of Wivenhoe (Twin Bridges, Fernvale, Savages Crossing, Burtons Bridge, Kholo Bridge, Mt Crosby Weir and Colleges Crossing) will be adversely impacted until at least Sunday 16 January in varying degrees.

Water levels in the lower Brisbane River will be impacted by the combined flows of Lockyer Creek, Bremer River, local runoff and releases from Wivenhoe Dam.

The BoM will provide further information regarding the magnitude of the flash flood event occurring in Lockyer Creek early Tuesday morning. Consideration was given to modifying the releases from Wivenhoe Dam to try to moderate the peak flows emanating from Lockyer Creek but the rainfall in the past 12 hours in the catchment above the dam makes this option not possible. Therefore instead of decreasing releases to accommodate the Lockyer Creek flows, the strategy will endeavour to maintain the current releases until Lockyer Creek peaks.

Outlook

Heavy rainfall continues throughout South East Queensland and the situation could deteriorate over the next 24 hours. The flood operation centre will continue to monitor the situation and provide situation reports every six hours until the situation stabilizes.

Dam Operations Manager
Water Delivery
Queensland Bulk Water Supply Authority trading as Seqwater

APPENDIX F - COMMUNICATION PROTOCOL TECHNICAL SITUATION REPORTS
 (continued)

Technical Situation Report 13

Date: Wednesday 12 January 2011
Time: 11:30

I haven't been sending many of these as the Flood Centre has been forwarding all their sit reps to you directly which are the same.

However will keep sending these in case there are other issues that may come up or issues you want to raise.

Rainfall

No significant rain has fallen over the catchments in the past twelve hours. Less than 10 to 15 millimeters of rainfall is expected over the next 24-48 hours.

Somerset/Wivenhoe

Somerset Dam has peaked at 105.11 m AHD at 08:00 on 12 January 2011 and the dam is discharging over the spillway.
One Sluice gate has been opened around 11am to assist the draining of the flood storage compartment. Further sluices may be opened during the day to relieve upstream impacts. At 11am Somerset was 105.06 m and $716,900 \mathrm{ML}$ at 188.7% and dropping slightly.

Wivenhoe Dam peaked at 74.97 m AHD at 19:00 on 11 January 2011 with a corresponding discharge of $7,450 \mathrm{~m} 3 / \mathrm{s}$.
At 11 am Wivenhoe Dam was 74.78 m AHD at $2,197,000 \mathrm{ML}$ and 188.5% and generally steady.

The releases from Wivenhoe Dam have been temporarily reduced to $2,500 \mathrm{~m} 3 / \mathrm{s}$ at 07:30 to allow the peak of Lockyer Creek to enter the Brisbane River. After the downstream peak in the lower Brisbane River has passed, releases will be increased to maximum of $3,500 \mathrm{~m} 3 / \mathrm{s}$. This release will then be maintained to drain the flood storage component within the required 7 days.

The combined flood event volume in Somerset and Wivenhoe Dams is estimated to be around 2.3 million megalitres.

North Pine

At 11:00 North Pine Dam was 39.77 mAHD and falling and still releasing from 5 gates. North Pine has peaked at 41.11 mAHD at 14:00 on 11 January 1974 with peak release of $2,800 \mathrm{~m} 3 / \mathrm{s}$. The event has a volume of around $200,000 \mathrm{ML}$. It is expected that gates will now not close until Thursday or Friday.

Dam Operations Manager
Water Delivery
Queensland Bulk Water Supply Authority trading as Seqwater

APPENDIX F - COMMUNICATION PROTOCOL TECHNICAL SITUATION REPORTS

Technical Situation Report 14

Date: Thursday 13 January 2011
Time: 12:46

Attached is an update as at 12 pm .
Again let me know of any issues.
Will send one each day.

Rainfall

Rainfall in the last 12 hours is generally below 5 mm with isolated falls of up to 15 mm in the Stanley, Lockyer and Pine River catchments. There is no significant rain expected fin the next 4 days.

Somerset/Wivenhoe

Somerset Dam has peaked at 105.11 mAHD at 06:00 on 12 January 2011. Three sluices are opened as at 130012 January 2011 and discharging 1,250 m3/s into Wivenhoe Dam. Sluice gates will be utilised to drain of the flood storage compartment during the next 5 days. Water levels in Somerset Dam will fall slowly in the next 24 hours.

At 12 pm Somerset was 103.96 m and $642,535 \mathrm{ML}$ at 169.2%.
Wivenhoe Dam peaked at 74.97 mAHD at 19:00 on 11 January 2011 with a corresponding discharge of $7,450 \mathrm{~m} 3 / \mathrm{s}$.

The releases from Wivenhoe Dam had been temporarily reduced to $2,500 \mathrm{~m} 3 / \mathrm{s}$ at 07:30 on Wednesday 12 January 2011 to allow the peak of Lockyer Creek to enter the Brisbane River. The Brisbane River has peaked at the Port Office Gauge early Thursday morning. Releases from Wivenhoe Dam will now be managed gradually from 1 pm Thursday 13.1.2011 to achieve a target flow of around $3,500 \mathrm{~m} 3 / \mathrm{s}$ at Moggill. This release will then be managed to drain the flood storage component within the required 7 days. This will not cause renewed rises downstream.

At 12 pm Wivenhoe Dam was 74.61 m AHD at $2,170,100 \mathrm{ML}$ and 186.2% and dropping slowly.

The combined flood event volume in Somerset and Wivenhoe Dams is estimated to be in excess of 2.6 million megalitres.

North Pine

At 12pm North Pine Dam still gates open. North Pine peaked at 41.11 mAHD at 14:00 on 11 January 2011 with peak release of $2,800 \mathrm{~m} 3 / \mathrm{s}$. The event has a volume of around 200,000 ML

APPENDIX F - COMMUNICATION PROTOCOL TECHNICAL SITUATION REPORTS

At12pm North Pine Dam was 39.64 mAHD and $215,179 \mathrm{ML}$ and 100.4% and slowly falling. It is expected that gates will be closed early Friday morning.

Strategy

The Flood Operations Centre is continuing to monitor rainfalls and water levels through the Brisbane and Pine catchments and reviewing operating strategy every 30 minutes. The FOC is maintaining close contact with warning agencies and local councils.

Leslie Harrison Dam:

Gates closed.

Hinze Dam:

A release of around 8,000 megalitres a day is being made through the emergency gates. The Lake Level is dropping. There is no public access to the spillway.

Dam Operations Manager
Water Delivery
Queensland Bulk Water Supply Authority trading as Seqwater

APPENDIX F - COMMUNICATION PROTOCOL TECHNICAL SITUATION REPORTS
 (continued)

Technical Situation Report 15

Date: Friday 14 January 2011
Time: 05:38

Update as of this morning.
As usual, let us know if there are any issues or concerns.
And feel free to contact the Flood Centre for details or discuss.

Rainfall

There has been no significant rainfall in the last 12 hours and none is expected for the next 5 days.

Somerset/Wivenhoe

Somerset Dam has peaked at 105.11 mAHD at 06:00 on 12 January 2011. Four sluices are opened. Sluice gates will be utilised to drain of the flood storage compartment during the next 4 days. Water levels in Somerset Dam will fall slowly in the next 24 hours.

At 5 am Somerset was 102.87 m and $574,852 \mathrm{ML}$ at 151.3% and discharging 1,277 cumecs.
Wivenhoe Dam peaked at 74.97 mAHD at 19:00 on 11 January 2011 with a corresponding discharge of $7,450 \mathrm{~m} 3 / \mathrm{s}$.

The releases from Wivenhoe Dam are being managed to achieve a target flow of around $3,500 \mathrm{~m} 3 / \mathrm{s}$ at Moggill. This release will then be maintained to drain the flood storage component within the required 7 days.

At 5am Wivenhoe Dam was 74.08 m AHD at $2,087,960 \mathrm{ML}$ and 179.22% and dropping slowly and discharging around 3,500 cumecs and this flow will be maintained until early next week.

The combined flood event volume in Somerset and Wivenhoe Dams is estimated to be in excess of 2.6 million megalitres.

North Pine

North Pine peaked at 41.11 mAHD at 14:00 on 11 January 2011 with peak release of $2,800 \mathrm{~m} / \mathrm{s}$. The event has a volume of around $200,000 \mathrm{ML}$

At 5am North Pine Dam was 39.4 mAHD and $210,040 \mathrm{ML}$ and 98.0% and all gates were closed.

Strategy

The Flood Operations Centre is continuing to monitor rainfalls and water levels through the Brisbane and Pine catchments and reviewing operating strategy every 30 minutes. The FOC is maintaining close contact with warning agencies and local councils.

APPENDIX F - COMMUNICATION PROTOCOL TECHNICAL SITUATION REPORTS

Technical Situation Report 16

Date: Saturday 15 January 2011
Time: 07:08

Attached is an update as at 6am today.
Again let me know of any issues.
The FOC and the BCC have kept up discussions re any impacts of release strategy. If there are any concerns re effects on houses or recovery that arrive get back to the FOC any time.

Will send one each day.
Aiming to have most of flood storage drained by Wednesday but will have better idea of closing times over next few days. Then may have better idea as to when bridges will come out. But again contact the FOC if you want.

Rainfall

There has been no significant rainfall in the last 24 hours and no significant rainfall is expected in the next twenty-four hours. Mostly fine conditions are expected over the weekend, but showers will return early next week.

Somerset/Wivenhoe

Somerset Dam has peaked at 105.11 mAHD at $06: 00$ on 12 January 2011. Four sluices are opened. Sluice gates will be utilised to drain of the flood storage compartment during the next 4 days. Water levels in Somerset Dam will fall slowly in the next 24 hours.

At 6 am Somerset was 101.35 m and $490,137 \mathrm{ML}$ at 129.0% and discharging 920 cumecs.

Wivenhoe Dam peaked at 74.97 mAHD at 19:00 on 11 January 2011 with a corresponding discharge of $7,450 \mathrm{~m} 3 / \mathrm{s}$.

The releases from Wivenhoe Dam are being managed to achieve a target flow of around $3,500 \mathrm{~m} 3 / \mathrm{s}$ at Moggill. This release will then be maintained to drain the flood storage component by around Wednesday $19^{\text {th }}$ January.

At 5am Wivenhoe Dam was 72.86 m AHD at $1,905,900 \mathrm{ML}$ and 163.6% and dropping slowly and discharging around 3,500 cumecs and this flow will be maintained.

The combined flood event volume in Somerset and Wivenhoe Dams is estimated to be in excess of 2.6 million megalitres.

North Pine

APPENDIX F - COMMUNICATION PROTOCOL TECHNICAL SITUATION REPORTS

North Pine peaked at 41.11 mAHD at 14:00 on 11 January 2011 with peak release of $2,800 \mathrm{~m} / \mathrm{s}$. The event has a volume of around $200,000 \mathrm{ML}$
At closure North Pine Dam was 39.4 mAHD and $210,040 \mathrm{ML}$ and 98.0% and all gates were closed. The current level is expected to increase to just over 39.5 mAHD in the next few days due to base-flow. This could be higher if further rainfall occurs.

MBRC will inspect Youngs Crossing to determine if the crossing can be re-opened

Strategy

The Flood Operations Centre is continuing to monitor rainfalls and water levels throughout the Brisbane and Pine River catchments and is maintaining close contact with warning agencies and local councils.

Leslie Harrison Dam:

Gates closed.

Hinze Dam:

A release of around 6,800 megalitres a day is being made through the emergency gates. The Lake Level is dropping and the gate should be closed around Tuesday next week. There is no public access to the spillway.

Dam Operations Manager
Water Delivery
Queensland Bulk Water Supply Authority trading as Seqwater

APPENDIX F - COMMUNICATION PROTOCOL TECHNICAL SITUATION REPORTS

Technical Situation Report 17

Date: Sunday 16 January 2011
Time: 06:39

Attached is an update as at 6am today.
Again let me know of any issues.
The FOC and the BCC have kept up discussions re any impacts of release strategy. If there are any concerns re effects on houses or recovery that arrive get back to the FOC any time.

Will send one each day.
Aiming to have most of flood storage drained by Wednesday but will have better idea of closing times over next few days. Then may have better idea as to when bridges will come out. But again contact the FOC if you want.

Rainfall

There has been no significant rainfall in the last 24 hours and no significant rainfall is expected in the next twenty-four hours. Mostly fine conditions are expected over the weekend, but showers will return early next week.

Somerset/Wivenhoe

Somerset Dam has peaked at 105.11 mAHD at 06:00 on 12 January 2011. Four sluices are opened. Sluice gates will be utilised to drain of the flood storage compartment during the next 4 days. Water levels in Somerset Dam will fall slowly in the next 24 hours.

At 6am Somerset was 100.01 m and $424,360 \mathrm{ML}$ at 111.7% and discharging 820 cumecs.

Wivenhoe Dam peaked at 74.97 mAHD at 19:00 on 11 January 2011 with a corresponding discharge of $7,450 \mathrm{~m} 3 / \mathrm{s}$.

The releases from Wivenhoe Dam are being managed to achieve a target flow of around $3,500 \mathrm{~m} 3 / \mathrm{s}$ at Moggill. This release will then be maintained to drain the flood storage component by around Wednesday $19^{\text {th }}$ January.

At 6am Wivenhoe Dam was 71.3 m AHD at $1,687,269 \mathrm{ML}$ and 144.8% and dropping slowly and discharging around 3,477cumecs and this flow will be maintained.

The combined flood event volume in Somerset and Wivenhoe Dams is estimated to be in excess of 2.6 million megalitres.

North Pine

APPENDIX F - COMMUNICATION PROTOCOL TECHNICAL SITUATION REPORTS

North Pine peaked at 41.11 mAHD at 14:00 on 11 January 2011 with peak release of $2,800 \mathrm{~m} 3 / \mathrm{s}$. The event has a volume of around $200,000 \mathrm{ML}$

At 6am North Pine Dam was 39.46 mAHD and $211,319 \mathrm{ML}$ and 98.6% and all gates were closed. The current level is expected to increase to just over 39.5 mAHD in the next few days due to base-flow. This could be higher if further rainfall occurs.

Dam Operations Manager
Water Delivery
Queensland Bulk Water Supply Authority trading as Seqwater

APPENDIX F - COMMUNICATION PROTOCOL TECHNICAL SITUATION REPORTS

Technical Situation Report 18

Date: Monday 17 January 2011
Time: 09:46

The FOC is planning to initiate a closing sequence some time this afternoon if levels of the dam are tracking properly.
With final closure Wednesday, probably in the morning at this stage.
They will give you a call later today once they have a better idea of timing.

Rainfall

There has been no significant rainfall in the last 24 hours and no significant rainfall is expected in the next twenty-four hours.

Somerset/Wivenhoe

Somerset Dam peaked at 105.11 mAHD at 06:00 on 12 January 2011.
At 6am Somerset was 99.07 m and $382,829 \mathrm{ML}$ at 100.8% and discharging through cone valves. All sluices are shut.

Wivenhoe Dam peaked at 74.97 mAHD at 19:00 on 11 January 2011 with a corresponding discharge of $7,450 \mathrm{m3} / \mathrm{s}$.

The releases from Wivenhoe Dam are being managed to achieve a target flow of around $3,500 \mathrm{~m} 3 / \mathrm{s}$ at Moggill. This release will then be maintained to drain the flood storage component by around Wednesday $19^{\text {th }}$ January with a closing sequence to start today some time.

At 6 am Wivenhoe Dam was 69.4 m AHD at $1,441,983 \mathrm{ML}$ and 123.8% and dropping and discharging around 3,477 cumecs and this flow will be maintained until the closing sequence begins. Aim is for final closure on Wednesday.

The combined flood event volume in Somerset and Wivenhoe Dams is estimated to be in excess of 2.6 million megalitres.

North Pine

North Pine peaked at 41.11 mAHD at 14:00 on 11 January 2011 with peak release of $2,800 \mathrm{~m} / \mathrm{s}$. The event has a volume of around $200,000 \mathrm{ML}$

At 6 am North Pine Dam was 39.54 mAHD and $213,024 \mathrm{ML}$ and 99.4% and all gates were closed. The current level is expected to increase to stay around this level. This could be higher if further rainfall occurs.

Strategy

APPENDIX F - COMMUNICATION PROTOCOL TECHNICAL SITUATION REPORTS

The Flood Operations Centre is continuing to monitor rainfalls and water levels throughout the Brisbane and Pine River catchments and is maintaining close contact with warning agencies and local councils.

Dam Operations Manager
Water Delivery
Queensland Bulk Water Supply Authority trading as Seqwater

APPENDIX F - COMMUNICATION PROTOCOL TECHNICAL SITUATION REPORTS

Technical Situation Report 19

Date: Monday 17 January 2011
Time: 16:37

The FOC initiated closing of the gates at Wivenhoe at 2pm this afternoon.
They will have advised you of this.
Any issues let us know.
Give them a call to discuss the closing sequence if you want.

Rainfall

There has been no significant rainfall in the last 24 hours and no significant rainfall is expected in the next twenty-four hours.

Somerset/Wivenhoe

Somerset Dam peaked at 105.11 mAHD at 06:00 on 12 January 2011.
At 4pm Somerset was 99.02 m and $380,700 \mathrm{ML}$ at 100.2% and discharging through cone valves. All sluices are shut.

Wivenhoe Dam peaked at 74.97 mAHD at 19:00 on 11 January 2011 with a corresponding discharge of $7,450 \mathrm{~m} 3 / \mathrm{s}$.

At 4pm Wivenhoe Dam was 68.66 m AHD at $1,352,706 \mathrm{ML}$ and 116.1% and dropping. The closing sequence started at 2 pm today and releases will be slowly decreased through gate closures over the next few days to reach FSL around Thursday morning.

Discussions with BCC indicated they would prefer a Thursday closure to increase release time and minimize possible impacts re slumping along Coronation Drive. They also would like closure no later than Thursday prior to predicted high tides late this week.

The combined flood event volume in Somerset and Wivenhoe Dams is estimated to be in excess of 2.6 million megalitres.

North Pine

North Pine peaked at 41.11 mAHD at 14:00 on 11 January 2011 with peak release of $2,800 \mathrm{~m} 3 / \mathrm{s}$. The event has a volume of around $200,000 \mathrm{ML}$

At 4 pm North Pine Dam was 39.54 mAHD and $213,024 \mathrm{ML}$ and 99.4% and all gates were closed. The current level is expected to increase to stay around this level. This could be higher if further rainfall occurs.

APPENDIX F - COMMUNICATION PROTOCOL TECHNICAL SITUATION REPORTS
 (continued)

Strategy

The Flood Operations Centre is continuing to monitor rainfalls and water levels throughout the Brisbane and Pine River catchments and is maintaining close contact with warning agencies and local councils.

Dam Operations Manager
Water Delivery
Queensland Bulk Water Supply Authority trading as Seqwater

APPENDIX F - COMMUNICATION PROTOCOL TECHNICAL SITUATION REPORTS

Technical Situation Report 20

Date: Tuesday 18 January 2011
Time: 06:51

The FOC initiated closing of the gates at Wivenhoe at 2 pm this afternoon aiming at final closure Thursday morning.

Any issues let us know.
Give them a call to discuss the closing sequence if you want.

Rainfall

There has been no significant rainfall in the last 24 hours and no significant rainfall is expected in the next twenty-four hours. Mostly fine conditions are expected over the weekend, but showers will return early next week.

Somerset/Wivenhoe

Somerset Dam peaked at 105.11 mAHD at 06:00 on 12 January 2011.
At 6 am Somerset was 98.98 m and $379,016 \mathrm{ML}$ at 99.8% and discharging through one cone valve. All sluices are shut.

Wivenhoe Dam peaked at 74.97 mAHD at 19:00 on 11 January 2011 with a corresponding discharge of $7,450 \mathrm{~m} 3 / \mathrm{s}$.

At 6am Wivenhoe Dam was 67.82 m AHD at $1,255,638 \mathrm{ML}$ and 107.8% and dropping.
Releases were held constant overnight at about $2,050 \mathrm{~m} 3 / \mathrm{s}$ to assist water supply pumping at Lowood. Following discussions with water supply operators, it has been decided to resume closing gates at 09:00 Tuesday before final closure on Thursday morning. The Dam will be near full supply and releases will be made through the regulator to account for ongoing base-flow.

Discussions with BCC indicated they would prefer a Thursday closure to increase release time and minimize possible impacts re slumping along Coronation Drive. They also would like closure no later than Thursday prior to predicted high tides late this week.

The combined flood event volume in Somerset and Wivenhoe Dams is estimated to be in excess of 2.6 million megalitres.

It should be noted that the Seqwater water level gauge currently being reported on the BoM website is currently slightly under reading by about 50 mm .

APPENDIX G - SEVERE WEATHER WARNINGS

THUNDERSTORM WARNINGS

Thunderstorm Warning 1

Date: Wednesday 5 January 2011
Time: 16:22

From: Aifs Operational Manager
Sent: Wednesday, January 05, 2011 4:22:08 PM
To: weather
Subject: BOM: Severe Thunderstorm Warning - SE Qld 1 [SEC=UNCLASSIFIED] Auto forwarded by a Rule

IDQ20038
Bureau of Meteorology
Queensland Regional Office

TOP PRIORITY FOR IMMEDIATE BROADCAST

SEVERE THUNDERSTORM WARNING - SOUTHEAST QUEENSLAND for DAMAGING WIND, FLASH FLOODING and LARGE HAILSTONES For people in parts of the BRISBANE CITY, LOCKYER VALLEY, MORETON BAY and SOMERSET Council Areas.

Issued at 4:19 pm Wednesday, 5 January 2011.
The Bureau of Meteorology warns that, at 4:20 pm, severe thunderstorms were detected on weather radar near Esk and northern Lake Wivenhoe.

They are forecast to affect the area south of Esk by $4: 50$ pm and southern Lake Wivenhoe by $5: 20 \mathrm{pm}$.

Damaging winds, very heavy rainfall, flash flooding and large hailstones are likely.
Emergency Management Queensland advises that people should:

* Move your car under cover or away from trees.
* Secure loose outdoor items.
* Avoid driving, walking or riding through flood waters.
* Seek shelter, preferably indoors and never under trees.
* Avoid using the telephone during a thunderstorm.
* Beware of fallen trees and powerlines.
* For emergency assistance contact the SES on 132500.

The next warning is due to be issued by $5: 20 \mathrm{pm}$.
Warnings are also available through TV and Radio broadcasts, the Bureau's website at www.bom.gov.au or call 1300659 219. The Bureau and Emergency Management Queensland would appreciate warnings being broadcast regularly.

Thunderstorm Warning 2

Date: Wednesday 5 January 2011
Time: 17:12

From: Aifs Operational Manager
Sent: Wednesday, January 05, 2011 5:12:36 PM
To: weather
Subject: BOM: Severe Thunderstorm Warning - SE Qld 1 [SEC=UNCLASSIFIED] Auto forwarded by a Rule

IDQ20038
Bureau of Meteorology
Queensland Regional Office

TOP PRIORITY FOR IMMEDIATE BROADCAST
CANCELLATION SEVERE THUNDERSTORM WARNING - SOUTHEAST QUEENSLAND

Issued at 5:11 pm Wednesday, 5 January 2011.
Severe thunderstorms are no longer affecting the Southeast Queensland area [east of Dalby from Rainbow Beach to Stanthorpe].

The immediate threat of severe thunderstorms has passed, but further severe thunderstorms are possible and the situation will continue to be monitored and further warnings will be issued if necessary.

Emergency Management Queensland advises that people should:

* Beware of fallen trees and powerlines.
* Avoid driving, walking or riding through flood waters.
* For emergency assistance contact the SES on 132500.

Thunderstorm Warning 3

Date: Tuesday 18 January 2011
Time: 12:48

From: Aifs Operational Manager
Sent: Tuesday, January 18, 2011 12:48:39 PM
To: weather
Subject: BOM: Severe Thunderstorm Warning - SE QId 1 [SEC=UNCLASSIFIED] Auto forwarded by a Rule

IDQ20038
Bureau of Meteorology
Queensland Regional Office

TOP PRIORITY FOR IMMEDIATE BROADCAST

SEVERE THUNDERSTORM WARNING - SOUTHEAST QUEENSLAND for DAMAGING WIND, FLASH FLOODING and LARGE HAILSTONES For people in parts of the SCENIC RIM Council Area.

Issued at 12:47 pm Tuesday, 18 January 2011.
The Bureau of Meteorology warns that, at $12: 50 \mathrm{pm}$, severe thunderstorms were detected on weather radar near Mount Barney and the NSW border. These thunderstorms are slow moving. Damaging winds, very heavy rainfall, flash flooding and large hailstones are likely.

Emergency Management Queensland advises that people should:

* Move your car under cover or away from trees.
* Secure loose outdoor items.
* Avoid driving, walking or riding through flood waters.
* Seek shelter, preferably indoors and never under trees.
* Avoid using the telephone during a thunderstorm.
* Beware of fallen trees and powerlines.
* For emergency assistance contact the SES on 132500.

The next warning is due to be issued by $1: 50 \mathrm{pm}$.
Warnings are also available through TV and Radio broadcasts, the Bureau's website at www.bom.gov.au or call 1300659 219. The Bureau and Emergency Management Queensland would appreciate warnings being broadcast regularly.

Thunderstorm Warning 4

Date: Tuesday 18 January 2011
Time: 13:22

From: Aifs Operational Manager
Sent: Tuesday, January 18, 2011 1:22:54 PM
To: weather
Subject: BOM: Severe Thunderstorm Warning - SE Qld 1 [SEC=UNCLASSIFIED] Auto forwarded by a Rule

IDQ20038
Bureau of Meteorology
Queensland Regional Office

TOP PRIORITY FOR IMMEDIATE BROADCAST
SEVERE THUNDERSTORM WARNING - SOUTHEAST QUEENSLAND for DAMAGING WIND, FLASH FLOODING and LARGE HAILSTONES For people in parts of the GOLD COAST CITY and SCENIC RIM Council Areas.

Issued at 1:22 pm Tuesday, 18 January 2011.

The Bureau of Meteorology warns that, at 1:25 pm, severe thunderstorms were detected on weather radar near Mount Barney and Rathdowney.

These thunderstorms are moving towards the east.
They are forecast to affect Border Ranges National Park and the area south of Canungra by $1: 55 \mathrm{pm}$ and Numinbah Valley, Little Nerang Dam and Laravale by 2:25 pm.

Damaging winds, very heavy rainfall, flash flooding and large hailstones are likely.

Thunderstorm Warning 5

Date: Tuesday 18 January 2011
Time: 13:57

From: Aifs Operational Manager
Sent: Tuesday, January 18, 2011 1:57:21 PM
To: weather
Subject: BOM: Severe Thunderstorm Warning - SE Qld 1 [SEC=UNCLASSIFIED] Auto forwarded by a Rule

IDQ20038
Bureau of Meteorology
Queensland Regional Office

TOP PRIORITY FOR IMMEDIATE BROADCAST

SEVERE THUNDERSTORM WARNING - SOUTHEAST QUEENSLAND for DAMAGING WIND, FLASH FLOODING and LARGE HAILSTONES For people in the SCENIC RIM and parts of the GOLD COAST CITY and LOGAN CITY Council Areas.

Issued at 1:56 pm Tuesday, 18 January 2011.
The Bureau of Meteorology warns that, at 2:00 pm, severe thunderstorms were detected on weather radar near Boonah, the area between Boonah and Beaudesert and Laravale. These thunderstorms are slow moving. They are forecast to affect the McPherson Range and the area south of Canungra by $2: 30 \mathrm{pm}$ and Beaudesert, Springbrook and Numinbah Valley by 3:00 pm.

Damaging winds, very heavy rainfall, flash flooding and large hailstones are likely.
Emergency Management Queensland advises that people should:

* Move your car under cover or away from trees.
* Secure loose outdoor items.
* Avoid driving, walking or riding through flood waters.
* Seek shelter, preferably indoors and never under trees.
* Avoid using the telephone during a thunderstorm.
* Beware of fallen trees and powerlines.
* For emergency assistance contact the SES on 132500.

The next warning is due to be issued by $3: 00 \mathrm{pm}$.
Warnings are also available through TV and Radio broadcasts, the Bureau's website at www.bom.gov.au or call 1300659 219. The Bureau and Emergency Management Queensland would appreciate warnings being broadcast regularly.

Thunderstorm Warning 6

Date: Tuesday 18 January 2011
Time: 14:32

From: Aifs Operational Manager
Sent: Tuesday, January 18, 2011 2:32:04 PM
To: weather
Subject: BOM: Severe Thunderstorm Warning - SE QId 1 [SEC=UNCLASSIFIED] Auto forwarded by a Rule

IDQ20038
Bureau of Meteorology
Queensland Regional Office

TOP PRIORITY FOR IMMEDIATE BROADCAST

SEVERE THUNDERSTORM WARNING - SOUTHEAST QUEENSLAND for DAMAGING WIND, FLASH FLOODING and LARGE HAILSTONES For people in the LOGAN CITY and parts of the GOLD COAST CITY, IPSWICH CITY and SCENIC RIM Council Areas.

Issued at 2:31 pm Tuesday, 18 January 2011.

The Bureau of Meteorology warns that, at $2: 35 \mathrm{pm}$, severe thunderstorms were detected on weather radar near the area between Boonah and Beaudesert.

These thunderstorms are moving towards the northeast.
They are forecast to affect Jimboomba by 3:05 pm and Logan Village, Bundamba Lagoon and Greenbank by $3: 35 \mathrm{pm}$.

Damaging winds, very heavy rainfall, flash flooding and large hailstones are likely.

Emergency Management Queensland advises that people should:

* Move your car under cover or away from trees.
* Secure loose outdoor items.
* Avoid driving, walking or riding through flood waters.
* Seek shelter, preferably indoors and never under trees.
* Avoid using the telephone during a thunderstorm.
* Beware of fallen trees and powerlines.
* For emergency assistance contact the SES on 132500.

The next warning is due to be issued by $3: 30 \mathrm{pm}$.

Warnings are also available through TV and Radio broadcasts, the Bureau's website at www.bom.gov.au or call 1300659 219. The Bureau and Emergency Management Queensland would appreciate warnings being broadcast regularly.

Thunderstorm Warning 7

Date: Tuesday 18 January 2011
Time: 14:53

From: Aifs Operational Manager
Sent: Tuesday, January 18, 2011 2:53:40 PM
To: weather
Subject: BOM: Severe Thunderstorm Warning - SE Qld 1 [SEC=UNCLASSIFIED] Auto forwarded by a Rule

IDQ20038
Bureau of Meteorology
Queensland Regional Office

TOP PRIORITY FOR IMMEDIATE BROADCAST

SEVERE THUNDERSTORM WARNING - SOUTHEAST QUEENSLAND for DAMAGING WIND, FLASH FLOODING and LARGE HAILSTONE S For people in the LOGAN CITY and parts of the BRISBANE CITY, GOLD COAST CITY, IPSWICH CITY and SCENIC RIM Council Areas.

Issued at 2:52 pm Tuesday, 18 January 2011.
The Bureau of Meteorology warns that, at $2: 55 \mathrm{pm}$, very dangerous thunderstorms were detected on weather radar near the area between Boonah and Beaudesert and Peak Crossing.

These thunderstorms are slow moving.
Very dangerous thunderstorms are forecast to affect Tamborine, Jimboomba and Bundamba Lagoon by 3:25 pm and Greenbank, Redbank Plains and Amberley by 3:55 pm.

Damaging winds, very heavy rainfall, flash flooding and large hailstones are likely.
Emergency Management Queensland advises that people should:

* Move your car under cover or away from trees.
* Secure loose outdoor items.
* Avoid driving, walking or riding through flood waters.
* Seek shelter, preferably indoors and never under trees.
* Avoid using the telephone during a thunderstorm.
* Beware of fallen trees and powerlines.
* For emergency assistance contact the SES on 132500.

The next warning is due to be issued by $3: 55 \mathrm{pm}$.
Warnings are also available through TV and Radio broadcasts, the Bureau's website at www.bom.gov.au or call 1300659 219. The Bureau and Emergency Management Queensland would appreciate warnings being broadcast regularly.

Thunderstorm Warning 8

Date: Tuesday 18 January 2011
Time: 15:05

From: Aifs Operational Manager
Sent: Tuesday, January 18, 2011 3:05:26 PM
To: weather
Subject: BOM: Severe Thunderstorm Warning - SE Qld 1 [SEC=UNCLASSIFIED] Auto forwarded by a Rule

IDQ20038
Bureau of Meteorology
Queensland Regional Office

TOP PRIORITY FOR IMMEDIATE BROADCAST

SEVERE THUNDERSTORM WARNING - SOUTHEAST QUEENSLAND for DAMAGING WIND, FLASH FLOODING and LARGE HAILSTONES For people in the LOGAN CITY, IPSWICH CITY and parts of the BRISBANE CITY, GOLD COAST CITY, MORETON BAY, SOUTHERN DOWNS, SCENIC RIM, SOMERSET and REDLAND Council Areas.

Issued at 3:04 pm Tuesday, 18 January 2011.
The Bureau of Meteorology warns that, at 3:05 pm, very dangerous thunderstorms were detected on weather radar near Peak Crossing and Amberley.

These thunderstorms are moving towards the north to northeast.
Very dangerous thunderstorms are forecast to affect Ipswich and Bundamba Lagoon by 3:35 pm and Redbank Plains, Lake Manchester and Fernvale by 4:05 pm.

Other severe thunderstorms were located near Jimboomba.
They are forecast to affect Logan Village by $3: 35 \mathrm{pm}$ and Beenleigh, Logan City and Sunnybank Hills by 4:05 pm.

Damaging winds, very heavy rainfall, flash flooding and large hailstones are likely.
Emergency Management Queensland advises that people should:

* Move your car under cover or away from trees.
* Secure loose outdoor items.
* Avoid driving, walking or riding through flood waters.
* Seek shelter, preferably indoors and never under trees.
* Avoid using the telephone during a thunderstorm.
* Beware of fallen trees and powerlines.
* For emergency assistance contact the SES on 132500.

The next warning is due to be issued by $4: 05 \mathrm{pm}$.

Warnings are also available through TV and Radio broadcasts, the Bureau's website at www.bom.gov.au or call 1300659 219. The Bureau and Emergency Management Queensland would appreciate warnings being broadcast regularly.

Thunderstorm Warning 9

Date: Tuesday 18 January 2011
Time: 15:41

From: Aifs Operational Manager
Sent: Tuesday, January 18, 2011 3:41:19 PM
To: weather
Subject: BOM: Severe Thunderstorm Warning - SE Qld 1 [SEC=UNCLASSIFIED] Auto forwarded by a Rule

IDQ20038
Bureau of Meteorology
Queensland Regional Office

TOP PRIORITY FOR IMMEDIATE BROADCAST
SEVERE THUNDERSTORM WARNING - SOUTHEAST QUEENSLAND for DAMAGING WIND, FLASH FLOODING and LARGE HAILSTONES For people in the BRISBANE CITY and parts of the LOGAN CITY, MORETON BAY, IPSWICH CITY, SOMERSET and REDLAND Council Areas.

Issued at 3:40 pm Tuesday, 18 January 2011.

The Bureau of Meteorology warns that, at $3: 45 \mathrm{pm}$, severe thunderstorms were detected on weather radar near Ipswich and Upper Brookfield.

These thunderstorms are moving towards the north.
They are forecast to affect Brisbane CBD, Albany Creek and the D'Aguilar Ranges by $4: 15 \mathrm{pm}$ and Strathpine, Redcliffe and Mount Mee by $4: 45 \mathrm{pm}$.

Damaging winds, very heavy rainfall, flash flooding and large hailstones are likely.

Wind gust of $95 \mathrm{~km} / \mathrm{hr}$ was observed at Amberley
Emergency Management Queensland advises that people should:

* Move your car under cover or away from trees.
* Secure loose outdoor items.
* Avoid driving, walking or riding through flood waters.
* Seek shelter, preferably indoors and never under trees.
* Avoid using the telephone during a thunderstorm.
* Beware of fallen trees and powerlines.
* For emergency assistance contact the SES on 132500.

The next warning is due to be issued by $4: 40 \mathrm{pm}$.

Warnings are also available through TV and Radio broadcasts, the Bureau's website at www.bom.gov.au or call 1300659 219. The Bureau and Emergency Management Queensland would appreciate warnings being broadcast regularly.

Thunderstorm Warning 10

Date: Tuesday 18 January 2011
Time: 15:48

From: Aifs Operational Manager
Sent: Tuesday, January 18, 2011 3:48:32 PM
To: weather
Subject: BOM: Severe Thunderstorm Warning - SE QId 1 [SEC=UNCLASSIFIED] Auto forwarded by a Rule

IDQ20038
Bureau of Meteorology
Queensland Regional Office

TOP PRIORITY FOR IMMEDIATE BROADCAST
SEVERE THUNDERSTORM WARNING - SOUTHEAST QUEENSLAND for DAMAGING WIND, FLASH FLOODING and LARGE HAILSTONES For people in the BRISBANE CITY and parts of the LOCKYER VALLEY, LOGAN CITY, MORETON BAY, IPSWICH CITY, SOMERSET, TOOWOOMBA and REDLAND Council Areas.

Issued at 3:47 pm Tuesday, 18 January 2011.
The Bureau of Meteorology warns that, at $3: 55 \mathrm{pm}$, severe thunderstorms were detected on weather radar near Toowoomba, Highfields and Sunnybank Hills.

These thunderstorms are moving towards the north to northeast.
They are forecast to affect Brisbane CBD, Logan City and the area north of Toowoomba by $4: 25 \mathrm{pm}$ and Cleveland, Albany Creek and Crows Nest by $4: 55 \mathrm{pm}$.

Damaging winds, very heavy rainfall, flash flooding and large hailstones are likely.

Wind gust of $95 \mathrm{~km} / \mathrm{hr}$ was observed at Amberley
Emergency Management Queensland advises that people should:

* Move your car under cover or away from trees.
* Secure loose outdoor items.
* Avoid driving, walking or riding through flood waters.
* Seek shelter, preferably indoors and never under trees.
* Avoid using the telephone during a thunderstorm.
* Beware of fallen trees and powerlines.
* For emergency assistance contact the SES on 132500.

The next warning is due to be issued by $4: 50 \mathrm{pm}$.
Warnings are also available through TV and Radio broadcasts, the Bureau's website at www.bom.gov.au or call 1300659 219. The Bureau and Emergency Management Queensland would appreciate warnings being broadcast regularly.

Thunderstorm Warning 11

Date: Tuesday 18 January 2011
Time: 16:17

From: Aifs Operational Manager
Sent: Tuesday, January 18, 2011 4:17:23 PM
To: weather
Subject: BOM: Severe Thunderstorm Warning - SE Qld 1 [SEC=UNCLASSIFIED] Auto forwarded by a Rule

IDQ20038
Bureau of Meteorology
Queensland Regional Office

TOP PRIORITY FOR IMMEDIATE BROADCAST

SEVERE THUNDERSTORM WARNING - SOUTHEAST QUEENSLAND for DAMAGING WIND, FLASH FLOODING and LARGE HAILSTONES For people in the MORETON BAY and parts of the BRISBANE CITY, LOCKYER VALLEY, IPSWICH CITY, SOMERSET and TOOWOOMBA Council Areas.

Issued at 4:16 pm Tuesday, 18 January 2011.
The Bureau of Meteorology warns that, at 4:25 pm, severe thunderstorms were detected on weather radar near Brisbane CBD, the area south of Esk and Highvale.

These thunderstorms are moving towards the north to northeast.
They are forecast to affect Strathpine, Esk and Dayboro by $4: 55 \mathrm{pm}$ and Redcliffe, Caboolture and Wamuran by $5: 25 \mathrm{pm}$.

Damaging winds, very heavy rainfall, flash flooding and large hailstones are likely.
Wind gust of $95 \mathrm{~km} / \mathrm{hr}$ was observed at Amberley at $3: 01 \mathrm{pm} 2 \mathrm{~cm}$ hail reported at Gatton at 3:42pm

Emergency Management Queensland advises that people should:

* Move your car under cover or away from trees.
* Secure loose outdoor items.
* Avoid driving, walking or riding through flood waters.
* Seek shelter, preferably indoors and never under trees.
* Avoid using the telephone during a thunderstorm.
* Beware of fallen trees and powerlines.
* For emergency assistance contact the SES on 132500.

The next warning is due to be issued by $5: 20 \mathrm{pm}$.
Warnings are also available through TV and Radio broadcasts, the Bureau's website at www.bom.gov.au or call 1300659 219. The Bureau and Emergency Management Queensland would appreciate warnings being broadcast regularly.

Thunderstorm Warning 12

Date: Tuesday 18 January 2011
Time: 16:19

From: Aifs Operational Manager
Sent: Tuesday, January 18, 2011 4:19:21 PM
To: weather
Subject: BOM: Severe Thunderstorm Warning - SE QId 1 [SEC=UNCLASSIFIED] Auto forwarded by a Rule

IDQ20038
Bureau of Meteorology
Queensland Regional Office

TOP PRIORITY FOR IMMEDIATE BROADCAST

SEVERE THUNDERSTORM WARNING - SOUTHEAST QUEENSLAND for DAMAGING WIND, FLASH FLOODING and LARGE HAILSTONES For people in the MORETON BAY and parts of the BRISBANE CITY, LOCKYER VALLEY, SUNSHINE COAST, SOMERSET and TOOWOOMBA Council Areas.

Issued at 4:18 pm Tuesday, 18 January 2011.
The Bureau of Meteorology warns that, at $4: 25 \mathrm{pm}$, severe thunderstorms were detected on weather radar near Brisbane CBD, the area south of Esk, the D'Aguilar Ranges and the area north of Toowoomba.

These thunderstorms are moving towards the north to northeast.
They are forecast to affect Strathpine, Esk and the area southwest of Esk by $4: 55 \mathrm{pm}$ and Redcliffe, Caboolture and the area northwest of Esk by $5: 25 \mathrm{pm}$.

Damaging winds, very heavy rainfall, flash flooding and large hailstones are likely.

Wind gust of $95 \mathrm{~km} / \mathrm{hr}$ was observed at Amberley at $3: 01 \mathrm{pm} 2 \mathrm{~cm}$ hail reported at Gatton at 3:42pm

Emergency Management Queensland advises that people should:

* Move your car under cover or away from trees.
* Secure loose outdoor items.
* Avoid driving, walking or riding through flood waters.
* Seek shelter, preferably indoors and never under trees.
* Avoid using the telephone during a thunderstorm.
* Beware of fallen trees and powerlines.
* For emergency assistance contact the SES on 132500.

The next warning is due to be issued by $5: 20 \mathrm{pm}$.

APPENDIX G - SEVERE WEATHER WARNINGS

Warnings are also available through TV and Radio broadcasts, the Bureau's website at www.bom.gov.au or call 1300659 219. The Bureau and Emergency Management Queensland would appreciate warnings being broadcast regularly.

Thunderstorm Warning 13

Date: Tuesday 18 January 2011
Time: 16:43

From: Aifs Operational Manager
Sent: Tuesday, January 18, 2011 4:43:06 PM
To: weather
Subject: BOM: Severe Thunderstorm Warning - SE Qld 1 [SEC=UNCLASSIFIED] Auto forwarded by a Rule

IDQ20038
Bureau of Meteorology
Queensland Regional Office
TOP PRIORITY FOR IMMEDIATE BROADCAST
SEVERE THUNDERSTORM WARNING - SOUTHEAST QUEENSLAND for DAMAGING WIND, FLASH FLOODING and LARGE HAILSTONES For people in the LOCKYER VALLEY, MORETON BAY, IPSWICH CITY, SOMERSET and parts of the BRISBANE CITY, LOGAN CITY, SUNSHINE COAST, SCENIC RIM, SOUTH BURNETT and TOOWOOMBA Council Areas.

Issued at 4:41 pm Tuesday, 18 January 2011.
The Bureau of Meteorology warns that, at $4: 40 \mathrm{pm}$, severe thunderstorms were detected on weather radar near Esk, the area south of Esk, Hampton and the area northwest of Cunninghams Gap. These thunderstorms are moving towards the north to northeast. They are forecast to affect the area southwest of Esk, the area west of Kilcoy and Lake Somerset by $5: 10 \mathrm{pm}$ and Ipswich, Kilcoy and the area northwest of Esk by $5: 40 \mathrm{pm}$.

Damaging winds, very heavy rainfall, flash flooding and large hailstones are likely.
Wind gust of $95 \mathrm{~km} / \mathrm{hr}$ was observed at Amberley at $3: 01 \mathrm{pm} 2 \mathrm{~cm}$ hail reported at Gatton at 3:42pm
$3-4 \mathrm{~cm}$ hail reported at Bridgeman Downs
Emergency Management Queensland advises that people should:

* Move your car under cover or away from trees.
* Secure loose outdoor items.
* Avoid driving, walking or riding through flood waters.
* Seek shelter, preferably indoors and never under trees.
* Avoid using the telephone during a thunderstorm.
* Beware of fallen trees and powerlines.
* For emergency assistance contact the SES on 132500.

The next warning is due to be issued by $5: 45 \mathrm{pm}$.

Warnings are also available through TV and Radio broadcasts, the Bureau's website at www.bom.gov.au or call 1300659 219. The Bureau and Emergency Management Queensland would appreciate warnings being broadcast regularly.

Thunderstorm Warning 14

Date: Tuesday 18 January 2011
Time: 17:28

From: Aifs Operational Manager
Sent: Tuesday, January 18, 2011 5:28:43 PM
To: weather
Subject: BOM: Severe Thunderstorm Warning - SE QId 1 [SEC=UNCLASSIFIED] Auto forwarded by a Rule

IDQ20038
Bureau of Meteorology
Queensland Regional Office

TOP PRIORITY FOR IMMEDIATE BROADCAST

SEVERE THUNDERSTORM WARNING - SOUTHEAST QUEENSLAND for DAMAGING WIND, FLASH FLOODING and LARGE HAILSTONES For people in parts of the MORETON BAY, SUNSHINE COAST and SOMERSET Council Areas.

Issued at 5:28 pm Tuesday, 18 January 2011.

The Bureau of Meteorology warns that, at 5:35 pm, severe thunderstorms were detected on weather radar near Kilcoy.

These thunderstorms are moving towards the north.
They are forecast to affect the area west of Kilcoy and Mount Kilcoy by $6: 05$ pm and the ranges south of Jimna and the area west of Conondale by $6: 35 \mathrm{pm}$.

Damaging winds, very heavy rainfall, flash flooding and large hailstones are likely.

Wind gust of $95 \mathrm{~km} / \mathrm{hr}$ was observed at Amberley at $3: 01 \mathrm{pm} 2 \mathrm{~cm}$ hail reported at Gatton at 3:42pm
$3-4 \mathrm{~cm}$ hail reported at Bridgeman Downs
Emergency Management Queensland advises that people should:

* Move your car under cover or away from trees.
* Secure loose outdoor items.
* Avoid driving, walking or riding through flood waters.
* Seek shelter, preferably indoors and never under trees.
* Avoid using the telephone during a thunderstorm.
* Beware of fallen trees and powerlines.
* For emergency assistance contact the SES on 132500.

The next warning is due to be issued by 6:30 pm.

Warnings are also available through TV and Radio broadcasts, the Bureau's website at www.bom.gov.au or call 1300659 219. The Bureau and Emergency Management Queensland would appreciate warnings being broadcast regularly.

Thunderstorm Warning 15

Date: Tuesday 18 January 2011
Time: 18:56

From: Aifs Operational Manager
Sent: Tuesday, January 18, 2011 6:56:49 PM
To: weather
Subject: BOM: Severe Thunderstorm Warning - SE Qid 1 [SEC=UNCLASSIFIED] Auto forwarded by a Rule

IDQ20038
Bureau of Meteorology
Queensland Regional Office

TOP PRIORITY FOR IMMEDIATE BROADCAST

CANCELLATION SEVERE THUNDERSTORM WARNING - SOUTHEAST QUEENSLAND

Issued at 6:55 pm Tuesday, 18 January 2011.
Severe thunderstorms are no longer affecting the Southeast Queensland area [east of Dalby from Rainbow Beach to Stanthorpe].

The immediate threat of severe thunderstorms has passed, but the situation will continue to be monitored and further warnings will be issued if necessary.

Wind gust of $95 \mathrm{~km} / \mathrm{hr}$ was observed at Amberley at $3: 01 \mathrm{pm} 2 \mathrm{~cm}$ hail reported at Gatton at 3:42pm
$3-4 \mathrm{~cm}$ hail reported at Bridgeman Downs
Emergency Management Queensland advises that people should:

* Beware of fallen trees and powerlines.
* Avoid driving, walking or riding through flood waters.
* For emergency assistance contact the SES on 132500.

Warnings are also available through TV and Radio broadcasts, the Bureau's website at www.bom.gov.au or call 1300659 219. The Bureau and Emergency Management Queensland would appreciate warnings being broadcast regularly.

Thunderstorm Warning 16

Date: Tuesday 18 January 2011
Time: 14:57

From: Aifs Operational Manager
Sent: Wednesday, January 19, 2011 2:57:16 PM
To: weather
Subject: BOM: Severe Thunderstorm Warning - Qld 1 [SEC=UNCLASSIFIED] Auto forwarded by a Rule

IDQ20041
Bureau of Meteorology
Queensland Regional Office

TOP PRIORITY FOR IMMEDIATE BROADCAST

SEVERE THUNDERSTORM WARNING

for DAMAGING WIND and FLASH FLOODING
For people in the Wide Bay and Burnett and parts of the Central Highlands and Coalfields, Central West, Capricornia, Maranoa and Warrego, Darling Downs and Granite Belt and Southeast Coast Forecast Districts.

Issued at 2:56 pm Wednesday, 19 January 2011.
Severe thunderstorms are likely to produce damaging winds, very heavy rainfall and flash flooding in the warning area over the next several hours. Locations which may be affected include Roma, Goondiwindi, Warwick, Toowoomba, Dalby, Gympie, Bundaberg, Rockhampton, Kingaroy and Stanthorpe.

Emergency Management Queensland advises that people should:

* Move your car under cover or away from trees.
* Secure loose outdoor items.
* Avoid driving, walking or riding through flood waters.
* Seek shelter, preferably indoors and never under trees.
* Avoid using the telephone during a thunderstorm.
* Beware of fallen trees and powerlines.
* For emergency assistance contact the SES on 132500.

The next warning is due to be issued by 6:00 pm.
At 2:56 pm Wednesday, 19 January 2011 a separate, more detailed Severe Thunderstorm Warning was current for the Southeast Queensland area [east of Dalby from Rainbow Beach to Stanthorpe]. Refer to this product for more information.

Warnings are also available through TV and Radio broadcasts, the Bureau's website at www.bom.gov.au or call 1300659 219. The Bureau and Emergency Management Queensland would appreciate warnings being broadcast regularly.

Thunderstorm Warning 17

Date: Wednesday 19 January 2011
Time: 15:27

From: Aifs Operational Manager
Sent: Wednesday, January 19, 2011 3:27:28 PM
To: weather
Subject: BOM: Severe Thunderstorm Warning - SE QId 1 [SEC=UNCLASSIFIED] Auto forwarded by a Rule

IDQ20038
Bureau of Meteorology
Queensland Regional Office

TOP PRIORITY FOR IMMEDIATE BROADCAST

CANCELLATION SEVERE THUNDERSTORM WARNING - SOUTHEAST QUEENSLAND

Issued at 3:26 pm Wednesday, 19 January 2011.
Severe thunderstorms are no longer affecting the Southeast Queensland area [east of Dalby from Rainbow Beach to Stanthorpe].

The immediate threat of severe thunderstorms has passed, but the situation will continue to be monitored and further warnings will be issued if necessary.

Emergency Management Queensland advises that people should:

* Beware of fallen trees and powerlines.
* Avoid driving, walking or riding through flood waters.
* For emergency assistance contact the SES on 132500.

A more general severe thunderstorm warning remains current for the Wide Bay and Burnett and parts of the Central Highlands and Coalfields, Central West, Capricornia, Maranoa and Warrego, Darling Downs and Granite Belt and Southeast Coast districts.

Warnings are also available through TV and Radio broadcasts, the Bureau's website at www.bom.gov.au or call 1300659 219. The Bureau and Emergency Management Queensland would appreciate warnings being broadcast regularly.

Thunderstorm Warning 18

Date: Wednesday 19 January 2011
Time: 15:28

From: Aifs Operational Manager
Sent: Wednesday, January 19, 2011 3:28:14 PM
To: weather
Subject: BOM: Severe Thunderstorm Warning - Qld 1 [SEC=UNCLASSIFIED] Auto forwarded by a Rule

IDQ20041
Bureau of Meteorology
Queensland Regional Office

TOP PRIORITY FOR IMMEDIATE BROADCAST

SEVERE THUNDERSTORM WARNING
for DAMAGING WIND and FLASH FLOODING
For people in the Wide Bay and Burnett and parts of the Central Highlands and Coalfields, Central West, Capricornia, Maranoa and Warrego, Darling Downs and Granite Belt and Southeast Coast Forecast Districts.

Issued at 3:27 pm Wednesday, 19 January 2011.
Severe thunderstorms are likely to produce damaging winds, very heavy rainfall and flash flooding in the warning area over the next several hours. Locations which may be affected include Roma, Goondiwindi, Warwick, Toowoomba, Dalby, Gympie, Bundaberg, Rockhampton, Kingaroy and Stanthorpe.

Emergency Management Queensland advises that people should:

* Move your car under cover or away from trees.
* Secure loose outdoor items.
* Avoid driving, walking or riding through flood waters.
* Seek shelter, preferably indoors and never under trees.
* Avoid using the telephone during a thunderstorm.
* Beware of fallen trees and powerlines.
* For emergency assistance contact the SES on 132500.

The next warning is due to be issued by $6: 30 \mathrm{pm}$.
If severe thunderstorms develop in the Southeast Queensland area [east of Dalby from Rainbow Beach to Stanthorpe], a more detailed Severe Thunderstorm Warning will be issued to people in this area.

Warnings are also available through TV and Radio broadcasts, the Bureau's website at www.bom.gov.au or call 1300659 219. The Bureau and Emergency Management Queensland would appreciate warnings being broadcast regularly.

Thunderstorm Warning 19

Date: Wednesday 19 January 2011
Time: 15:39

From: Aifs Operational Manager
Sent: Wednesday, January 19, 2011 3:39:20 PM
To: weather
Subject: BOM: Severe Thunderstorm Warning - SE QId 1 [SEC=UNCLASSIFIED] Auto forwarded by a Rule

IDQ20038
Bureau of Meteorology
Queensland Regional Office

TOP PRIORITY FOR IMMEDIATE BROADCAST

SEVERE THUNDERSTORM WARNING - SOUTHEAST QUEENSLAND for DAMAGING WIND, FLASH FLOODING and LARGE HAILSTONES For people in parts of the TOOWOOMBA Council Area.

Issued at 3:38 pm Wednesday, 19 January 2011.
Thunderstorms are moving towards the southeast. They are forecast to affect Oakey by 4:05 pm and the area northwest of Toowoomba by $4: 35 \mathrm{pm}$.

Damaging winds, very heavy rainfall, flash flooding and large hailstones are likely.

Emergency Management Queensland advises that people should:

* Move your car under cover or away from trees.
* Secure loose outdoor items.
* Avoid driving, walking or riding through flood waters.
* Seek shelter, preferably indoors and never under trees.
* Avoid using the telephone during a thunderstorm.
* Beware of fallen trees and powerlines.
* For emergency assistance contact the SES on 132500.

The next warning is due to be issued by $4: 40 \mathrm{pm}$.
A more general severe thunderstorm warning is also current for the Wide Bay and Burnett and parts of the Central Highlands and Coalfields, Central West, Capricornia, Maranoa and Warrego, Darling Downs and Granite Belt and Southeast Coast districts.

Warnings are also available through TV and Radio broadcasts, the Bureau's website at www.bom.gov.au or call 1300659 219. The Bureau and Emergency Management Queensland would appreciate warnings being broadcast regularly.

Thunderstorm Warning 20

Date: Wednesday 19 January 2011
Time: 15:49

From: Aifs Operational Manager
Sent: Wednesday, January 19, 2011 3:49:36 PM
To: weather
Subject: BOM: Severe Thunderstorm Warning - Qld 1 [SEC=UNCLASSIFIED] Auto forwarded by a Rule

IDQ20041
Bureau of Meteorology
Queensland Regional Office

TOP PRIORITY FOR IMMEDIATE BROADCAST

SEVERE THUNDERSTORM WARNING

for DAMAGING WIND and FLASH FLOODING
For people in the Wide Bay and Burnett and parts of the Northern Tropical Coast and Tablelands, Central Highlands and Coalfields, Central West, Capricornia, Maranoa and Warrego, Darling Downs and Granite Belt and Southeast Coast Forecast Districts.

Issued at $3: 48 \mathrm{pm}$ Wednesday, 19 January 2011.
Severe thunderstorms are likely to produce damaging winds, very heavy rainfall and flash flooding in the warning area over the next several hours. Locations which may be affected include Roma, Goondiwindi, Warwick, Toowoomba, Dalby, Gympie, Bundaberg, Rockhampton, Kingaroy, Stanthorpe, Cairns and Port Douglas.

Emergency Management Queensland advises that people should:

* Move your car under cover or away from trees.
* Secure loose outdoor items.
* Avoid driving, walking or riding through flood waters.
* Seek shelter, preferably indoors and never under trees.
* Avoid using the telephone during a thunderstorm.
* Beware of fallen trees and powerlines.
* For emergency assistance contact the SES on 132500.

The next warning is due to be issued by 6:50 pm.
If severe thunderstorms develop in the Southeast Queensland area [east of Dalby from Rainbow Beach to Stanthorpe], a more detailed Severe Thunderstorm Warning will be issued to people in this area.

Warnings are also available through TV and Radio broadcasts, the Bureau's website at www.bom.gov.au or call 1300659 219. The Bureau and Emergency Management Queensland would appreciate warnings being broadcast regularly.

Thunderstorm Warning 21

Date: Wednesday 19 January 2011
Time: 16:28

From: Aifs Operational Manager
Sent: Wednesday, January 19, 2011 4:28:22 PM
To: weather
Subject: BOM: Severe Thunderstorm Warning - SE QId 1 [SEC=UNCLASSIFIED] Auto forwarded by a Rule

IDQ20038
Bureau of Meteorology
Queensland Regional Office
TOP PRIORITY FOR IMMEDIATE BROADCAST
SEVERE THUNDERSTORM WARNING - SOUTHEAST QUEENSLAND for DAMAGING WIND, FLASH FLOODING and LARGE HAILSTONES For people in parts of the LOCKYER VALLEY, IPSWICH CITY, SOUTHERN DOWNS, SCENIC RIM and TOOWOOMBA Council Areas.

Issued at 4:27 pm Wednesday, 19 January 2011.
The Bureau of Meteorology warns that, at 4:25 pm, severe thunderstorms were detected on weather radar near the area northwest of Toowoomba and Oakey.

They are forecast to affect Toowoomba and the area west of Toowoomba by $4: 55 \mathrm{pm}$ and the area south of Toowoomba, the area southwest of Toowoomba and Cambooya by $5: 25 \mathrm{pm}$.

Damaging winds, very heavy rainfall, flash flooding and large hailstones are likely.
2 cm hail was observed at Oakey
Emergency Management Queensland advises that people should:

* Move your car under cover or away from trees.
* Secure loose outdoor items.
* Avoid driving, walking or riding through flood waters.
* Seek shelter, preferably indoors and never under trees.
* Avoid using the telephone during a thunderstorm.
* Beware of fallen trees and powerlines.
* For emergency assistance contact the SES on 132500.

The next warning is due to be issued by $5: 30 \mathrm{pm}$.
A more general severe thunderstorm warning is also current for the Wide Bay and Burnett, Southeast Coast and parts of the Northern Tropical Coast and Tablelands, Central Highlands and Coalfields, Central West, Capricornia, Maranoa and Warrego and Darling Downs and Granite Belt districts.

APPENDIX G - SEVERE WEATHER WARNINGS

Warnings are also available through TV and Radio broadcasts, the Bureau's website at www.bom.gov.au or call 1300659 219. The Bureau and Emergency Management Queensland would appreciate warnings being broadcast regularly.

Thunderstorm Warning 22

Date: Wednesday 19 January 2011
Time: 16:36

From: Aifs Operational Manager
Sent: Wednesday, January 19, 2011 4:36:52 PM
To: weather
Subject: BOM: Severe Thunderstorm Warning - SE Qld 1 [SEC=UNCLASSIFIED] Auto forwarded by a Rule

IDQ20038
Bureau of Meteorology
Queensland Regional Office

TOP PRIORITY FOR IMMEDIATE BROADCAST

SEVERE THUNDERSTORM WARNING - SOUTHEAST QUEENSLAND for DAMAGING WIND, FLASH FLOODING and LARGE HAILSTONES For people in parts of the GOLD COAST CITY, LOCKYER VALLEY, IPSWICH CITY, SOUTHERN DOWNS, SCENIC RIM and TOOWOOMBA Council Areas.

Issued at 4:36 pm Wednesday, 19 January 2011.
The Bureau of Meteorology warns that, at $4: 35 \mathrm{pm}$, severe thunderstorms were detected on weather radar near Little Nerang Dam, Tallebudgera and Numinbah Valley.

They are forecast to affect Coolangatta, the area northwest of Toowoomba and Mudgeeraba by 5:05 pm and Toowoomba, Maroon Dam and Miami by 5:35 pm.

Damaging winds, very heavy rainfall, flash flooding and large hailstones are likely.
2 cm hail was observed at Oakey
Emergency Management Queensland advises that people should:

* Move your car under cover or away from trees.
* Secure loose outdoor items.
* Avoid driving, walking or riding through flood waters.
* Seek shelter, preferably indoors and never under trees.
* Avoid using the telephone during a thunderstorm.
* Beware of fallen trees and powerlines.
* For emergency assistance contact the SES on 132500.

The next warning is due to be issued by $5: 35 \mathrm{pm}$.
A more general severe thunderstorm warning is also current for the Wide Bay and Burnett, Southeast Coast and parts of the Northern Tropical Coast and Tablelands, Central Highlands and Coalfields, Central West, Capricornia, Maranoa and Warrego and Darling Downs and Granite Belt districts.

APPENDIX G - SEVERE WEATHER WARNINGS

Warnings are also available through TV and Radio broadcasts, the Bureau's website at www.bom.gov.au or call 1300659 219. The Bureau and Emergency Management Queensland would appreciate warnings being broadcast regularly.

Thunderstorm Warning 23

Date: Wednesday 19 January 2011
Time: 16:48

From: Aifs Operational Manager
Sent: Wednesday, January 19, 2011 4:48:25 PM
To: weather
Subject: BOM: Severe Thunderstorm Warning - SE QId 1 [SEC=UNCLASSIFIED] Auto forwarded by a Rule

IDQ20038
Bureau of Meteorology
Queensland Regional Office

TOP PRIORITY FOR IMMEDIATE BROADCAST

SEVERE THUNDERSTORM WARNING - SOUTHEAST QUEENSLAND for DAMAGING WIND, FLASH FLOODING and LARGE HAILSTONES For people in the SCENIC RIM and parts of the GOLD COAST CITY, LOCKYER VALLEY, IPSWICH CITY, SOUTHERN DOWNS and TOOWOOMBA Council Areas.

Issued at 4:47 pm Wednesday, 19 January 2011.
The Bureau of Meteorology warns that, at $4: 50 \mathrm{pm}$, severe thunderstorms were detected on weather radar near Coolangatta, the area southwest of Toowoomba, Border Ranges National Park and the NSW border.

These thunderstorms are moving towards the east to northeast.
They are forecast to affect the area northwest of Toowoomba, Laravale and Miami by 5:20 pm and Toowoomba, the area south of Toowoomba and Highfields by 5:50 pm.

Damaging winds, very heavy rainfall, flash flooding and large hailstones are likely.
2 cm hail was observed at Oakey
Emergency Management Queensland advises that people should:

* Move your car under cover or away from trees.
* Secure loose outdoor items.
* Avoid driving, walking or riding through flood waters.
* Seek shelter, preferably indoors and never under trees.
* Avoid using the telephone during a thunderstorm.
* Beware of fallen trees and powerlines.
* For emergency assistance contact the SES on 132500.

The next warning is due to be issued by $5: 50 \mathrm{pm}$.
A more general severe thunderstorm warning is also current for the Wide Bay and Burnett, Southeast Coast and parts of the Northern Tropical Coast and Tablelands, Central Highlands and Coalfields, Central West, Capricornia, Maranoa and Warrego and Darling Downs and Granite Belt districts.

APPENDIX G - SEVERE WEATHER WARNINGS

Warnings are also available through TV and Radio broadcasts, the Bureau's website at www.bom.gov.au or call 1300659 219. The Bureau and Emergency Management Queensland would appreciate warnings being broadcast regularly.

Thunderstorm Warning 24

Date: Wednesday 19 January 2011
Time: 17:26

From: Aifs Operational Manager
Sent: Wednesday, January 19, 2011 5:26:17 PM
To: weather
Subject: BOM: Severe Thunderstorm Warning - SE Qid 1 [SEC=UNCLASSIFIED] Auto forwarded by a Rule

IDQ20038
Bureau of Meteorology
Queensland Regional Office

TOP PRIORITY FOR IMMEDIATE BROADCAST

SEVERE THUNDERSTORM WARNING - SOUTHEAST QUEENSLAND for DAMAGING WIND, FLASH FLOODING and LARGE HAILSTONES For people in the LOCKYER VALLEY and parts of the IPSWICH CITY, SCENIC RIM and SOMERSET Council Areas.

Issued at 5:25 pm Wednesday, 19 January 2011.
The Bureau of Meteorology warns that, at $5: 30 \mathrm{pm}$, severe thunderstorms were detected on weather radar near the area northwest of Cunninghams Gap and the area south of Helidon. These thunderstorms are moving towards the northeast.
They are forecast to affect Gatton, Mulgowie and Helidon by 6:00 pm and Boonah, Laidley and Hatton Vale by 6:30 pm.

Damaging winds, very heavy rainfall, flash flooding and large hailstones are likely.
2 cm hail was observed at Oakey
Emergency Management Queensland advises that people should:

* Move your car under cover or away from trees.
* Secure loose outdoor items.
* Avoid driving, walking or riding through flood waters.
* Seek shelter, preferably indoors and never under trees.
* Avoid using the telephone during a thunderstorm.
* Beware of fallen trees and powerlines.
* For emergency assistance contact the SES on 132500.

The next warning is due to be issued by $6: 25 \mathrm{pm}$.
A more general severe thunderstorm warning is also current for the Wide Bay and Burnett, Southeast Coast and parts of the Northern Tropical Coast and Tablelands, Central Highlands and Coalfields, Central West, Capricornia, Maranoa and Warrego and Darling Downs and Granite Belt districts.

APPENDIX G - SEVERE WEATHER WARNINGS

Warnings are also available through TV and Radio broadcasts, the Bureau's website at www.bom.gov.au or call 1300659 219. The Bureau and Emergency Management Queensland would appreciate warnings being broadcast regularly.

Thunderstorm Warning 25

Date: Wednesday 19 January 2011
Time: 17:32

From: Aifs Operational Manager
Sent: Wednesday, January 19, 2011 5:32:18 PM
To: weather
Subject: BOM: Severe Thunderstorm Warning - Qld 1 [SEC=UNCLASSIFIED] Auto forwarded by a Rule

IDQ20041
Bureau of Meteorology
Queensland Regional Office

TOP PRIORITY FOR IMMEDIATE BROADCAST

SEVERE THUNDERSTORM WARNING for DAMAGING WIND and FLASH FLOODING
For people in the Wide Bay and Burnett, Southeast Coast and parts of the Central Highlands and Coalfields, Capricornia, Maranoa and Warrego and Darling Downs and Granite Belt Forecast Districts.

Issued at 5:31 pm Wednesday, 19 January 2011.
Severe thunderstorms are likely to produce damaging winds, very heavy rainfall and flash flooding in the warning area over the next several hours. Locations which may be affected include Roma, Goondiwindi, Warwick, Gold Coast, Toowoomba, Brisbane, Maroochydore, Gympie, Bundaberg, Rockhampton and Kingaroy.

2 cm hail was observed at Oakey
Emergency Management Queensland advises that people should:

* Move your car under cover or away from trees.
* Secure loose outdoor items.
* Avoid driving, walking or riding through flood waters.
* Seek shelter, preferably indoors and never under trees.
* Avoid using the telephone during a thunderstorm.
* Beware of fallen trees and powerlines.
* For emergency assistance contact the SES on 132500.

The next warning is due to be issued by $8: 35 \mathrm{pm}$.
If severe thunderstorms develop in the Southeast Queensland area [east of Dalby from Rainbow Beach to Stanthorpe], a more detailed Severe Thunderstorm Warning will be issued to people in this area.

Warnings are also available through TV and Radio broadcasts, the Bureau's website at www.bom.gov.au or call 1300659 219. The Bureau and Emergency Management Queensland would appreciate warnings being broadcast regularly.

Thunderstorm Warning 26

Date: Wednesday 19 January 2011
Tīme: 17:55

From: Aifs Operational Manager
Sent: Wednesday, January 19, 2011 5:55:02 PM
To: weather
Subject: BOM: Severe Thunderstorm Warning - SE Qld 1 [SEC=UNCLASSIFIED] Auto forwarded by a Rule

IDQ20038
Bureau of Meteorology
Queensland Regional Office
TOP PRIORITY FOR IMMEDIATE BROADCAST
SEVERE THUNDERSTORM WARNING - SOUTHEAST QUEENSLAND for DAMAGING WIND, FLASH FLOODING and LARGE HAILSTONES For people in the LOCKYER VALLEY, IPSWICH CITY, SCENIC RIM and parts of the LOGAN CITY, SOMERSET and TOOWOOMBA Council Areas.

Issued at 5:54 pm Wednesday, 19 January 2011.
The Bureau of Meteorology warns that, at 5:55 pm, severe thunderstorms were detected on weather radar near Mulgowie, Helidon, Maroon Dam and Rosevale.

These thunderstorms are moving towards the northeast.
They are forecast to affect Boonah, Laidley and Gatton by $6: 25 \mathrm{pm}$ and Beaudesert, the area between Boonah and Beaudesert and Hampton by 6:55 pm.

Damaging winds, very heavy rainfall, flash flooding and large hailstones are likely.
2 cm hail was observed at Oakey
Emergency Management Queensland advises that people should:

* Move your car under cover or away from trees.
* Secure loose outdoor items.
* Avoid driving, walking or riding through flood waters.
* Seek shelter, preferably indoors and never under trees.
* Avoid using the telephone during a thunderstorm.
* Beware of fallen trees and powerlines.
* For emergency assistance contact the SES on 132500.

The next warning is due to be issued by $6: 55 \mathrm{pm}$.
A more general severe thunderstorm warning is also current for the Wide Bay and Burnett, Southeast Coast and parts of the Central Highlands and Coalfields, Capricornia, Maranoa and Warrego and Darling Downs and Granite Belt districts.

APPENDIX G - SEVERE WEATHER WARNINGS

Warnings are also available through TV and Radio broadcasts, the Bureau's website at www.bom.gov.au or call 1300659 219. The Bureau and Emergency Management Queensland would appreciate warnings being broadcast regularly.

Thunderstorm Warning 27

Date: Wednesday 19 January 2011
Time: 18:13

From: Aifs Operational Manager
Sent: Wednesday, January 19, 2011 6:13:13 PM
To: weather
Subject: BOM: Severe Thunderstorm Warning - SE QId 1 [SEC=UNCLASSIFIED] Auto forwarded by a Rule

IDQ20038
Bureau of Meteorology
Queensland Regional Office
TOP PRIORITY FOR IMMEDIATE BROADCAST
SEVERE THUNDERSTORM WARNING - SOUTHEAST QUEENSLAND for DAMAGING WIND, FLASH FLOODING and LARGE HAILSTONES For people in the LOCKYER VALLEY, IPSWICH CITY, SCENIC RIM and parts of the LOGAN CITY, SOUTHERN DOWNS, SOMERSET and TOOWOOMBA Council Areas.

Issued at 6:12 pm Wednesday, 19 January 2011.
The Bureau of Meteorology warns that, at $6: 15 \mathrm{pm}$, very dangerous thunderstorms were detected on weather radar near Laidley and Gatton.

These thunderstorms are moving towards the northeast.
Very dangerous thunderstorms are forecast to affect Rosewood, Hatton Vale and the area north of Gatton by 6:45 pm and Amberley, Marburg and Hampton by 7:15 pm.

Other severe thunderstorms were located near Boonah, the area between Boonah and Beaudesert and the area southwest of Stanthorpe.

They are forecast to affect Beaudesert and Aratula by $6: 45 \mathrm{pm}$ and Rathdowney, Cunninghams Gap and Canungra by $7: 15 \mathrm{pm}$.

Damaging winds, very heavy rainfall, flash flooding and large hailstones are likely.
2 cm hail was observed at Oakey
Emergency Management Queensland advises that people should:

* Move your car under cover or away from trees.
* Secure loose outdoor items.
* Avoid driving, walking or riding through flood waters.
* Seek shelter, preferably indoors and never under trees.
* Avoid using the telephone during a thunderstorm.
* Beware of fallen trees and powerlines.
* For emergency assistance contact the SES on 132500.

The next warning is due to be issued by $7: 15 \mathrm{pm}$.

APPENDIX G - SEVERE WEATHER WARNINGS (conturuef)

A more general severe thunderstorm warning is also current for the Wide Bay and Burnett, Southeast Coast and parts of the Central Highlands and Coalfields, Capricornia, Maranoa and Warrego and Darling Downs and Granite Belt districts.

Warnings are also available through TV and Radio broadcasts, the Bureau's website at www.bom.gov.au or call 1300659 219. The Bureau and Emergency Management Queensland would appreciate warnings being broadcast regularly.

Thunderstorm Warning 28

Date: Wednesday 19 January 2011
Time: 18:16

From: Aifs Operational Manager
Sent: Wednesday, January 19, 2011 6:16:35 PM
To: weather
Subject: BOM: Severe Thunderstorm Warning - SE Qld 1 [SEC=UNCLASSIFIED] Auto forwarded by a Rule

IDQ20038
Bureau of Meteorology
Queensland Regional Office
TOP PRIORITY FOR IMMEDIATE BROADCAST
SEVERE THUNDERSTORM WARNING - SOUTHEAST QUEENSLAND for DAMAGING WIND, FLASH FLOODING and LARGE HAILSTONES For people in the LOCKYER VALLEY, IPSWICH CITY, SCENIC RIM and parts of the LOGAN CITY, SOUTHERN DOWNS, SOMERSET and TOOWOOMBA Council Areas.

Issued at 6:15 pm Wednesday, 19 January 2011.
The Bureau of Meteorology warns that, at $6: 15 \mathrm{pm}$, very dangerous thunderstorms with intense rainfall were detected on weather radar near Laidley and Gatton.
These thunderstorms are moving towards the northeast. Very dangerous thunderstorms are forecast to affect Rosewood, Hatton Vale and the area north of Gatton by $6: 45 \mathrm{pm}$ and Amberley, Marburg and Hampton by 7:15 pm.

Other severe thunderstorms were located near Boonah, the area between Boonah and Beaudesert and the area southwest of Stanthorpe. They are forecast to affect Beaudesert and Aratula by $6: 45 \mathrm{pm}$ and Rathdowney and Canungra by $7: 15 \mathrm{pm}$.

Damaging winds, very heavy rainfall, flash flooding and large hailstones are likely.
2 cm hail was observed at Oakey
Emergency Management Queensland advises that people should:

* Move your car under cover or away from trees.
* Secure loose outdoor items.
* Avoid driving, walking or riding through flood waters.
* Seek shelter, preferably indoors and never under trees.
* Avoid using the telephone during a thunderstorm.
* Beware of fallen trees and powerlines.
* For emergency assistance contact the SES on 132500.

The next warning is due to be issued by $7: 15 \mathrm{pm}$.
A more general severe thunderstorm warning is also current for the Wide Bay and Burnett, Southeast Coast and parts of the Central Highlands and Coalfields, Capricornia, Maranoa and Warrego and Darling Downs and Granite Belt districts.

APPENDIX G - SEVERE WEATHER WARNINGS

Warnings are also available through TV and Radio broadcasts, the Bureau's website at www.bom.gov.au or call 1300659 219. The Bureau and Emergency Management Queensland would appreciate warnings being broadcast regularly.

Thunderstorm Warning 29

Date: Wednesday 19 January 2011
Time: 18:21

From: Aifs Operational Manager
Sent: Wednesday, January 19, 2011 6:21:44 PM
To: weather
Subject: BOM: Severe Thunderstorm Warning - SE Qld 1 [SEC=UNCLASSIFIED] Auto forwarded by a Rule

IDQ20038
Bureau of Meteorology
Queensland Regional Office
TOP PRIORITY FOR IMMEDIATE BROADCAST
SEVERE THUNDERSTORM WARNING - SOUTHEAST QUEENSLAND for DAMAGING WIND, FLASH FLOODING and LARGE HAILSTONES For people in the LOCKYER VALLEY, IPSWICH CITY, SCENIC RIM and parts of the LOGAN CITY, SOUTHERN DOWNS, SOMERSET and TOOWOOMBA Council Areas.

Issued at 6:20 pm Wednesday, 19 January 2011.
The Bureau of Meteorology warns that, at $6: 15 \mathrm{pm}$, a very dangerous thunderstorm with intense rainfall was detected on weather radar near Laidley and Gatton.
This thunderstorm is moving towards the northeast. This very dangerous thunderstorm is forecast to affect Rosewood, Hatton Vale and the area north of Gatton by $6: 45 \mathrm{pm}$ and Amberley, Marburg and Hampton by 7:15 pm.

Other severe thunderstorms were located near Boonah, the area between Boonah and Beaudesert and the area southwest of Stanthorpe. They are forecast to affect Beaudesert and Aratula by $6: 45 \mathrm{pm}$ and Rathdowney and Canungra by $7: 15 \mathrm{pm}$.

Damaging winds, very heavy rainfall, flash flooding and large hailstones are likely.
Rainfall rates of $60 \mathrm{~mm} / \mathrm{hr}$ and $40 \mathrm{~mm} / 30 \mathrm{~min}$ have been observed near Tenthill [southwest of Gatton]

Emergency Management Queensland advises that people should:

* Move your car under cover or away from trees.
* Secure loose outdoor items.
* Avoid driving, walking or riding through flood waters.
* Seek shelter, preferably indoors and never under trees.
* Avoid using the telephone during a thunderstorm.
* Beware of fallen trees and powerlines.
* For emergency assistance contact the SES on 132500.

The next warning is due to be issued by $7: 15 \mathrm{pm}$.

APPENDIX G - SEVERE WEATHER WARNINGS

A more general severe thunderstorm warning is also current for the Wide Bay and Burnett, Southeast Coast and parts of the Central Highlands and Coalfields, Capricornia, Maranoa and Warrego and Darling Downs and Granite Belt districts.

Warnings are also available through TV and Radio broadcasts, the Bureau's website at www.bom.gov.au or call 1300659 219. The Bureau and Emergency Management Queensland would appreciate warnings being broadcast regularly.

APPENDIX G - SEVERE WEATHER WARNINGS

Thunderstorm Warning 30

Date: Wednesday 19 January 2011
Time: 19:08

From: Aifs Operational Manager

Sent: Wednesday, January 19, 2011 7:08:44 PM
To: weather
Subject: BOM: Severe Thunderstorm Warning - SE QId 1 [SEC=UNCLASSIFIED] Auto forwarded by a Rule

IDQ20038
Bureau of Meteorology
Queensland Regional Office

TOP PRIORITY FOR IMMEDIATE BROADCAST

SEVERE THUNDERSTORM WARNING - SOUTHEAST QUEENSLAND for DAMAGING WIND, FLASH FLOODING and LARGE HAILSTONES For people in the LOGAN CITY, IPSWICH CITY and parts of the BRISBANE CITY, GOLD COAST CITY, LOCKYER VALLEY, SCENIC RIM, SOMERSET and REDLAND Council Areas.

Issued at 7:07 pm Wednesday, 19 January 2011.
The Bureau of Meteorology warns that, at 7:05 pm, very dangerous thunderstorm with intense rainfall was detected on weather radar near Amberley, Rosewood, Hatton Vale, Marburg and Harrisville. This thunderstorm is moving towards the northeast. This thunderstorm is forecast to affect lpswich, Redbank Plains, Lowood and Fernvale by 7:35 pm and Beenleigh, Logan City, Enoggera Reservoir and Mount Nebo by 8:05 pm.

Damaging winds, very heavy rainfall, flash flooding and large hailstones are likely.
Rainfall rates of 52 mm in 30 minutes has been observed at Romani, SSE of Ipswich.
Emergency Management Queensland advises that people should:

* Move your car under cover or away from trees.
* Secure loose outdoor items.
* Avoid driving, walking or riding through flood waters.
* Seek shelter, preferably indoors and never under trees.
* Avoid using the telephone during a thunderstorm.
* Beware of fallen trees and powerlines.
* For emergency assistance contact the SES on 132500.

The next warning is due to be issued by $8: 05 \mathrm{pm}$.
A more general severe thunderstorm warning is also current for the Wide Bay and Burnett, Southeast Coast and parts of the Central Highlands and Coalfields, Capricornia, Maranoa and Warrego and Darling Downs and Granite Belt districts.

APPENDIX G - SEVERE WEATHER WARNINGS

Warnings are also available through TV and Radio broadcasts, the Bureau's website at www.bom.gov.au or call 1300659 219. The Bureau and Emergency Management Queensland would appreciate warnings being broadcast regularly.

Thunderstorm Warning 31

Date: Wednesday 19 January 2011
Time: 19:14

From: Aifs Operational Manager
Sent: Wednesday, January 19, 2011 7:14:44 PM
To: weather
Subject: BOM: Severe Thunderstorm Warning - Qid 1 [SEC=UNCLASSIFIED] Auto forwarded by a Rule

IDQ20041
Bureau of Meteorology
Queensland Regional Office

TOP PRIORITY FOR IMMEDIATE BROADCAST

SEVERE THUNDERSTORM WARNING for DAMAGING WIND and FLASH FLOODING
For people in the Wide Bay and Burnett, Southeast Coast and parts of the Central Highlands and Coalfields, Maranoa and Warrego and Darling Downs and Granite Belt Forecast Districts.

Issued at 7:13 pm Wednesday, 19 January 2011.
Severe thunderstorms are likely to produce damaging winds, very heavy rainfall and flash flooding in the warning area over the next several hours. Locations which may be affected include Warwick, Gold Coast, Toowoomba, Brisbane, Maroochydore, Gympie, Bundaberg, Kingaroy and Roma.

Rainfall rates of 52 mm in 30 minutes has been observed at Romani, SSE of Ipswich.
Emergency Management Queensland advises that people should:

* Move your car under cover or away from trees.
* Secure loose outdoor items.
* Avoid driving, walking or riding through flood waters.
* Seek shelter, preferably indoors and never under trees.
* Avoid using the telephone during a thunderstorm.
* Beware of fallen trees and powerlines.
* For emergency assistance contact the SES on 132500.

The next warning is due to be issued by $10: 15 \mathrm{pm}$.
If severe thunderstorms develop in the Southeast Queensland area [east of Dalby from Rainbow Beach to Stanthorpe], a more detailed Severe Thunderstorm Warning will be issued to people in this area.

Warnings are also available through TV and Radio broadcasts, the Bureau's website at www.bom.gov.au or call 1300659 219. The Bureau and Emergency Management Queensland would appreciate warnings being broadcast regularly.

Thunderstorm Warning 32

Date: Wednesday 19 January 2011
Time: 19:26

From: Aifs Operational Manager
Sent: Wednesday, January 19, 2011 7:26:20 PM
To: weather
Subject: BOM: Severe Thunderstorm Warning - SE Qid 1 [SEC=UNCLASSIFIED] Auto forwarded by a Rule

IDQ20038
Bureau of Meteorology
Queensland Regional Office
TOP PRIORITY FOR IMMEDIATE BROADCAST
SEVERE THUNDERSTORM WARNING - SOUTHEAST QUEENSLAND for DAMAGING WIND, FLASH FLOODING and LARGE HAILSTONES For people in the LOGAN CITY, IPSWICH CITY and parts of the BRISBANE CITY, LOCKYER VALLEY, MORETON BAY, SCENIC RIM and SOMERSET Council Areas.

Issued at 7:25 pm Wednesday, 19 January 2011.
The Bureau of Meteorology warns that, at 7:05 pm, very dangerous thunderstorms were detected on weather radar near Ipswich, Amberley, Rosewood and Marburg.

These thunderstorms are moving towards the north.
Very dangerous thunderstorms are forecast to affect Wacol, Lake Manchester, Lowood and Fernvale by 7:35 pm and Logan City, the area south of Esk, southern Lake Wivenhoe and the D'Aguilar Ranges by 8:05 pm.

Damaging winds, very heavy rainfall, flash flooding and large hailstones are likely.
Rainfall rates of 52 mm in 30 minutes has been observed at Romani, SSE of Ipswich.
Emergency Management Queensland advises that people should:

* Move your car under cover or away from trees.
* Secure loose outdoor items.
* Avoid driving, walking or riding through flood waters.
* Seek shelter, preferably indoors and never under trees.
* Avoid using the telephone during a thunderstorm.
* Beware of fallen trees and powerlines.
* For emergency assistance contact the SES on 132500.

The next warning is due to be issued by $8: 25 \mathrm{pm}$.
A more general severe thunderstorm warning is also current for the Wide Bay and Burnett, Southeast Coast and parts of the Central Highlands and Coalfields, Maranoa and Warrego and Darling Downs and Granite Belt districts.

APPENDIX G - SEVERE WEATHER WARNINGS

Warnings are also available through TV and Radio broadcasts, the Bureau's website at www.bom.gov.au or call 1300659 219. The Bureau and Emergency Management Queensland would appreciate warnings being broadcast regularly.

Thunderstorm Warning 33

Date: Wednesday 19 January 2011
Time: 20:02

From: Aifs Operational Manager
Sent: Wednesday, January 19, 2011 8:02:11 PM
To: weather
Subject: BOM: Severe Thunderstorm Warning - Qld 1 [SEC=UNCLASSIFIED] Auto forwarded by a Rule

IDQ20041
Bureau of Meteorology
Queensland Regional Office

TOP PRIORITY FOR IMMEDIATE BROADCAST

SEVERE THUNDERSTORM WARNING
for DAMAGING WIND and FLASH FLOODING
For people in the
Wide Bay and Burnett,
Southeast Coast and parts of the
Darling Downs and Granite Belt Forecast Districts.
Issued at 8:01 pm Wednesday, 19 January 2011.
Severe thunderstorms are likely to produce damaging winds, very heavy rainfall and flash flooding in the warning area over the next several hours. Locations which may be affected include Warwick, Gold Coast, Toowoomba, Brisbane, Maroochydore, Gympie, Bundaberg, Kingaroy and Hervey Bay waters.

Rainfall rates of 52 mm in 30 minutes has been observed at Romani, SSE of Ipswich.
Emergency Management Queensland advises that people should:

* Move your car under cover or away from trees.
* Secure loose outdoor items.
* Avoid driving, walking or riding through flood waters.
* Seek shelter, preferably indoors and never under trees.
* Avoid using the telephone during a thunderstorm.
* Beware of fallen trees and powerlines.
* For emergency assistance contact the SES on 132500.

The next warning is due to be issued by 11:05 pm.
If severe thunderstorms develop in the Southeast Queensland area [east of Dalby from Rainbow Beach to Stanthorpe], a more detailed Severe Thunderstorm Warning will be issued to people in this area.

Warnings are also available through TV and Radio broadcasts, the Bureau's website at www.bom.gov.au or call 1300659 219. The Bureau and Emergency Management Queensland would appreciate warnings being broadcast regularly.

Thunderstorm Warning 34

Date: Wednesday 19 January 2011
Time: 20:04

From: Aifs Operational Manager
Sent: Wednesday, January 19, 2011 8:04:45 PM
To: weather
Subject: BOM: Severe Thunderstorm Warning - SE QId 1 [SEC=UNCLASSIFIED] Auto forwarded by a Rule

IDQ20038
Bureau of Meteorology
Queensland Regional Office
TOP PRIORITY FOR IMMEDIATE BROADCAST
SEVERE THUNDERSTORM WARNING - SOUTHEAST QUEENSLAND for DAMAGING WIND and FLASH FLOODING For people in the BRISBANE CITY, MORETON BAY and parts of the IPSWICH CITY and SOMERSET Council Areas.

Issued at 8:03 pm Wednesday, 19 January 2011.
The Bureau of Meteorology warns that, at $8: 05 \mathrm{pm}$, severe thunderstorms were detected on weather radar near Enoggera Reservoir, Mount Nebo, Highvale, Samford and Wacol.

These thunderstorms are moving towards the north to northeast.
They are forecast to affect Albany Creek, the D'Aguilar Ranges, Lake Samsonvale and Dayboro by $8: 35 \mathrm{pm}$ and Brisbane CBD, Strathpine, Burpengary and Mount Mee by 9:05 pm.

Damaging winds, very heavy rainfall and flash flooding are likely.
Rainfall rates of 52 mm in 30 minutes has been observed at Romani, SSE of Ipswich.
Emergency Management Queensland advises that people should:

* Move your car under cover or away from trees.
* Secure loose outdoor items.
* Avoid driving, walking or riding through flood waters.
* Seek shelter, preferably indoors and never under trees.
* Avoid using the telephone during a thunderstorm.
* Beware of fallen trees and powerlines.
* For emergency assistance contact the SES on 132500.

The next warning is due to be issued by 9:05 pm.
A more general severe thunderstorm warning is also current for the Wide Bay and Burnett, Southeast Coast and parts of the Darling Downs and Granite Belt districts.

APPENDIX G - SEVERE WEATHER WARNINGS

Warnings are also available through TV and Radio broadcasts, the Bureau's website at www.bom.gov.au or call 1300659 219. The Bureau and Emergency Management Queensland would appreciate warnings being broadcast regularly.

Thunderstorm Warning 35

Date: Wednesday 19 January 2011
Time: 20:36

From: Aifs Operational Manager
Sent: Wednesday, January 19, 2011 8:36:25 PM
To: weather
Subject: BOM: Severe Thunderstorm Warning - SE QId 1 [SEC=UNCLASSIFIED] Auto forwarded by a Rule

IDQ20038
Bureau of Meteorology
Queensland Regional Office

TOP PRIORITY FOR IMMEDIATE BROADCAST

SEVERE THUNDERSTORM WARNING - SOUTHEAST QUEENSLAND for DAMAGING WIND and FLASH FLOODING For people in the MORETON BAY and parts of the BRISBANE CITY, SUNSHINE COAST and SOMERSET Council Areas.

Issued at 8:35 pm Wednesday, 19 January 2011.
The Bureau of Meteorology warns that, at $8: 35 \mathrm{pm}$, a severe thunderstorm is detected on weather radar near Strathpine, Kallangur, Narangba and Dayboro. This thunderstorm is moving towards the northeast. This thunderstorm is forecast to affect Redcliffe, Caboolture, Mount Mee and Wamuran by 9:05 pm and Deception Bay waters, Bribie Island, Beerburrum and Woodford by 9:35 pm.

Damaging winds, very heavy rainfall and flash flooding are likely.
Emergency Management Queensland advises that people should:

* Move your car under cover or away from trees.
* Secure loose outdoor items.
* Avoid driving, walking or riding through flood waters.
* Seek shelter, preferably indoors and never under trees.
* Avoid using the telephone during a thunderstorm.
* Beware of fallen trees and powerlines.
* For emergency assistance contact the SES on 132500.

The next warning is due to be issued by 9:35 pm.
A more general severe thunderstorm warning is also current for the Wide Bay and Burnett, Southeast Coast and parts of the Darling Downs and Granite Belt districts.

Warnings are also available through TV and Radio broadcasts, the Bureau's website at www.bom.gov.au or call 1300659 219. The Bureau and Emergency Management Queensland would appreciate warnings being broadcast regularly.

Thunderstorm Warning 36

Date: Wednesday 19 January 2011
Time: 20:38

From: Aifs Operational Manager
Sent: Wednesday, January 19, 2011 8:38:33 PM
To: weather
Subject: BOM: Severe Thunderstorm Warning - Qld 1 [SEC=UNCLASSIFIED] Auto forwarded by a Rule

IDQ20041
Bureau of Meteorology
Queensland Regional Office

TOP PRIORITY FOR IMMEDIATE BROADCAST

SEVERE THUNDERSTORM WARNING for DAMAGING WIND and FLASH FLOODING
For people in the
Wide Bay and Burnett,
Southeast Coast and parts of the
Darling Downs and Granite Belt Forecast Districts.
Issued at 8:37 pm Wednesday, 19 January 2011.
Severe thunderstorms are likely to produce damaging winds, very heavy rainfall and flash flooding in the warning area over the next several hours. Locations which may be affected include Warwick, Gold Coast, Toowoomba, Brisbane, Maroochydore, Gympie, Bundaberg, Kingaroy and Fraser Island.

Emergency Management Queensland advises that people should:

* Move your car under cover or away from trees.
* Secure loose outdoor items.
* Avoid driving, walking or riding through flood waters.
* Seek shelter, preferably indoors and never under trees.
* Avoid using the telephone during a thunderstorm.
* Beware of fallen trees and powerlines.
* For emergency assistance contact the SES on 132500.

The next warning is due to be issued by 11:40 pm.
If severe thunderstorms develop in the Southeast Queensland area [east of Dalby from Rainbow Beach to Stanthorpe], a more detailed Severe Thunderstorm Warning will be issued to people in this area.

Warnings are also available through TV and Radio broadcasts, the Bureau's website at www.bom.gov.au or call 1300659 219. The Bureau and Emergency Management Queensland would appreciate warnings being broadcast regularly.

Thunderstorm Warning 37

Date: Wednesday 19 January 2011
Time: 21:12

From: Aifs Operational Manager
Sent: Wednesday, January 19, 2011 9:12:39 PM
To: weather
Subject: BOM: Severe Thunderstorm Warning - Qld 1.[SEC=UNCLASSIFIED] Auto forwarded by a Rule

IDQ20041
Bureau of Meteorology
Queensland Regional Office

TOP PRIORITY FOR IMMEDIATE BROADCAST

SEVERE THUNDERSTORM WARNING for DAMAGING WIND and FLASH FLOODING
For people in the Wide Bay and Burnett, Southeast Coast and parts of the Central Highlands and Coalfields, Capricornia and Darling Downs and Granite Belt Forecast Districts.

Issued at 9:11 pm Wednesday, 19 January 2011.
Severe thunderstorms are likely to produce damaging winds, very heavy rainfall and flash flooding in the warning area over the next several hours. Locations which may be affected include Warwick, Toowoomba, Brisbane, Dalby, Maroochydore, Gympie, Bundaberg and Kingaroy.

Emergency Management Queensland advises that people should:

* Move your car under cover or away from trees.
* Secure loose outdoor items.
* Avoid driving, walking or riding through flood waters.
* Seek shelter, preferably indoors and never under trees.
* Avoid using the telephone during a thunderstorm.
* Beware of fallen trees and powerlines.
* For emergency assistance contact the SES on 132500.

The next warning is due to be issued by 12:15 am Thursday.
If severe thunderstorms develop in the Southeast Queensland area [east of Dalby from Rainbow Beach to Stanthorpe], a more detailed Severe Thunderstorm Warning will be issued to people in this area.

Warnings are also available through TV and Radio broadcasts, the Bureau's website at www.bom.gov.au or call 1300659 219. The Bureau and Emergency Management Queensland would appreciate warnings being broadcast regularly.

Thunderstorm Warning 38

Date: Wednesday 19 January 2011
Time: 21:13

From: Aifs Operational Manager
Sent: Wednesday, January 19, 2011 9:13:49 PM
To: weather
Subject: BOM: Severe Thunderstorm Warning - SE QId 1 [SEC=UNCLASSIFIED] Auto forwarded by a Rule

IDQ20038
Bureau of Meteorology
Queensland Regional Office

TOP PRIORITY FOR IMMEDIATE BROADCAST

CANCELLATION SEVERE THUNDERSTORM WARNING - SOUTHEAST

 QUEENSLANDIssued at 9:12 pm Wednesday, 19 January 2011.
Severe thunderstorms are no longer affecting the Southeast Queensland area [east of Dalby from Rainbow Beach to Stanthorpe].

The immediate threat of severe thunderstorms has passed, but the situation will continue to be monitored and further warnings will be issued if necessary.

Emergency Management Queensland advises that people should:

* Beware of fallen trees and powerlines.
* Avoid driving, walking or riding through flood waters.
* For emergency assistance contact the SES on 132500.

A more general severe thunderstorm warning remains current for the Wide Bay and Burnett, Southeast Coast and parts of the Central Highlands and Coalfields, Capricornia and Darling Downs and Granite Belt districts.

Warnings are also available through TV and Radio broadcasts, the Bureau's website at www.bom.gov.au or call 1300659 219. The Bureau and Emergency Management Queensland would appreciate warnings being broadcast regularly.

WEATHER WARNINGS

Weather Warning 1

Date: Wednesday 5 January 2011
Time: 16:59

From: Aifs Operational Manager
Sent: Wednesday, January 05, 2011 4:59:15 PM
To: weather
Subject: BOM: Severe Weather Warning 1 [SEC=UNCLASSIFIED] Auto forwarded by a Rule

IDQ20032
Australian Government Bureau of Meteorology Queensland

TOP PRIORITY FOR IMMEDIATE BROADCAST SEVERE WEATHER WARNING
 for heavy rainfall leading to localised flash flooding and potentially worsening the existing river flood situation For people in the Darling Downs and Granite Belt, Southeast Coast, Wide Bay and Burnett, Capricornia and Central Highlands and Coalfields district.

Issued at 5:00 pm on Wednesday 5 January 2011
Synoptic Situation: At 4pm EST, a trough extended from northwestern Queensland into the Darling Downs. The trough is expected to intensify as it moves slowly east over the next 24 hours.

Thundery rain areas with some heavy falls are occurring over the Darling Downs and Granite Belt, Southeast Coast districts and southern parts of the Wide Bay and Burnett and Central Highlands and Coalfields districts. This heavy rain is expected to extend to the Capricornia and remaining parts of the Wide Bay and Burnett and eastern Central Highlands and Coalfields during Thursday. The rain will ease over the western Darling Downs and southwestern Central Highlands and Coalfields on Thursday.

Heavy rainfall may lead to localised flash flooding and/or worsen current river flooding.
Heavy rainfall has eased over the Maranoa District and a Severe Weather Warning for this area is no longer current.

Flood warnings are current for various rivers and streams in these districts; refer to these products [www.bom.gov.au/qid] for further information.

The State Emergency Service advises that people in the affected area should:
avoid driving, walking or riding through flood waters take care on the roads, especially in heavy downpours avoid swimming in swollen rivers and creeks

Contact the SES on 132500 for emergency assistance if required.

APPENDIX G - SEVERE WEATHER WARNINGS

This warning is also available through TV and Radio broadcasts; the Bureau's website at www.bom.gov.au or call 1300659 219. The Bureau and State Emergency Service would appreciate this warning being broadcast regularly.

Weather Warning 2

Date: Wednesday 5 January 2011
Time: 23:27

From: Aifs Operational Manager
Sent: Wednesday, January 05, 2011 11:27:31 PM
To: weather
Subject: BOM: Severe Weather Warning 1 [SEC=UNCLASSIFIED] Auto forwarded by a Rule

IDQ20032
Australian Government Bureau of Meteorology Queensland

TOP PRIORITY FOR IMMEDIATE BROADCAST

SEVERE WEATHER WARNING
for heavy rainfall leading to localised flash flooding, this may add to the existing river flood situation For people in the Eastern Darling Downs, Granite Belt, Southeast Coast, Wide Bay and Burnett and the Capricornia districts.

Issued at $11: 30 \mathrm{pm}$ on Wednesday 5 January 2011
Synoptic Situation: At 11pm EST, a developing upper level low over southern Queensland and a surface trough will combine to concentrate heavier weather over the SE region during Thursday morning which will then contract towards the Capricorn and Wide Bay coasts later in the day.

Flood warnings are current for various rivers and streams in these districts; refer to these products [www.bom.gov.au/qld] for further information.

The State Emergency Service advises that people in the affected area should:
avoid driving, walking or riding through flood waters take care on the roads, especially in heavy downpours avoid swimming in swollen rivers and creeks

Contact the SES on 132500 for emergency assistance if required.
The next warning is due to be issued by 11:00 pm Wednesday
This warning is also available through TV and Radio broadcasts; the Bureau's website at www.bom.gov.au or call 1300659 219. The Bureau and State Emergency Service would appreciate this warning being broadcast regularly.

APPENDIX G - SEVERE WEATHER WARNINGS

Weather Warning 3

Date: Wednesday 5 January 2011
Time: 23:55

From: Aifs Operational Manager
Sent: Wednesday, January 05, 2011 11:55:13 PM
To: weather
Subject: BOM: Severe Weather Warning 1 [SEC=UNCLASSIFIED] Auto forwarded by a Rule

IDQ20032
Australian Government Bureau of Meteorology Queensland

TOP PRIORITY FOR IMMEDIATE BROADCAST
 SEVERE WEATHER WARNING

for heavy rainfall leading to localised flash flooding, this may add to the existing river flood situation For people in the Eastern Darling Downs, Granite Belt, Southeast Coast, Wide Bay and Burnett and the Capricornia districts.

Issued at $11: 55 \mathrm{pm}$ on Wednesday 5 January 2011
Synoptic Situation: At 11pm EST, a developing upper level low over southern Queensland and a surface trough will combine to concentrate heavier weather over the SE region during Thursday morning which will then contract towards the Capricorn and Wide Bay coasts later in the day.

Flood warnings are current for various rivers and streams in these districts; refer to these products [www.bom.gov.au/qld] for further information.

The State Emergency Service advises that people in the affected area should:
avoid driving, walking or riding through flood waters take care on the roads, especially in heavy downpours avoid swimming in swollen rivers and creeks

Contact the SES on 132500 for emergency assistance if required.
The next warning is due to be issued by 5am Thursday
This warning is also available through TV and Radio broadcasts; the Bureau's website at www.bom.gov.au or call 1300659 219. The Bureau and State Emergency Service would appreciate this warning being broadcast regularly.

Weather Warning 4

Date: Thursday 6 January 2011
Time: 03:38

From: Aifs Operational Manager
Sent: Thursday, January 06, 2011 3:38:41 AM
To: weather
Subject: BOM: Severe Weather Warning 1 [SEC=UNCLASSIFIED] Auto forwarded by a Rule

IDQ20032
Australian Government Bureau of Meteorology Queensland

TOP PRIORITY FOR IMMEDIATE BROADCAST
 SEVERE WEATHER WARNING
 for heavy rainfall leading to localised flash flooding, this may add to the existing river flood situation For people in the Southeast Coast, Wide Bay and Burnett and the Capricornia districts.

Issued at 3:40 am on Thursday 6 January 2011
Synoptic Situation: At 0330AM EST, a developing upper level low over southern Queensland and a surface trough will combine to concentrate heavier weather over the SE region during Thursday which will then contract towards the Capricorn, Wide Bay and Sunshine coasts later in the day.

Flood warnings are current for various rivers and streams in these districts; refer to these products [www.bom.gov.au/qld] for further information.

The State Emergency Service advises that people in the affected area should:
avoid driving, walking or riding through flood waters take care on the roads, especially in heavy downpours avoid swimming in swollen rivers and creeks

Contact the SES on 132500 for emergency assistance if required.
The next warning is due to be issued by 5am Thursday
This warning is also available through TV and Radio broadcasts; the Bureau's website at www.bom.gov.au or call 1300659 219. The Bureau and State Emergency Service would appreciate this warning being broadcast regularly.

Weather Warning 5

Date: Thursday 6 January 2011
Time: 08:33

From: Aifs Operational Manager
Sent: Thursday, January 06, 2011 8:33:11 AM
To: weather
Subject: BOM: Severe Weather Warning 1 [SEC=UNCLASSIFIED] Auto forwarded by a Rule

IDQ20032
Australian Government Bureau of Meteorology Queensland

TOP PRIORITY FOR IMMEDIATE BROADCAST
SEVERE WEATHER WARNING
for heavy rainfall leading to localised flash flooding and potentially worsening the existing river flood situation For people in the Southeast Coast district and eastern parts of the Wide Bay and Burnett District.

Issued at 8:30 am on Thursday 6 January 2011
Synoptic Situation: At 8am EST, an upper level low was developing over the southeastern interior of Queensland. A slow moving surface trough extended from northwestern Queensland into the Darling Downs.

Rain areas and thunderstorms are expected to increase through the Southeast Coast District and eastern parts of the Wide Bay and Burnett District this afternoon. Some heavy falls are expected which may lead to localised flash flooding and/or worsen existing river flooding.

Isolated thunderstorms are expected through the Capricornia and remaining parts of the Wide Bay and Burnett District. Locally heavy falls may occur with these thunderstorms and Severe Thunderstorm Warnings will be issued as necessary.

Flood warnings are current for various rivers and streams in these districts; refer to these products [www.bom.gov.au/qld] for further information.

The State Emergency Service advises that people in the affected area should:
avoid driving, walking or riding through flood waters take care on the roads, especially in heavy downpours avoid swimming in swollen rivers and creeks

Contact the SES on 132500 for emergency assistance if required.
The next warning is due to be issued by 11 am Thursday
This warning is also available through TV and Radio broadcasts; the Bureau's website at www.bom.gov.au or call 1300659 219. The Bureau and State Emergency Service would appreciate this warning being broadcast regularly.

Weather Warning 6

Date: Thursday 6 January 2011
Time: 10:46

From: Aifs Operational Manager
Sent: Thursday, January 06, 2011 10:46:04 AM
To: weather
Subject: BOM: Severe Weather Warning 1 [SEC=UNCLASSIFIED] Auto forwarded by a Rule

IDQ20032
Australian Government Bureau of Meteorology Queensland

TOP PRIORITY FOR IMMEDIATE BROADCAST
 SEVERE WEATHER WARNING
 for heavy rainfall leading to localised flash flooding and potentially worsening the existing river flood situation For people in the Southeast Coast District and eastern parts of the Wide Bay and Burnett District.

Issued at 10:45 am on Thursday 6 January 2011
Synoptic Situation: At 10am EST, an upper level low was developing over the southeastern interior of Queensland. A slow moving surface trough extended from northwestern Queensland into eastern Darling Downs.

Rain areas and thunderstorms will increase further through the Southeast Coast District and eastern parts of the Wide Bay and Burnett District today. Some heavy falls are expected which may lead to localised flash flooding and/or worsen existing river flooding.

Rainfall is expected to ease about the Southeast Coast District during Friday.
Isolated thunderstorms are expected through the Capricornia and remaining parts of the Wide Bay and Burnett District. Locally heavy falls may occur today with these thunderstorms and Severe Thunderstorm Warnings will be issued as necessary.

Flood warnings are current for various rivers and streams in these districts; refer to these products [www.bom.gov.au/qid] for further information.

The State Emergency Service advises that people in the affected area should:
avoid driving, walking or riding through flood waters take care on the roads, especially in heavy downpours avoid swimming in swollen rivers and creeks

Contact the SES on 132500 for emergency assistance if required.
The next warning is due to be issued by 5pm Thursday
This warning is also available through TV and Radio broadcasts; the Bureau's website at www.bom.gov.au or call 1300659 219. The Bureau and State Emergency Service would appreciate this warning being broadcast regularly.

Weather Warning 7

Date: Thursday 6 January 2011
Time: 16:50

From: Aifs Operational Manager
Sent: Thursday, January 06, 2011 4:50:02 PM
To: weather
Subject: BOM: Severe Weather Warning 1 [SEC=UNCLASSIFIED] Auto forwarded by a Rule

IDQ20032
Australian Government Bureau of Meteorology Queensland

TOP PRIORITY FOR IMMEDIATE BROADCAST
 SEVERE WEATHER WARNING
 for heavy rainfall leading to localised flash flooding and potentially worsening the existing river flood situation For people in the Southeast Coast and eastern parts of the Wide Bay and Burnett districts.

Issued at 4:50 pm on Thursday 6 January 2011
Synoptic Situation: At 4pm EST, an upper level low was developing over the southeastern interior of Queensland and is forecast to move in a north northeast direction overnight. A slow moving surface trough extended from northwestern parts of the state down into the southeast.

Rain areas and thunderstorms will continue through parts of the Southeast Coast district north of Brisbane and eastern parts of the Wide Bay and Burnett district this evening and overnight. Some heavy falls are expected which may lead to localised flash flooding and/or worsen existing river flooding.

Rain areas and thunderstorms have eased in parts of the Southeast Coast district south of Brisbane but may redevelop overnight. Heavy rain areas are forecast to contract into eastern parts of the Wide Bay and Burnett district on Friday.

Isolated thunderstorms are expected through the Capricornia and remaining parts of the Wide Bay and Burnett District. Locally heavy falls may occur today with these thunderstorms and Severe Thunderstorm Warnings will be issued as necessary.

Flood warnings are current for various rivers and streams in these districts; refer to these products [www.bom.gov.au/qld] for further information.

The State Emergency Service advises that people in the affected area should: avoid driving, walking or riding through flood waters take care on the roads, especially in heavy downpours avoid swimming in swollen rivers and creeks

Contact the SES on 132500 for emergency assistance if required.
The next warning is due to be issued by 11 pm Thursday

This warning is also available through TV and Radio broadcasts; the Bureau's website at www.bom.gov.au or call 1300659 219. The Bureau and State Emergency Service would appreciate this warning being broadcast regularly.

Weather Warning 8

Date: Thursday 6 January 2011
Time: 22:54

From: Aifs Operational Manager
Sent: Thursday, January 06, 2011 10:54:22 PM
To: weather
Subject: BOM: Severe Weather Warning 1 [SEC=UNCLASSIFIED] Auto forwarded by a Rule

IDQ20032
Australian Government Bureau of Meteorology Queensland

TOP PRIORITY FOR IMMEDIATE BROADCAST

SEVERE WEATHER WARNING
for heavy rainfall leading to localised flash flooding and potentially worsening the existing river flood situation For people in the Southeast Coast and eastern parts of the Wide Bay and Burnett districts.

Issued at $10: 55 \mathrm{pm}$ on Thursday 6 January 2011
Synoptic Situation: At 1030pm EST, an upper level low over the southeastern interior will move north into the Capricorn district during Friday. Current rain areas near the coast will develop back inland over the SE region during Friday.

Some heavy falls may occur about the eastern Burnett, Wide Bay and northern parts of the Sunshine coast later on Friday with the potential for flash flooding and this may contribute to existing river flooding.

Flood warnings are current for various rivers and streams in these districts; refer to these products [www.bom.gov.au/qld] for further information.

The State Emergency Service advises that people in the affected area should:
avoid driving, walking or riding through flood waters take care on the roads, especially in heavy downpours avoid swimming in swollen rivers and creeks

Contact the SES on 132500 for emergency assistance if required.
The next warning is due to be issued by 11 pm Thursday
This warning is also available through TV and Radio broadcasts; the Bureau's website at www.bom.gov.au or call 1300659 219. The Bureau and State Emergency Service would appreciate this warning being broadcast regularly.

Weather Warning 9

Date: Friday 7 January 2011
Time: 05:25

From: Aifs Operational Manager
Sent: Friday, January 07, 2011 5:25:51 AM
To: weather
Subject: BOM: Severe Weather Warning 1 [SEC=UNCLASSIFIED] Auto forwarded by a Rule

IDQ20032
Australian Government Bureau of Meteorology Queensland

TOP PRIORITY FOR IMMEDIATE BROADCAST
 SEVERE WEATHER WARNING

for heavy rainfall leading to localised flash flooding and potentially worsening the existing river flood situation For people in the Southeast Coast and eastern parts of the Wide Bay and Burnett districts.

Issued at 5:25 am on Friday 7 January 2011
Synoptic Situation: At 0420am EST, an upper level low occurs over the Capricorn region at present and will contribute to further rain areas over southeastern region today.

Some heavy falls may occur about the eastern Burnett, Wide Bay and northern parts of the Sunshine coast later today with the potential for flash flooding and this may contribute to existing flooding situation.

Flood warnings are current for various rivers and streams in these districts; refer to these products [www.bom.gov.au/qid] for further information.

The State Emergency Service advises that people in the affected area should:
avoid driving, walking or riding through flood waters take care on the roads, especially in heavy downpours avoid swimming in swollen rivers and creeks

Contact the SES on 132500 for emergency assistance if required.
The next warning is due to be issued by 11am Thursday
This warning is also available through TV and Radio broadcasts; the Bureau's website at www.bom.gov.au or call 1300659 219. The Bureau and State Emergency Service would appreciate this warning being broadcast regularly.

Weather Warning 10

Date: Friday 7 January 2011
Time: 08:26

From: Aifs Operational Manager
Sent: Friday, January 07, 2011 8:26:56 AM
To: weather
Subject: BOM: Severe Weather Warning 1 [SEC=UNCLASSIFIED] Auto forwarded by a Rule

IDQ20032
Australian Government Bureau of Meteorology Queensland

TOP PRIORITY FOR IMMEDIATE BROADCAST

SEVERE WEATHER WARNING
for heavy rainfall leading to localised flash flooding and potentially worsening the existing river flood situation For people in the Southeast Coast and Wide Bay and Burnett forecast districts.

Issued at 8:25 am on Friday 7 January 2011
Synoptic Situation: At 7 am EST, an upper level low was located over the Capricornia district while a low level trough was located off the Capricorn coast. These systems will combine to produce further rain areas and thunderstorms over the Southeast Coast and Wide Bay and Burnett forecast districts.

Some heavy falls are currently occurring about southern parts of the Southeast Coast District. Heavy rainfall is also expected to develop further north about the Sunshine Coast and Wide Bay and Burnett district through today. Rainfalls should ease south of the Sunshine Coast later today.

Heavy rainfalls may lead to localised flash flooding and/or worsen existing river flooding.
Flood warnings are current for various rivers and streams in these districts; refer to these products [www.bom.gov.au/qld] for further information.

The State Emergency Service advises that people in the affected area should:
avoid driving, walking or riding through flood waters take care on the roads, especially in
heavy downpours avoid swimming in swollen rivers and creeks
Contact the SES on 132500 for emergency assistance if required.
The next warning is due to be issued by 11am Thursday
This warning is also available through TV and Radio broadcasts; the Bureau's website at www.bom.gov.au or call 1300659 219. The Bureau and State Emergency Service would appreciate this warning being broadcast regularly.

Weather Warning 11

Date: Friday 7 January 2011
Time: 11:25

From: Aifs Operational Manager
Sent: Friday, January 07, 2011 11:25:01 AM
To: weather
Subject: BOM: Severe Weather Warning 1 [SEC=UNCLASSIFIED] Auto forwarded by a Rule

IDQ20032
Australian Government Bureau of Meteorology Queensland

TOP PRIORITY FOR IMMEDIATE BROADCAST
 SEVERE WEATHER WARNING

for heavy rainfall leading to localised flash flooding and potentially worsening the existing river flood situation For people in the Southeast Coast and Wide Bay and Burnett districts.

Issued at 11:25 am on Friday 7 January 2011
Synoptic Situation: At 10am EST, an upper level low was located over the Capricornia district while a low level trough was located near the Queensland east coast. These systems will combine to produce further rain areas and thunderstorms over the Southeast Coast and Wide Bay and Burnett districts.

Heavy rain and isolated thunderstorms are currently occurring about the Southeast Coast district. These conditions are expected to develop in the Wide Bay and Burnett district during this afternoon and evening. Rainfall is expected to ease south of the Sunshine Coast later today.

Heavy rainfall may lead to localised flash flooding and/or worsen existing river flooding.
Flood warnings are current for various rivers and streams in these districts; refer to these products [www.bom.gov.au/qld] for further information.

The State Emergency Service advises that people in the affected area should: avoid driving, walking or riding through flood waters take care on the roads, especially in heavy downpours avoid swimming in swollen rivers and creeks

Contact the SES on 132500 for emergency assistance if required.
The next warning is due to be issued by 5 pm Thursday
This warning is also available through TV and Radio broadcasts; the Bureau's website at www.bom.gov.au or call 1300659 219. The Bureau and State Emergency Service would appreciate this warning being broadcast regularly.

Weather Warning 12

Date: Friday 7 January 2011
Time: 15:32

From: Aifs Operational Manager
Sent: Friday, January 07, 2011 3:32:35 PM
To: weather
Subject: BOM: Severe Weather Warning 1 [SEC=UNCLASSIFIED] Auto forwarded by a Rule

IDQ20032
Australian Government Bureau of Meteorology Queensland

TOP PRIORITY FOR IMMEDIATE BROADCAST
 SEVERE WEATHER WARNING

for heavy rainfall leading to localised flash flooding and potentially worsening the existing river flood situation For people in the Southeast Coast and Wide Bay and Burnett districts.

Issued at $3: 35$ pm on Friday 7 January 2011
Synoptic Situation: At 3pm EST, an upper level low was located over the Capricornia district while a low level trough was located near the Queensland east coast. The upper level low is forecast to move off the Capricornia coast on Saturday while the low level trough remains slow moving.

Heavy rain and isolated thunderstorms are currently occurring about the Wide Bay and Burnett and Southeast Coast districts north of Brisbane. Heavy rain may lead to localised flash flooding and/or worsen existing river flooding.

These conditions are expected to persist about the Wide Bay and Burnett district on Saturday while redeveloping throughout the Southeast Coast district during the afternoon and evening.

Flood warnings are current for various rivers and streams in these districts; refer to these products [www.bom.gov.au/qld] for further information.

The State Emergency Service advises that people in the affected area should: avoid driving, walking or riding through flood waters take care on the roads, especially in heavy downpours avoid swimming in swollen rivers and creeks

Contact the SES on 132500 for emergency assistance if required.
The next warning is due to be issued by 11 pm Friday
This warning is also available through TV and Radio broadcasts; the Bureau's website at www.bom.gov.au or call 1300659 219. The Bureau and State Emergency Service would appreciate this warning being broadcast regularly.

Weather Warning 13

Date: Friday 7 January 2011
Time: 15:37

From: Aifs Operational Manager
Sent: Friday, January 07, 2011 3:37:06 PM
To: weather
Subject: BOM: Severe Weather Warning 1 [SEC=UNCLASSIFIED] Auto forwarded by a Rule

IDQ20032
Australian Government Bureau of Meteorology Queensland

TOP PRIORITY FOR IMMEDIATE BROADCAST
 SEVERE WEATHER WARNING

for heavy rainfall leading to localised flash flooding and potentially worsening the existing river flood situation For people in the Southeast Coast and Wide Bay and Burnett districts.

Issued at $3: 40$ pm on Friday 7 January 2011
Synoptic Situation: At 3pm EST, an upper level low was located over the Capricornia district while a low level trough was located near the Queensland east coast. The upper level low is forecast to move off the Capricornia coast on Saturday while the low level trough remains slow moving.

Heavy rain and isolated thunderstorms are currently occurring about the Wide Bay and Burnett and Southeast Coast districts north of Brisbane. Heavy rain may lead to localised flash flooding and/or worsen existing river flooding.

These conditions are expected to persist in these areas on Saturday while redeveloping throughout the Southeast Coast district during the afternoon and evening.

Flood warnings are current for various rivers and streams in these districts; refer to these products [www.bom.gov.au/qld] for further information.

The State Emergency Service advises that people in the affected area should:
avoid driving, walking or riding through flood waters take care on the roads, especially in heavy downpours avoid swimming in swollen rivers and creeks

Contact the SES on 132500 for emergency assistance if required.
The next warning is due to be issued by 11 pm Friday
This warning is also available through TV and Radio broadcasts; the Bureau's website at www.bom.gov.au or call 1300659 219. The Bureau and State Emergency Service would appreciate this warning being broadcast regularly.

Weather Warning 14

Date: Friday 7 January 2011
Time: 22:50

From: Aifs Operational Manager
Sent: Friday, January 07, 2011 10:50:00 PM
To: weather
Subject: BOM: Severe Weather Warning 1 [SEC=UNCLASSIFIED] Auto forwarded by a Rule

IDQ20032
Australian Government Bureau of Meteorology Queensland

TOP PRIORITY FOR IMMEDIATE BROADCAST
 SEVERE WEATHER WARNING
 for heavy rainfall leading to localised flash flooding and potentially worsening the existing river flood situation For people in the Southeast Coast and Wide Bay and Burnett districts.

Issued at $10: 50$ pm on Friday 7 January 2011
Synoptic Situation: At 10pm EST, an upper level low was located offshore from the Capricornia district while a low level trough was located near the Wide Bay coast.

Heavy rain and isolated thunderstorms are currently occurring about the southern Wide Bay and Burnett district and are forecast to develop about the Sunshine Coast during Saturday morning, and remaining parts of the Southeast Coast district on Saturday afternoon. Heavy rain may lead to localised flash flooding and/or worsen existing river flooding.

Flood warnings are current for various rivers and streams in these districts; refer to these products [www.bom.gov.au/qld] for further information.

The State Emergency Service advises that people in the affected area should: avoid driving, walking or riding through flood waters take care on the roads, especially in heavy downpours avoid swimming in swollen rivers and creeks

Contact the SES on 132500 for emergency assistance if required.
The next warning is due to be issued by 5am Saturday
This warning is also available through TV and Radio broadcasts; the Bureau's website at www.bom.gov.au or call 1300659 219. The Bureau and State Emergency Service would appreciate this warning being broadcast regularly.

Weather Warning 15

Date: Saturday 8 January 2011
Time: 04:52

From: Aifs Operational Manager
Sent: Saturday, January 08, 2011 4:52:00 AM
To: weather
Subject: BOM: Severe Weather Warning 1 [SEC=UNCLASSIFIED] Auto forwarded by a Rule

IDQ20032
Australian Government Bureau of Meteorology Queensland

TOP PRIORITY FOR IMMEDIATE BROADCAST
 SEVERE WEATHER WARNING

for heavy rainfall leading to localised flash flooding and potentially worsening the existing river flood situation For people in the Southeast Coast and Wide Bay and Burnett districts.

Issued at 4:55 am on Saturday 8 January 2011
Synoptic Situation: At 10pm EST, an upper level low was located offshore from the Capricornia district while a low level trough was located near the Wide Bay coast.

Heavy rain and isolated thunderstorms are currently occurring about the southern Wide Bay and Burnett district and are forecast to develop about the Sunshine Coast during Saturday morning, and remaining parts of the Southeast Coast district on Saturday afternoon. Heavy rain may lead to localised flash flooding and/or worsen existing river flooding.

Recent events: Rainfall of up to 220 mm over the Mary River catchment since 9am Friday has caused rapid river rises there, see separate Flood Warning for details.

Flood warnings are current for various rivers and streams in these districts; refer to these products [www.bom.gov.au/qld] for further information.

The State Emergency Service advises that people in the affected area should:
avoid driving, walking or riding through flood waters take care on the roads, especially in heavy downpours avoid swimming in swollen rivers and creeks

Contact the SES on 132500 for emergency assistance if required.
The next warning is due to be issued by 5am Saturday
This warning is also available through TV and Radio broadcasts; the Bureau's website at www.bom.gov.au or call 1300659 219. The Bureau and State Emergency Service would appreciate this warning being broadcast regularly.

Weather Warning 16

Date: Saturday 8 January 2011
Time: 11:00

From: Aifs Operational Manager
Sent: Saturday, January 08, 2011 11:00:01 AM
To: weather
Subject: BOM: Severe Weather Warning 1 [SEC=UNCLASSIFIED] Auto forwarded by a Rule

IDQ20032
Australian Government Bureau of Meteorology Queensland

TOP PRIORITY FOR IMMEDIATE BROADCAST
SEVERE WEATHER WARNING
for heavy rainfall leading to localised flash flooding and potentially worsening the existing river flood situation For people in the Southeast Coast and Wide Bay and Burnett districts.

Issued at 11:00 am on Saturday 8 January 2011
Synoptic Situation: At 10am EST, an upper level low was located offshore from the Capricornia district while a low level trough was located off the southern coast.

Heavy rain overnight has weakened recently to showers and isolated thunderstorms. Rain areas are expected to return to the Southeast Coast and Wide Bay and Burnett districts from this afternoon, and increase to moderate to heavy falls at times tonight and Sunday. Heavy rain may lead to localised flash flooding and/or worsen existing river flooding.

Recent events: Rainfall of up to 304 mm over the Mary River catchment in the 24 hours to 9am Saturday. A Flood Warning is current for this area.

Flood warnings are current for various rivers and streams in these districts; refer to these products [www.bom.gov.au/qld] for further information.

The State Emergency Service advises that people in the affected area should:
avoid driving, walking or riding through flood waters take care on the roads, especially in heavy downpours avoid swimming in swollen rivers and creeks

Contact the SES on 132500 for emergency assistance if required.
The next warning is due to be issued by 5 pm Saturday
This warning is also available through TV and Radio broadcasts; the Bureau's website at www.bom.gov.au or call 1300659 219. The Bureau and State Emergency Service would appreciate this warning being broadcast regularly.

Weather Warning 17

Date: Saturday 8 January 2011
Time: 17:12

From: Aifs Operational Manager
Sent: Saturday, January 08, 2011 5:12:38 PM
To: weather
Subject: BOM: Severe Weather Warning 1 [SEC=UNCLASSIFIED] Auto forwarded by a Rule

IDQ20032
Australian Government Bureau of Meteorology Queensland

TOP PRIORITY FOR IMMEDIATE BROADCAST
SEVERE WEATHER WARNING
for heavy rainfall leading to localised flash flooding and potentially worsening the existing river flood situation For people in the Southeast Coast and Wide Bay and Burnett districts.

Issued at $5: 15 \mathrm{pm}$ on Saturday 8 January 2011
Synoptic Situation: At 4pm EST, an upper level low was located offshore from the Capricornia district while a low level trough was located off the southern coast.

Rain areas are expected to return to the Southeast Coast and Wide Bay and Burnett districts tonight, and are likely to increase to moderate to heavy falls at times during Sunday. Heavy rain may lead to localised flash flooding and/or worsen existing river flooding.

Recent events: Rainfall of up to 304 mm over the Mary River catchment in the 24 hours to 9 am Saturday. A Flood Warning is current for this area.

Flood warnings are current for various rivers and streams in these districts; refer to these products [www.bom.gov.au/qld] for further information.

The State Emergency Service advises that people in the affected area should:
avoid driving, walking or riding through flood waters take care on the roads, especially in heavy downoours avoid swimming in swollen rivers and creeks

Contact the SES on 132500 for emergency assistance if required.
The next warning is due to be issued by 11 pm Saturday
This warning is also available through TV and Radio broadcasts; the Bureau's website at www.bom.gov.au or call 1300659 219. The Bureau and State Emergency Service would appreciate this warning being broadcast regularly.

Weather Warning 18

Date: Saturday 8 January 2011
Time: 22:18

From: Aifs Operational Manager
Sent: Saturday, January 08, 2011 10:18:13 PM
To: weather
Subject: BOM: Severe Weather Warning 1 [SEC=UNCLASSIFIED] Auto forwarded by a Rule

IDQ20032
Australian Government Bureau of Meteorology Queensland

TOP PRIORITY FOR IMMEDIATE BROADCAST
 SEVERE WEATHER WARNING

for heavy rainfall leading to localised flash flooding and potentially worsening the existing river flood situation For people in the Southeast Coast district and southern parts of the Wide Bay and Burnett.

Issued at $10: 20$ pm on Saturday 8 January 2011
Synoptic Situation: At 10pm EST, an upper level low was located offshore of the Capricorn coast. A surface trough was located well offshore of the Fraser coast.
Both of these systems are expected to move closer to the coast overnight and during Sunday.

Rain areas and thunderstorms are expected to increase through the Southeast Coast district and southern parts of the Wide Bay and Burnett district from early Sunday. Some heavy falls are likely which may lead to localised flash flooding and/or worsen existing river flooding.

Flood warnings are current for various rivers and streams in these districts; refer to these products [www.bom.gov.au/qld] for further information.

The State Emergency Service advises that people in the affected area should:
avoid driving, walking or riding through flood waters take care on the roads, especially in heavy downpours avoid swimming in swollen rivers and creeks

Contact the SES on 132500 for emergency assistance if required.
The next warning is due to be issued by 5am Sunday
This warning is also available through TV and Radio broadcasts; the Bureau's website at www.bom.gov.au or call 1300659 219. The Bureau and State Emergency Service would appreciate this warning being broadcast regularly.

APPENDIX G - SEVERE WEATHER WARNINGS

Weather Warning 19

Date: Sunday 9 January 2011
Time: 04:40

From: Aifs Operational Manager
Sent: Sunday, January 09, 2011 4:40:04 AM
To: weather
Subject: BOM: Severe Weather Warning 1 [SEC=UNCLASSIFIED] Auto forwarded by a Rule

IDQ20032
Australian Government Bureau of Meteorology Queensland

TOP PRIORITY FOR IMMEDIATE BROADCAST
 SEVERE WEATHER WARNING

for heavy rainfall leading to localised flash flooding and potentially worsening the existing river flood situation For people in the Southeast Coast district and southern parts of the Wide Bay and Burnett.

Issued at 4:40 am on Sunday 9 January 2011
Synoptic Situation: At 4am EST, an upper level low was located offshore of the Capricorn coast. A surface trough was located offshore of the southern Queensland coast. Both of these systems are expected to move closer to the coast today.

Rain areas and thunderstorms are expected to increase further through the Southeast Coast district and southern parts of the Wide Bay and Burnett district today. Some heavy falls are likely which may lead to localised flash flooding and/or worsen existing river flooding.

Flood warnings are current for various rivers and streams in these districts; refer to these products [www.bom.gov.au/qld] for further information.

The State Emergency Service advises that people in the affected area should:
avoid driving, walking or riding through flood waters take care on the roads, especially in heavy downpours avoid swimming in swollen rivers and creeks

Contact the SES on 132500 for emergency assistance if required.
The next warning is due to be issued by 11am Sunday
This warning is also available through TV and Radio broadcasts; the Bureau's website at www.bom.gov.au or call 1300659 219. The Bureau and State Emergency Service would appreciate this warning being broadcast regularly.

Weather Warning 20

Date: Sunday 9 January 2011
Time: 10:54

From: Aifs Operational Manager
Sent: Sunday, January 09, 2011 10:54:34 AM
To: weather
Subject: BOM: Severe Weather Warning 1 [SEC=UNCLASSIFIED] Auto forwarded by a Rule

IDQ20032
Australian Government Bureau of Meteorology Queensland

TOP PRIORITY FOR IMMEDIATE BROADCAST

SEVERE WEATHER WARNING
for heavy rainfall leading to localised flash flooding and potentially worsening the existing river flood situation For people in the Southeast Coast district, southern parts of the Wide Bay and Burnett, and eastern Darling Downs and Granite Belt District.

Issued at 10:55 am on Sunday 9 January 2011
Synoptic Situation: At 10am EST, an upper level low was located offshore of the Capricorn coast. A surface trough was located offshore of the southern Queensland coast. Both of these systems are expected to move closer to the coast today.

Rain areas and thunderstorms are expected to increase further through the Southeast Coast district and southern parts of the Wide Bay and Burnett district today. The heavy rain areas are expected to move into the eastern parts of the Darling Downs and Granite Belt District overnight. Some heavy falls are likely which may lead to localised flash flooding and/or worsen existing river flooding.

Recent events: Rainfall over 100 mm was recorded in the last 24 hours about parts of the Sunshine Coast and Hinterland.

Flood warnings are current for various rivers and streams in these districts; refer to these products [www.bom.gov.au/qid] for further information.

The State Emergency Service advises that people in the affected area should: avoid driving, walking or riding through flood waters take care on the roads, especially in heavy downpours avoid swimming in swollen rivers and creeks

Contact the SES on 132500 for emergency assistance if required.
The next warning is due to be issued by 5 pm Sunday
This warning is also available through TV and Radio broadcasts; the Bureau's website at www.bom.gov.au or call 1300659 219. The Bureau and State Emergency Service would appreciate this warning being broadcast regularly.

Weather Warning 21

Date: Sunday 9 January 2011
Time: 16:55

From: Aifs Operational Manager
Sent: Sunday, January 09, 2011 4:55:08 PM
To: weather
Subject: BOM: Severe Weather Warning 1 [SEC=UNCLASSIFIED] Auto forwarded by a Rule

IDQ20032
Australian Government Bureau of Meteorology Queensland

TOP PRIORITY FOR IMMEDIATE BROADCAST SEVERE WEATHER WARNING

for heavy rainfall leading to localised flash flooding and potentially worsening the existing river flood situation For people in the Southeast Coast district, southern parts of the Wide Bay and Burnett, and eastern Darling Downs and Granite Belt District.

Issued at 4:55 pm on Sunday 9 January 2011
Synoptic Situation: At 4pm EST, an upper level low was located near the Wide Bay coast. A surface trough was located near the southern Queensland coast. Both of these systems are moving towards the west and southwest.

Rain areas and thunderstorms are expected to continue about the northern and central parts of the Southeast Coast District, southern parts of the Wide Bay and Burnett District, and northeastern parts of the Darling Downs and Granite Belt district. The heavy rain areas are expected to move into the southern parts towards the border with New South Wales and west to the Granite Belt overnight.
Heavy falls are likely which may lead to localised flash flooding and/or worsen existing river flooding.

Recent events: In the past 24 hours, Maleny has recorded 239mm, West Bellthorpe 233 mm and Lindfield 226 mm .

Flood warnings are current for various rivers and streams in these districts; refer to these products [www.bom.gov.au/qid] for further information.

The State Emergency Service advises that people in the affected area should:
avoid driving, walking or riding through flood waters take care on the roads, especially in
heavy downpours avoid swimming in swollen rivers and creeks
Contact the SES on 132500 for emergency assistance if required.
The next warning is due to be issued by 11 pm Sunday
This warning is also available through TV and Radio broadcasts; the Bureau's website at www.bom.gov.au or call 1300659 219. The Bureau and State Emergency Service would appreciate this warning being broadcast regularly.

Weather Warning 22

Date: Sunday 9 January 2011
Time: 22:58

From: Aifs Operational Manager
Sent: Sunday, January 09, 2011 10:58:25 PM
To: weather
Subject: BOM: Severe Weather Warning 1 [SEC=UNCLASSIFIED] Auto forwarded by a Rule

IDQ20032
Australian Government Bureau of Meteorology Queensland

TOP PRIORITY FOR IMMEDIATE BROADCAST
 SEVERE WEATHER WARNING

for heavy rainfall leading to localised flash flooding and potentially worsening the existing river flood situation For people in the Southeast Coast district, southern parts of the Wide Bay and Burnett district and eastern parts of the Darling Downs and Granite Belt district.

Issued at 11:00 pm on Sunday 9 January 2011
Synoptic Situation: At 10pm EST, an upper level low was located over the southern Capricornia. A surface trough was located near the Fraser coast. Both of these systems are moving slowly west.

Heavy rain areas and thunderstorms are expected to continue about northern and central parts of the Southeast Coast District, southern parts of the Wide Bay and Burnett District, and northeastern parts of the Darling Downs and Granite Belt district. The heavy rain areas are expected to extend further south to the New South Wales border and west to the Granite Belt overnight. Heavy falls may lead to localised flash flooding and/or worsen existing river flooding.

Recent events: In the past 24 hours, Maleny has recorded 336 mm , West Bellthorpe 331 mm and Lindfield 301 mm .

Flood warnings are current for various rivers and streams in these districts; refer to these products [www.bom.gov.au/qld] for further information.

The State Emergency Service advises that people in the affected area should:
avoid driving, walking or riding through flood waters take care on the roads, especially in heavy downpours avoid swimming in swollen rivers and creeks

Contact the SES on 132500 for emergency assistance if required.
The next warning is due to be issued by 5 am Monday
This warning is also available through TV and Radio broadcasts; the Bureau's website at www.bom.gov.au or call 1300659 219. The Bureau and State Emergency Service would appreciate this warning being broadcast regularly.

Weather Warning 25

Date: Monday 10 January 2011
Time: 11:04

From: Aifs Operational Manager
Sent: Monday, January 10, 2011 11:04:39 AM
To: weather
Subject: BOM: Severe Weather Warning 1 [SEC=UNCLASSIFIED] Auto forwarded by a Rule

IDQ20032
Australian Government Bureau of Meteorology Queensland

TOP PRIORITY FOR IMMEDIATE BROADCAST

SEVERE WEATHER WARNING
for heavy rainfall leading to localised flash flooding and potentially worsening the existing river flood situation For people in the Southeast Coast district, southern parts of the Wide Bay and Burnett district and eastern parts of the Darling Downs and Granite Belt district.

Issued at 11:05 am on Monday 10 January 2011
Synoptic Situation: At 10am EST, an upper level low was located over the southwest of the Capricornia District. A surface trough was located off the southeast coast. Both of these systems are moving slowly west.

Heavy rain areas and thunderstorms are expected to continue through the Southeast Coast district, far southern parts of the Wide Bay and Burnett District and eastern parts of the Darling Downs and Granite Belt district. Heavy falls may lead to localised flash flooding and/or worsen existing river flooding.

The heavy rain areas and thunderstorms are expected to contract southwards into the Southeast Coast district and southeast parts of the Darling Downs and Granite Belt district during Tuesday.

Recent events: In the 24 hours to 9am EST Monday morning, Maleny received 321 mm , West Bellthorpe 310 mm and Peachester 298 mm .

Flood warnings are current for various rivers and streams in these districts; refer to these products [www.bom.gov.au/qld] for further information.

The State Emergency Service advises that people in the affected area should:
avoid driving, walking or riding through flood waters take care on the roads, especially in heavy downpours avoid swimming in swollen rivers and creeks

Contact the SES on 132500 for emergency assistance if required.
The next warning is due to be issued by 5 pm Monday.
This warning is also available through TV and Radio broadcasts; the Bureau's website at www.bom.gov.au or call 1300659 219. The Bureau and State Emergency Service would appreciate this warning being broadcast regularly.

Weather Warning 26

Date: Monday 10 January 2011
Time: 17:06

From: Aifs Operational Manager
Sent: Monday, January 10, 2011 5:06:14 PM
To: weather
Subject: BOM: Severe Weather Warning 1 [SEC=UNCLASSIFIED] Auto forwarded by a Rule

IDQ20032
Australian Government Bureau of Meteorology Queensland

TOP PRIORITY FOR IMMEDIATE BROADCAST
 SEVERE WEATHER WARNING

for heavy rainfall leading to localised flash flooding and potentially worsening the existing river flood situation For people in the Southeast Coast district, far southern parts of the Wide Bay and Burnett district and eastern parts of the Darling Downs and Granite Belt district.

Issued at 5:05 pm on Monday 10 January 2011
Synoptic Situation: At 4pm EST, an upper level low was located over the west of the Wide Bay and Burnett district. A surface trough was located off the east Queensland coast. The upper low is forecast to move southwest over the southern interior of Queensland while the surface trough remains slow moving.

Heavy rain areas and thunderstorms are expected to continue through the Southeast Coast district and eastern parts of the Darling Downs and Granite Belt district. Heavy falls may lead to localised flash flooding and/or worsen existing river flooding.

The heavy rain areas and thunderstorms are expected to contract southwards and gradually ease in the Southeast Coast district and eastern parts of the Darling Downs and Granite Belt district later on Tuesday.

Rainfall has eased in far southern parts of the Wide Bay and Burnett district and therefore the warning for this district is now CANCELLED.

Recent events: In the 24 hours to 9am EST Monday, Maleny received 321 mm , West Bellthorpe 310 mm and Peachester 298 mm .
In the 7 hours since 9am EST Monday, Redbank Creek received 126mm, Toowoomba Airport 88 mm and Mt Castle 80 mm .

Flood warnings are current for various rivers and streams in these districts; refer to these products [www.bom.gov.au/qld] for further information.

The State Emergency Service advises that people in the affected area should:
avoid driving, walking or riding through flood waters take care on the roads, especially in heavy downpours avoid swimming in swollen rivers and creeks

Contact the SES on 132500 for emergency assistance if required.

APPENDIX G - SEVERE WEATHER WARNINGS

The next warning is due to be issued by 11 pm Monday.
This warning is also available through TV and Radio broadcasts; the Bureau's website at www.bom.gov.au or call 1300659 219. The Bureau and State Emergency Service would appreciate this warning being broadcast regularly.

Weather Warning 27

Date: Monday 10 January 2011
Time: 18:29

From: Aifs Operational Manager
Sent: Monday, January 10, 2011 6:29:54 PM
To: weather
Subject: BOM: Severe Weather Warning 1 [SEC=UNCLASSIFIED] Auto forwarded by a Rule

IDQ20032
Australian Government Bureau of Meteorology Queensland

TOP PRIORITY FOR IMMEDIATE BROADCAST
 SEVERE WEATHER WARNING
 for heavy rainfall leading to localised flash flooding and potentially worsening the existing river flood situation For people in the Southeast Coast, Darling Downs and Granite Belt and eastern parts of the Maranoa and Warrego districts.

Issued at 6:30 pm on Monday 10 January 2011
Synoptic Situation: At 6 pm EST, an upper level low was located over the west of the Wide Bay and Burnett district. A surface trough was located off the east Queensland coast. The upper low is forecast to move southwest over the southern interior of Queensland while the surface trough remains slow moving.

Heavy rain areas and thunderstorms are expected to continue through the Southeast Coast, Darling Downs and Granite Belt and eastern parts of the Maranoa and Warrego districts this evening. Heavy falls may lead to localised flash flooding and/or worsen existing river flooding.

The heavy rain areas and thunderstorms are expected to contract into the Southeast Coast and eastern parts of the Darling Downs and Granite Belt districts during Tuesday. These conditions should gradually ease later in the day.

Recent events: In the 24 hours to 9am EST Monday, Maleny received 321 mm , West Bellthorpe 310 mm and Peachester 298 mm .
In the 7 hours since 9 am EST Monday, Redbank Creek received 126 mm , Toowoomba Airport 88 mm and Mt Castle 80 mm .

Flood warnings are current for various rivers and streams in these districts; refer to these products [www.bom.gov.au/qld] for further information.

The State Emergency Service advises that people in the affected area should: avoid driving, walking or riding through flood waters take care on the roads, especially in heavy downpours avoid swimming in swollen rivers and creeks

Contact the SES on 132500 for emergency assistance if required.
The next warning is due to be issued by 11 pm Monday.

APPENDIX G - SEVERE WEATHER WARNINGS

This warning is also available through TV and Radio broadcasts; the Bureau's website at www.bom.gov.au or call 1300659 219. The Bureau and State Emergency Service would appreciate this warning being broadcast regularly.

Weather Warning 28

Date: Monday 10 January 2011
Time: 19:51

From: Aifs Operational Manager
Sent: Monday, January 10, 2011 7:51:20 PM
To: weather
Subject: BOM: Severe Weather Warning 1 [SEC=UNCLASSIFIED] Auto forwarded by a Rule

IDQ20032
Australian Government Bureau of Meteorology Queensland

TOP PRIORITY FOR IMMEDIATE BROADCAST

SEVERE WEATHER WARNING
for heavy rainfall leading to localised flash flooding and potentially worsening the existing river flood situation For people in the Southeast Coast, Darling Downs and Granite Belt, far southern parts of the Wide Bay and Burnett and eastern parts of the Maranoa and Warrego districts.

Issued at 7:50 pm on Monday 10 January 2011
Synoptic Situation: At 7pm EST, an upper level low was located over the west of the Wide Bay and Burnett district. A surface trough was located off the east Queensland coast. The upper low is forecast to move southwest over the southern interior of Queensland while the surface trough remains slow moving.

Heavy rain areas and thunderstorms are expected to continue through the Southeast Coast, Darling Downs and Granite Belt, far southern parts of the Wide Bay and Burnett and eastern parts of the Maranoa and Warrego districts this evening and overnight. Heavy falls may lead to localised flash flooding and/or worsen existing river flooding.

The heavy rain areas and thunderstorms are expected to contract into the Southeast Coast and eastern parts of the Darling Downs and Granite Belt districts during Tuesday. These conditions should gradually ease later in the day.

Recent events: In the 24 hours to 9am EST Monday, Maleny received 321 mm , West Bellthorpe 310 mm and Peachester 298 mm .
In the 7 hours since 9am EST Monday, Redbank Creek received 126mm, Toowoomba Airport 88 mm and Mt Castle 80 mm .

Flood warnings are current for various rivers and streams in these districts; refer to these products [www.bom.gov.au/qid] for further information.

The State Emergency Service advises that people in the affected area should:
avoid driving, walking or riding through flood waters take care on the roads, especially in heavy downpours avoid swimming in swollen rivers and creeks

Contact the SES on 132500 for emergency assistance if required.
The next warning is due to be issued by 11 pm Monday.

APPENDIX G - SEVERE WEATHER WARNINGS

This warning is also available through TV and Radio broadcasts; the Bureau's website at www.bom.gov.au or call 1300659 219. The Bureau and State Emergency Service would appreciate this warning being broadcast regularly.

Weather Warning 29

Date: Monday 10 January 2011
Time: 22:57

From: Aifs Operational Manager
Sent: Monday, January 10, 2011 10:57:26 PM
To: weather
Subject: BOM: Severe Weather Warning 1 [SEC=UNCLASSIFIED] Auto forwarded by a Rule

IDQ20032
Australian Government Bureau of Meteorology Queensland

TOP PRIORITY FOR IMMEDIATE BROADCAST

SEVERE WEATHER WARNING
for heavy rainfall leading to localised flash flooding and potentially worsening the existing river flood situation For people in the Southeast Coast, Darling Downs and Granite Belt, far southern parts of the Wide Bay and Burnett and eastern parts of the Maranoa and Warrego districts.

Issued at 11:00 pm on Monday 10 January 2011
Synoptic Situation: At 10pm EST, an upper level low was located over the far southeast of the Central Highlands and Coalfields district. The upper low is forecast to move southwest over the southern interior of Queensland while weakening during Tuesday.

Heavy rain areas and thunderstorms are expected to continue through the Southeast Coast, Darling Downs and Granite Belt, far southern parts of the Wide Bay and Burnett and eastern parts of the Maranoa and Warrego districts tonight.
Heavy falls may lead to localised flash flooding and/or worsen existing river flooding.
The heavy rain areas and thunderstorms are expected to contract into the Southeast Coast and eastern parts of the Darling Downs and Granite Belt districts during Tuesday. These conditions should gradually ease later in the day.

Recent events: In the 1 hour to 11 pm EST Monday, Monsildale and Mt Stanley [situated in northern parts of the Southeast Coast district] both received 58mm.
In the 13 hours since 9am EST Monday, Redbank Creek received 132mm, Ballon 124mm and Mt Castle 103 mm .

Flood warnings are current for various rivers and streams in these districts; refer to these products [www.bom.gov.au/qld] for further information.

The State Emergency Service advises that people in the affected area should: avoid driving, walking or riding through flood waters take care on the roads, especially in heavy downpours avoid swimming in swollen rivers and creeks

Contact the SES on 132500 for emergency assistance if required.
The next warning is due to be issued by 5am Tuesday.

APPENDIX G - SEVERE WEATHER WARNINGS

This warning is also available through TV and Radio broadcasts; the Bureau's website at www.bom.gov.au or call 1300659 219. The Bureau and State Emergency Service would appreciate this warning being broadcast regularly.

Weather Warning 30

Date: Tuesday 11 January 2011
Time: 05:04

From: Aifs Operational Manager
Sent: Tuesday, January 11, 2011 5:04:24 AM
To: weather
Subject: BOM: Severe Weather Warning 1 [SEC=UNCLASSIFIED] Auto forwarded by a Rule

IDQ20032
Australian Government Bureau of Meteorology Queensland

TOP PRIORITY FOR IMMEDIATE BROADCAST
 SEVERE WEATHER WARNING

for heavy rainfall leading to localised flash flooding and potentially worsening the existing river flood situation For people in the Southeast Coast, Darling Downs and Granite Belt, far southern parts of the Wide Bay and Burnett and eastern parts of the Maranoa and Warrego districts.

Issued at 5:05 am on Tuesday 11 January 2011
Synoptic Situation: At 4am EST, an upper level low was located over the Darling Downs and Granite Belt district. The upper low is forecast to move southwest over the southern interior of Queensland while weakening during the day.

Heavy rain areas and thunderstorms are expected to continue through the Southeast Coast, Darling Downs and Granite Belt, far southern parts of the Wide Bay and Burnett and eastern parts of the Maranoa and Warrego districts today.
Heavy falls may lead to localised flash flooding and/or worsen existing river flooding.
The heavy rain areas and thunderstorms are expected to contract to the south by late today, before gradually easing.

Recent events: Rainfall since 9 am Monday Monsildale 160 mm , Mt Stanley 135 mm , and Redbank Creek 134mm.

Flood warnings are current for various rivers and streams in these districts; refer to these products [www.bom.gov.au/qld] for further information.

The State Emergency Service advises that people in the affected area should:
avoid driving, walking or riding through flood waters take care on the roads, especially in heavy downpours avoid swimming in swollen rivers and creeks

Contact the SES on 132500 for emergency assistance if required.
The next warning is due to be issued by 11 am Tuesday.
This warning is also available through TV and Radio broadcasts; the Bureau's website at www.bom.gov.au or call 1300659 219. The Bureau and State Emergency Service would appreciate this warning being broadcast regularly.

Weather Warning 33

Date: Tuesday 11 January 2011
Time: 13:59

From: Aifs Operational Manager
Sent: Tuesday, January 11, 2011 1:59:04 PM
To: weather
Subject: BOM: Severe Weather Warning 1 [SEC=UNCLASSIFIED] Auto forwarded by a Rule

IDQ20032
Australian Government Bureau of Meteorology Queensland
Transmitters in the areas of the Southeast Coast District and the Darling Downs and Granite Belt District southeast of Dalby to Goondiwindi are REQUESTED TO USE THE STANDARD EMERGENCY WARNING SIGNAL BEFORE BROADCASTING.

TOP PRIORITY FOR IMMEDIATE BROADCAST

SEVERE WEATHER WARNING
for heavy rainfall leading to flash flooding and worsening the existing river flood situation For people in the Southeast Coast District and the Darling Downs and Granite Belt District southeast of Dalby to Goondiwindi.

Issued at 2:00 pm on Tuesday 11 January 2011
Synoptic Situation: At 2 pm AEST, a surface trough was lying over the Southeast Queensland Coast and is expected to weaken overnight.

Heavy rain areas and local thunderstorms are expected to continue through the Southeast Coast and the Darling Downs and Granite Belt District southeast of Dalby to Goondiwindi. Heavy falls will lead to flash flooding and will worsen existing river flooding.

Currently the focus of the heaviest rainfall extends from about Maroochydore to Warwick, including the Brisbane and Lockyer Valleys and Ipswich area. Recent rainfall rates in this band have reached 60 to 80 mm per hour. This rainfall band is expected to remain slow moving during the remainder of today and gradually weaken overnight and during Wednesday morning.

Flood warnings are current for various rivers and streams in these districts.
Please refer to these products [www.bom.gov.au/qId] for further information.
The State Emergency Service advises that people in the affected area should:
avoid driving, walking or riding through flood waters take care on the roads, especially in heavy downpours avoid swimming in swollen rivers and creeks

Contact the SES on 132500 for emergency assistance if required.
The next warning is due to be issued by 5 pm AEST Tuesday.
This warning is also available through TV and Radio broadcasts; the Bureau's website at www.bom.gov.au or call 1300659 219. The Bureau and State Emergency Service would appreciate this warning being broadcast regularly.

APPENDIX G - SEVERE WEATHER WARNINGS $S_{\text {(coninues) }}$

Weather Warning 34

Date: Tuesday 11 January 2011
Time: 17:00

From: Aifs Operational Manager
Sent: Tuesday, January 11, 2011 5:00:33 PM
To: weather
Subject: BOM: Severe Weather Warning 1 [SEC=UNCLASSIFIED] Auto forwarded by a Rule

IDQ20032
Australian Government Bureau of Meteorology Queensland
Transmitters in areas of the Southeast Coast district and the Darling Downs and Granite Belt district southeast of Dalby to Goondiwindi are REQUESTED TO USE THE STANDARD EMERGENCY WARNING SIGNAL BEFORE BROADCASTING.

TOP PRIORITY FOR IMMEDIATE BROADCAST

SEVERE WEATHER WARNING

for heavy rainfall leading to flash flooding and worsening the existing river flood situation For people in the Southeast Coast District and the Darling Downs and Granite Belt District southeast of Dalby to Goondiwindi.

Issued at 5:00 pm on Tuesday 11 January 2011
Synoptic Situation: At 4 pm AEST, southeast Queensland was under the influence of a deep moist easterly airstream, with an upper trough located over the Darling Downs.

Heavy rain areas and local thunderstorms are expected to continue tonight through the Southeast Coast and the Darling Downs and Granite Belt District southeast of Dalby to Goondiwindi. Heavy falls will lead to further localised flash flooding and will worsen existing river flooding.
The heavy rain areas are expected to gradually weaken overnight and during Wednesday morning.

Flood warnings are current for various rivers and streams in these districts. Please refer to these products [www.bom.gov.au/qid] for further information.

The State Emergency Service advises that people in the affected area should:
avoid driving, walking or riding through flood waters take care on the roads, especially in heavy downpours avoid swimming in swollen rivers and creeks

Contact the SES on 132500 for emergency assistance if required.
The next warning is due to be issued by 11 pm AEST Tuesday.
This warning is also available through TV and Radio broadcasts; the Bureau's website at www.bom.gov.au or call 1300659 219. The Bureau and State Emergency Service would appreciate this warning being broadcast regularly.

APPENDIX G - SEVERE WEATHER WARNINGS

Weather Warning 35

Date: Tuesday 11 January 2011
Time: 21:59

From: Aifs Operational Manager
Sent: Tuesday, January 11, 2011 9:59:57 PM
To: weather
Subject: BOM: Severe Weather Warning 1 [SEC=UNCLASSIFIED] Auto forwarded by a Rule

IDQ20032
Australian Government Bureau of Meteorology Queensland
Note: The Standard Emergency Warning Signal is no longer required.
TOP PRIORITY FOR IMMEDIATE BROADCAST
CANCELLATION - SEVERE WEATHER WARNING
For people in the Southeast Coast District and the Darling Downs and Granite Belt District southeast of Dalby to Goondiwindi.

Issued at 10:00 pm on Tuesday 11 January 2011
Synoptic Situation: At 10 pm AEST, southeast Queensland was under the influence of a deep moist east to northeast airstream. A weakening upper trough was moving south.

Heavy rain areas have eased during the past few hours and further flash flooding due to rainfall is no longer expected.

Note that an extremely serious river and stream flood situation still exists.
Refer to flood warnings [www.bom.gov.au/qid] for further information.
The State Emergency Service advises that people in the affected area should: avoid driving, walking or riding through flood waters avoid swimming in swollen rivers and creeks

Contact the SES on 132500 for emergency assistance if required.
No further warnings are expected to be issued for this event
This warning is also available through TV and Radio broadcasts; the Bureau's website at www.bom.gov.au or call 1300659 219. The Bureau and State Emergency Service would appreciate this warning being broadcast regularly.

APPENDIXI - FLOOD READINESS CHECKLIST

WIVENHOE DAM FLOOD READINESS CHECKLIST

Date: \qquad Time: \qquad
Duty Officer in Charge: \qquad
Rainfall (mm): \qquad
Lake Level: \qquad Gauge Board
Lake Level: \qquad Auto dialler

Tail Level: \qquad Gauge Board
Tail Level: \qquad Recorder

Security Alarm code on key ring - Rain gauge adjacent to office - Lake Gawge board on western end of wall (RB) - Tail gauge board down Spillway Commonrag at Atkinson Crossing.

Outlet Works

Sump Pumps operational:
No. 1
\square
High Level Alarm operations:
V-Notch weirs clean:

Dam Underground Complex

Standby Generator operations;

Mode Selector switch to Astomatic:
Monitor Telemetry:

Winch Room

Electric 4 ydraulic Units operational:
Diesel-Hydraulic operational:
(1)ectric Hydraulic Unit Pumps mode:

Oil Return Valve Position:
Separated \square Connected
Electric Vertical \square Diesel Horizontal \square

Note: Check all valves are in position for mode selected. Key No. 5 is required for opening hydraulic cabinets as well as the Radial Gate local control panel on Pier.

APPENDIX I - FLOOD READINESS CHECKLIST

SOMERSET DAM FLOOD READINESS CHECKLIST

Date: \qquad Time: \qquad
Duty Officer in Charge: \qquad
Rainfall (mm): \qquad
Lake Level Somerset: \qquad Gauge Board
Lake Level Somerset: \qquad Recorder
Lake Level Wivenhoe: \qquad Gauge Boards at bridge
Lake Level Wivenhoe: \qquad Phone Recorder
Communications Phone: \qquad
Local Phones: \qquad
Fax Lines: \qquad Mobiles: \qquad
Hand held Radios: \qquad
Satellite Phone: \qquad

GENERATORS

1. Fixed Standby Diesel above office (Top Deck)

Check:

Oil
\square Water \square Fuel
\square
Battery
\square Autôswitch

Test run by following the manual Operation Instruction Sheet in the Generator Control Panel, run for at leas -15 min .
2. Mobiles. Stand-by Diesel in shed at far end of Top Deck

Test run by following the Manual Operation Instruction Sheet in the Generator Control Panel, run for at least 15 min .

APPENDIX I - FLOOD READINESS CHECKLIST

3. Portable 5.5 Honda

Check:

Petrol $\square \quad$ OilTest run

Moved to Cone Valve Control Room

SUMP PUMPS are located in the Regulator Cone Valve chambers on both left and right banks. Test by turning auto/manual switch (on wall) to "ON" position or by flooding shaft. Follow the operation procedures on the attached form.Tested Auto

DOORS: all external doors are to remain closed at all times.

- CHECK all lower galleries for any excessive leaksor irregular colour.
\square Follow the instructions in the Floded Manual for inspection intervals.
- Clean all drains that may become blooked.
- Cyclonic conditions secure crane to tie down points.

Signed: \qquad

APPENDIX J - FORECAST RAINFALL COMPARISON

Seqwater commenced development of a new flood modelling system, FEWS, in March 2010. A prototype was delivered in early November 2010 at which time forecast rainfall from the Bureau's ACCESS Numerical Weather Prediction models was ingested into the system several times per day. These models cover different coverage at varying resolutions and are generated at different times of the day. The results of the models are merged, downscaled to the Brisbane area and gridded to produce forecast the images below. The grid of the actual rainfall is based upon all available ALERT stations in the Enviromon data collection system and is generated by FEWS using surface fitting techniques.

Cr				
Model	Domain	Resolution (km)	Duration (hours)	Runs (UTC)
ACCESS-G	Global	~ 80	$+240$	00,12
ACCESS-R	Regiona	~37.5	+72	00,12
ACCESS-T	Tropical	~37.5	+72	00,12
ACCESS-A AKAustralia		~ 12	+48	00,06,12,18
ACCESS-BR	Brisbane	~ 5	+36	00,12

While FEWS outputs were not available during the Event, the forecast rainfalls used (QPF, Silo and Interactive Weather and Wave Maps) are based upon the ACCESS model outputs.

The scale spolun below has been adopted in all of the maps below and indicates the rainfall depth in millimetres.

The table below shows a comparison of the progressive forecast and recorded rainfall fields for 24 hour periods commencing at 09005 Janerary 2011 . The first row shows the actual rainfall for the 24 hours at the end of the forecast period while the row below shows the rainfall that was forecast for the 24 houkperiods for the days following the start date.

Table of Progressive 24 Hours Forecast and Actual Rainfalls

Period	$\begin{array}{ll} 0900005 / 0112011 \\ 0900 & 06 / 01 / 2011 \end{array}$	$\begin{aligned} & 090006 / 01 / 2011 \\ & 090007 / 01 / 2011 \\ & 000010 \end{aligned}$	$\begin{aligned} & 090007 / 1 / 2011 \\ & 090008 / 01 / 2011 \end{aligned}$	$\begin{gathered} 0900 \\ 08101 / 20111 \\ 0900 \\ 09 / 01 / 2011 \end{gathered}$	$\begin{gathered} 09000911 / 2011 \\ 090010 / 01 / 2011 \end{gathered}$	$\begin{aligned} & 0900 \\ & 090101 / 2011 \\ & 0 \\ & 090011 / 01 / 2011 \end{aligned}$	$\begin{aligned} & 090011 / 01 / 2011 \\ & 090012 / 01 / 2011 \\ & 0900 \end{aligned}$
Actual at end of period							
Forecast made on 06/01 for 24 hours ending							
Forecast made on 07/01 for 24 hours ending		U-					

\qquad

APPENDIX $\sqrt{ }$ - FORECAST RAINFALL COMPARISON

(continued)

Period	$090005 / 01 / 2011$	$\begin{aligned} & 0900006101 / 2011 \\ & 090007 / 11 / 2011 \\ & 0 \end{aligned}$	$\begin{aligned} & 0900007101 / 2011 \\ & 090008 / 01 / 2011 \\ & 0900 \end{aligned}$	$\begin{gathered} 090008 / 01 / 20111 \\ 090009 / 01 / 20111 \end{gathered}$	$\begin{gathered} 0900 \\ 09101 / 2011 \\ 0900 \\ 0 / 0 / 1 / 2011 \end{gathered}$	$\begin{array}{lll} 0900 & 10 / 01 / 2011 \\ 0 & 0 & 11 / 2011 \\ 0900 & 11 / 01 / 2011 \end{array}$	$\begin{array}{lll} 0900 & 11 / 01 / 2011 \\ 0 & 12 / 01 / 2011 \\ 0900 & 12 / 0 \end{array}$
Forecast made on 08/01 for 24 hours ending							
Forecast made on 09/01 for 24 hours ending							
Forecast made on 10/01 for 24 hours ending							
Forecast made on 11/01 for 24 hours ending				$\begin{array}{cc} & \vdots \\ \cdots & \vdots \\ \cdots & \vdots\end{array}$		$\therefore \ldots$	

APPENDIX J - FORECAST RAINFALL COMPARISON

(continued)

The table below shows a comparison of the forecast and recorded rainfall fields for 24 hour periods. The first row shows the forecast rainfaldor the 24 hours at the start of the forecast period while the row below shows the rainfall that was actually recorded by the end of period.

Table of 24 Hours Forecast and Actual Rainfalls

Period	$090005 / 01 / 2011$	$\begin{aligned} & 090006 / 01 / 2011 \\ & 090007 / 1 / 2011 \end{aligned}$	$\begin{aligned} & 090007 / 01 / 2011 \\ & 090008 / 01 / 2011 \end{aligned}$	$\begin{aligned} & 090008 / 01 / 20111 \\ & 090009 / 01 / 2011 \end{aligned}$	$\begin{array}{ll} 0900 & 09 / 01 / 2011 \\ 090010 / 01 / 2011 \end{array}$	$\begin{array}{ll} 0900 & 10 / 01 / 2011 \\ \text { a } \\ 0900 & 11 / 01 / 2011 \end{array}$	$\begin{aligned} & 0900 \\ & \text { a } 11 / 01 / 2011 \\ & 0 \\ & 090012 / 01 / 2011 \end{aligned}$
Forecast at start of period							
Actual at end of period							

The table below shows a comparison of the forecast and recorded rainfall fields for 48 hour periods. The first row shows the forecast rainfaytor the 48 hours at the start of the forecast period while the row below shows the rainfall that was actually recorded by the end of period.

Table of 48 Hours Forecast and Actual Rainfalls

Period	$\begin{array}{lll} 0900 & 04 / 01 / 2011 \\ 0 & 0 & 000 \\ 06 / 21 / 2011 \end{array}$	$\begin{aligned} & 090005101 / 2011 \\ & 090007 / 01 / 2011 \end{aligned}$	$\begin{gathered} 0900 \\ 06 / 01 / 2011 \\ 090008 / 01 / 2011 \end{gathered}$	$\begin{gathered} 090007 / 101 / 2011 \\ 0 \\ 090009 / 01 / 2011 \end{gathered}$	$\begin{aligned} & 090008 / 01 / 2011 \\ & 090010 / 01 / 2011 \\ & 0900 \end{aligned}$	$\begin{aligned} & 0900009 / 01 / 2011 \\ & 090011 / 01 / 2011 \end{aligned}$	$\begin{aligned} & 090010 / 0112011 \\ & 090012 / 01 / 2011 \\ & 0 \end{aligned}$
Forecast at start of period							
Actual at end of period							

The table below shows a comparison of the forecast and recorded rainfall fields for 48 hour periods. The first row shows the forecast rainfaytor the 48 hours at the start of the forecast period while the row below shows the rainfall that was actually recorded by the end of period.

Table of 48 Hours Forecast and Actual Rainfalls

Period	$\begin{array}{lll} 0900 & 04 / 01 / 2011 \\ 0 & 0 & 000 \\ 06 / 21 / 2011 \end{array}$	$\begin{aligned} & 090005101 / 2011 \\ & 090007 / 01 / 2011 \end{aligned}$	$\begin{gathered} 0900 \\ 06 / 01 / 2011 \\ 090008 / 01 / 2011 \end{gathered}$	$\begin{gathered} 090007 / 101 / 2011 \\ 0 \\ 090009 / 01 / 2011 \end{gathered}$	$\begin{aligned} & 090008 / 01 / 2011 \\ & 090010 / 01 / 2011 \\ & 0900 \end{aligned}$	$\begin{aligned} & 0900009 / 01 / 2011 \\ & 090011 / 01 / 2011 \end{aligned}$	$\begin{aligned} & 090010 / 0112011 \\ & 090012 / 01 / 2011 \\ & 0 \end{aligned}$
Forecast at start of period							
Actual at end of period							

APPENDIX J - FORECAST RAINFALL COMPARISON

(continued)

The table below shows a comparison of the forecast and recorded rainfall fields for 72 hour periods. The first row shows the forecast rainfalt-sor the 72 hours at the start of the forecast period while the row below shows the rainfall that was actually recorded by the end of period.

Table of 72 Hours Forecast and Actual Rainfalls

Period	$\begin{aligned} & 090004 / 01 / 2011 \\ & 0900 \\ & 07 / 1 / 201 / 2011 \end{aligned}$	$\begin{aligned} & 090005 / 01 / 2011 \\ & 090008 / 01 / 2011 \end{aligned}$	$\begin{array}{lll} 0900 & 06 / 01 / 2011 \\ 0 & 0 & 11 \\ 0900 & 09 / 01 / 2011 \end{array}$	$\begin{aligned} & 090007 / 1 / 2011 \\ & 090010 / 01 / 2011 \end{aligned}$	$\begin{aligned} & 090008101 / 2011 \\ & 090011 / 01 / 2011 \end{aligned}$	$\begin{aligned} & 090009 / 1 / 2011 \\ & 090012 / 01 / 2011 \\ & 0900 \end{aligned}$
Forecast at start of period						
Actual at end of period						

APPENDIXK - 3-DAY ASSESSMENTS AND MODEL RESULTS

Date: Sunday 9 January 2011
Time: 11:02

From: Duty Engineer
Sent: Sunday, 9 January 2011 11:02 AM
To: Distribution List
Cc: Distribution List
Subject: Forecast Rainfall and Possible Runoff

Forecast Rainfall

The forecast for the next few days is for heavy rainfall, particularly for period 10pm Sundayto 10 pm Monday with totals between $200-300 \mathrm{~mm}$. The areas mostly heavily impacted will be the North Pine, Somerset and Leslie Harrison catchments with less rain in the upper Brisbane
http://www.bom.gov.au/isp/wat//rainfall/pme.jsp
The rain contracts to the area around North Pine for the period 10 pm Mondayd 10 pm Tuesday with totals in the order of 100 to 150 mm .

The interactive model at http://www.bom.gov.au/australia/charts/viewerfindex.shtml shows the heaviest falls during the next 48 hours are likely to be overnight sunday/Monday and overnight Monday/Tuesday.

The QPF for the period 24 hours to 9 am show totals betweren $40-60 \mathrm{~mm}$ for both North Pine and Somerset M Nivenhoe catchments. Note that this is only-half the period of the above forecast durations.

Recorded Runoff

To date recorded inflows to the dams since
North Pine $\quad 23,000 \mathrm{ML}$
Somerset $\quad 120,000 \mathrm{ML}$
Wivenhoe $\quad 380,000 \mathrm{ML}$ (includingsomerset outflow)
Presently, the conversion rate between rainfall and runoff is about 0.45 for Wivenhoe, 0.60 for North Pine and 0.75 for Somerset.

Expected Runoff

Based on the approximate runoff conversion rates and the forecast rainfall, estimated runoff volumes (ML) generatedseetid be of the order of:

Catchment	Monday	Tuesday	Wednesday	Three Day Total
North Pine	$10,000-20,000$	$35,000-55,000$	$25,000-35,000$	$70,000-110,000$
Sonerset	$50,000-100,000$	$200,000-300,000$	$75,000-150,000$	$325,000-550,000$
Miyenhoe	$125,000-250,000$	$250,000-500,00$	$125,000-250,000$	$500,000-1,000,000$

The lower limit of the inflow to Somerset and Wivenhoe will be similar to the October 2010 flood while the upper limit is similar to the February 1999 floods. However, the starting level of the dams is much higher than in these historical events.

This points to continued flood operations for Somerset and Wivenhoe until at least the weekend of 15/16 Jan and maybe a shorter time for North Pine.

APPENDIXK - 3-DAY ASSESSMENTS AND MODEL RESULTS

It should be noted that these estimates are based upon forecast rainfall which may or may not eventuate.

Engineer 2
Duty Engineer
Flood Operations Centre
ε əб．${ }^{\text {d }}$

				$\angle 6 \varepsilon^{\prime} \angle O L$	рәияшшо			
				L08＇18t	010＇z	an		
		－		L69＇gzz	OZL＇し			
								uolreinuis puañ jo pua ol
			\bigcirc	96L＇961	раи！qшол			
				867＊ $62 \downarrow$	0＋0̇ट			
				L6て＇ 19	OZL．		．	мо1fur wed fosıomos
こLでて	$\angle 9$	\downarrow ¢	$\varepsilon \cdot 9 \downarrow$	997．6 ${ }^{3}$	OLZ	866．91	切	
$980{ }^{\circ} \mathrm{\varepsilon}$	レとで	8 \％レ－	1．99－	61LOZ	181	SGL＇とZ	てい	LoolleM te y dәurag
£乌6＇દย	しかt	$0 \cdot \angle L Z$	6 ¢ 6 LOL	9y\％${ }^{\text {a }}$	98t	LSでてし	カャ	
9ヶL	¢S	$0{ }^{\circ} \mathrm{E}$	L89	990＇G	\downarrow เレ	026＇t	62	
$696 \times ¢ ¢$	182	G＇19	$26 L{ }^{\prime}$	996×97	L9L＇L	900＇16	986	
								K【．oun pue oliep uniol
（7w） ounion pools əวuəコə！！	(s, u) MOIS yeod əэuอjəఘ！！	amion pooly（\％） asuəra川！a quessod	$\begin{aligned} & \text { moll } \\ & \text { yeed (\%) } \\ & \text { ajuairy!a } \\ & \text { juəorod } \end{aligned}$	$\begin{gathered} \text { (lw) } \\ \text { amion } \\ \text { pool } \\ \text { pellopow } \end{gathered}$	(s, u, u) MOIt yead pelizpow	$\begin{gathered} \begin{array}{c} (7 w) \\ \text { aunion } \\ \text { poolj } \\ \text { papiosoy } \end{array} \end{gathered}$	$\left(s,{ }_{\varepsilon}, \mathrm{l}\right)$ MOIf yeed papiojay	4017e507
			\％				$4!$	$00: 22$ ：oull 1sevorog－071s－sha uny

Flow (m^3/s)

g abed

9 abed

\angle 26ed

6 əbed

\&r ${ }^{\text {abed }}$

サージあ

Flow ($\mathrm{m}^{\wedge} 3 / \mathrm{s}$)

$\angle 1$ ofed

$6126 \mathrm{E}_{\mathrm{d}}$

$0 z{ }^{\circ}{ }^{5} \mathrm{e}_{\mathrm{d}}$
12 ә6ed

$\varepsilon z{ }^{\text {®发d }}$

Flow ($\mathrm{m}^{\wedge} 3 / \mathrm{s}$)

sz ә6ed

$9 Z$ Э6ed

9 abed

This points to continued flood operations for Somerset and Wivenhoe until at least the weekend of
$15 / 16$ Jan and maybe a shorter time for North Pine. the upper limit is similar to the February 1999 floods. However, the starting level of the dams is much
higher than in these historical events. The lower limit of the inflow to Somerset and Wivenhoe will be similar to the October 2010 flood while

 Based on the approximate runoff conversion rates and the forecast rainfall, estimated runoff volumes
(ML) generated ootid be of the order of:
 Pine and 0.75 for Somerset. Presently, the conversion rate bedween rainfall and runoff is about 0.45 for Wivenhoe, 0.60 for North Wivenhoe $380,000 \mathrm{ML}$ (includiag.Somerset outflow) To date recorded inflows to the dams since $\quad 23,000 \mathrm{ML}$
North Pine $\quad 1 / 2011$ have been Recorded Runoff Somerset/Wivenhoe catchments. Note that this is only hal the period of the above forecast durations Monday/Tuesday. The interactive model at http://www.bom.gov.au/australia/charts/viewer/index. shtml shows the
umosl ot ool to dəpıo әપt u! s|ełot

The rain contracts to the area around North Pine for the period 10pm Monday 10 pm Tuesday with

$$
\underline{\text { http://www.bom.gov.au/isp/watl/rainfall/pme.jsp }}
$$

Monday with totals between $200-300 \mathrm{~mm}$. The areas mostly heavily impacted will be the North Pin
The forecast for the next few days is for heavy rainfall, particularly for period 10pm Sungayto 10pm
Monday with totals between $200-300 \mathrm{~mm}$. The areas mostly heavily impacted will be the North Pine

$$
\begin{aligned}
& \text { Sent: Sunday, } 9 \text { Jan } \\
& \text { To: Distribution List } \\
& \text { C: Distribution List } \\
& \text { Subject: Forecast R }
\end{aligned}
$$

From: Duty Engineer
Sent: Sunday, 9 Janu
From: Duty Engineer 2011 11:02 AM
Date: Sunday 9 January 2011
Time: 11:02
RESULTS
APPENDIX K - 3-DAY ASSESSMENTS AND MODEL
Engineer 2
Duty Engineer
Flood Operations Centre
It should be noted that these estimates are based upon forecast rainfall which may or may not
eventuate.
APPENDIXK -3 -DAY ASSESSMENTS AND MODEL
RESULTS
(continued)

APPENDIXK - 3-DAY ASSESSMENTS AND MODEL RESULTS

Run Efs - SILO-Forecast Rain

Date: Friday 7 January 2011
Time: 22:00

Brisbane River at Gregors Creek
22:00 on 7 January 2011

APPENDIXK - 3-DAY ASSESSMENTS AND MODEL RESULTS

Lockyer Creek at Lyons Bridge 22:00 on 7 January 2011

Wivenhoe Dam Estimated Inflow (Excluding Somerset Dam Release) 22:00 on 7 January 2011

APPENDIXK - 3-DAY ASSESSMENTS AND MODEL RESULTS

Run Gis - SILO-Forecast Rain

Date: Saturday 8 January 2011
Time: 15:00

Location	Recorded Peak Flow $\left(\mathrm{m}^{3 / \mathrm{s}}\right)$	Recorded Flood Volume (ML)	Modelled Peak Flow ($\mathrm{m}^{3 / \mathrm{s}}$)	Modelled Flood Volume (ML)	Percent Difference (\%) Peak Flow	Percent Difference (\%) Flood Volume	Difference Peak Flow $\left(\mathrm{m}^{3 / \mathrm{s}}\right)$	Difference Flood Volume (ML)
To run date and time								
Brisbane River at Gregors Creek	1,387	152,695	1,767	210,857	27.5	38.1	381	58,162
Stanley River at Woodford	79	8,514	134	7,794	68.7	-8.5	55	-720
Lockyer Creek at Lyons Bridge	422	68,288	649	83,938	53.8	22.9	227	15,650
Bremer R at Walloon	412	30,414	181	25,097	-56.1	-17.5	-231	-5,317
Warrill Creek at Amberley	164	26,500	210	$\Delta 24,231$	28.3	-8.6	46	-2,269
Somerset Dam Inflow			1,120	84,940				
Wivenhoe Dam Inflow			2,440	222,269				
			Combined	307,209				
To end of event simulation								
Somerset Dam Inflow		N^{2}	1,120	232,043				
Wivenhoe Dam Inflow			2,010	484,998				
			Combined	717,041				

Brisbane River at Gregors Creek
15:00 on 8 January 2011

APPENDIXK - 3-DAY ASSESSMENTS AND MODEL RESULTS

APPENDIXK - 3-DAY ASSESSMENTS AND MODEL RESULTS

APPENDIXK-3-DAY ASSESSMENTS AND MODEL RESULTS (coninuea)

APPENDIXK - 3-DAY ASSESSMENTS AND MODEL RESULTS

APPENDIXK - 3-DAY ASSESSMENTS AND MODEL RESULTS

Somerset Dam Estimated Inflow
15:00 on 8 January 2011

APPENDIXK - 3-DAY ASSESSMENTS AND MODEL RESULTS

Wivenhoe Dam Estimated Inflow (Excluding Somerset Dam Release)

 15:00 on 8 January 2011

APPENDIXK - 3-DAY ASSESSMENTS AND MODEL RESULTS

Run Mifq - SILO-Forecast Rain

Date: Sunday 9 January 2011
Time: 22:00

Brisbane River at Gregors Creek
22:00 on 9 January 2011

Date \& Time

APPENDIXK - 3-DAY ASSESSMENTS AND MODEL RESULTS

APPENDIXK - 3-DAY ASSESSMENTS AND MODEL RESULTS

APPENDIXK - 3-DAY ASSESSMENTS AND MODEL RESULTS ${ }_{\text {(continuee) }}$

Wivenhoe Dam Estimated Inflow (Excluding Somerset Dam Release) 22:00 on 9 January 2011

APPENDIX L - FLOOD OPERATIONS DIRECTIVES

WIVENHOE DAM

Wivenhoe Directive 1

Date: Friday 7 January 2011
Time: 12:00

SEQWATER FLOOD OPERATIONS CENTRE

FACSIMILE MESSAGE

Senior Flood Operations Engineer 3

Senior Flood Operations Engineer 1

Flood Operations Engineer 2

Flood Operations Engineer 4
1.1.1 Flood Event - Operations Directive

TO: Wivenhoe Dam Operators	Date: 07/01/2011 Time: 12:00 Directive No: 01

This transmission comprises of this page and 0 other pages.

Message:

The Wivenhoe Dam lake level was 67.81 m AHD and rising slowly at 11:00 Friday 07/01/2011.

Prior to gate operations, please close the regulator.
The following gate operations should be undertaken commencing at 15:00 07/01/2011

$07 / 01 / 2011$	$15: 00$	Open Gate	3	from	0.0	metres	to	0.5
metres								
$07 / 01 / 2011$	$16: 00$	Open Gate	3	from	0.5	metres	to	1.0
metres								
$07 / 01 / 2011$	$17: 00$	Open Gate	3	from	1.0	metres	to	1.5
metres								

By 21:30, Gate 3 will be open 3.5 metres and releasing approximately $400 \mathrm{~m}^{3} / \mathrm{s}$.
It is noted that the hydro will continuing releasing $13 \mathrm{~m}^{3} / \mathrm{s}$.
Please advise the Flood Operations Centre by fax once you have opened the radial gate to each of the required opening.

Engineer 2
Duty Engineer

Wivenhoe Directive 2

Date: Friday; 7 January 2011
Time: 21:45

SEQWATER FLOOD OPERATIONS CENTRE

FACSIMILE MESSAGE

Senior Flood Operations	Senior Flood Operations	Flood Operations	Flood Operations
Engineer 3	Engineer 1	Engineer 2	Engineer 4

1.1.2 Flood Event - Operations Directive

\section*{TO: Wivenhoe Dam Operators
 | Date: | $07 / 01 / 2011$ |
| :--- | :---: |
| Time: | $21: 45$ |
 Directive No: 02}

This transmission comprises of this page and 0 other pages.

Message:

The following gate operations should be undertaken commencing at 22:00 07/01/2011

$07 / 01 / 2011$	$22: 00$	Open Gate	2	from	0.0	metres	to	0.5
metres								
$07 / 01 / 2011$	$23: 00$	Open Gate	4	from	0.0	metres	to	0.5
metres								
$08 / 01 / 2011$	$00: 00$	Open Gate	2	from	0.5	metres	to	1.0
metres								
$08 / 01 / 201101: 00$	Open Gate	4	from	0.5	metres	to	1.0	metres
$08 / 01 / 2011$	$02: 00$	Open Gate	1	from	0.0	metres	to	0.5
metres								
$08 / 01 / 2011$	$03: 00$	Open Gate	5	from	0.0	metres	to	0.5
metres								
$08 / 01 / 2011$	$04: 00$	Open Gate	2	from	1.0	metres	to	1.5
metres								

It is noted that the hydro will continuing releasing $13 \mathrm{~m}^{3} / \mathrm{s}$.
Please advise the Flood Operations Centre by fax once you have opened the radial gate to each of the required opening.

Engineer 3

Duty Engineer

Wivenhoe Directive 3

Date: Saturday 8 January 2011
Time: 04:50

SEQWATER FLOOD OPERATIONS CENTRE

FACSIMILE MESSAGE

Senior Flood Operations Engineer 3

Senior Flood Operations Engineer 1

Flood Operations Engineer 2

Flood Operations
Engineer 4

1.1.3 Flood Event - Operations Directive

TO: Wivenhoe Dam Operators	Date:	$08 / 01 / 2011$
	Time:	$04: 50$

Directive No: 03

This transmission comprises of this page and 0 other pages.

Message:

The following gate operations should be undertaken commencing at 05:00 07/01/2011

08/01/2011 05:00	Open Gate	4	from	1.0	metres	to	1.5	metres
08/01/2011 06:00	Open Gate	1	from	0.5	metres	to	1.0	metres
$08 / 01 / 2011$	$07: 00$	Open Gate	5	from	0.5	metres	to	1.0
metres								
$08 / 01 / 201108: 00$	Open Gate	3	from	3.5	metres	to	4.0	metres

It is noted that the hydro will continuing releasing $13 \mathrm{~m}^{3} / \mathrm{s}$.

Please advise the Flood Operations Centre by fax once you have opened the radial gate to each of the required opening.

Engineer 3
Duty Engineer

APPENDIX L - FLOOD OPERATIONS DIRECTIVES

Wivenhoe Directive 4

Date: Saturday 8 January 2011
Time: 08:15

SEQWATER FLOOD OPERATIONS CENTRE

FACSIMILE MESSAGE

Senior Flood Operations

Engineer 3

Senior Flood Operations Engineer 1

Flood Operations
Engineer 2

Flood Operations Engineer 4

1.1.4 Flood Event - Operations Directive

TO: Wivenhoe Dam Operators \quad Date: 08/01/2011
 Time: 08:15
 Directive No: 04
 This transmission comprises of this page and 0 other pages.
 Message:

The following gate operations should be undertaken commencing at 09:00 08/01/2011

$08 / 01 / 2011$	$09: 00$	Open Gate	2	from	1.5	metres	to	2.0
metres								
$08 / 01 / 2011$	$10: 00$	Open Gate	4	from	1.5	metres	to	2.0
metres								
$08 / 01 / 2011$	$11: 00$	Open Gate	1	from	1.0	metres	to	1.5
metres								
$08 / 01 / 201112: 00$	Open Gate	5	from	1.0	metres	to	1.5	metres
$08 / 01 / 201113: 00$	Open Gate	2	from	2.0	metres	to	2.5	metres
$08 / 01 / 201114: 00$	Open Gate	4	from	2.0	metres	to	2.5	metres

It is noted that the hydro will continuing releasing $13 \mathrm{~m}^{3} / \mathrm{s}$. At the completion of these gate operations the dam will be releasing $1,247 \mathrm{~m}^{3} / \mathrm{s}$.

Please advise the Flood Operations Centre by fax once you have opened the radial gate to each of the required opening.

Engineer 1

APPENDIX L - FLOOD OPERATIONS DIRECTIVES

Duty Engineer

Wivenhoe Directive 5

Date: Sunday 9 January 2011
Time: 01:00

SEQWATER FLOOD OPERATIONS CENTRE

FACSIMILE MESSAGE

Senior Flood Operations
Engineer 3

Senior Flood Operations
Engineer 1

Flood Operations
Engineer 2

Flood Operations
Engineer 4
1.1.5 Flood Event - Operations Directive

TO: Wivenhoe Dam Operators
 Date:
 09/01/2011
 Time: 01:00
 Directive No: 05

This transmission comprises of this page and 0 other pages.
Message:

Please undertake the following gate operation at 01:30 on 09/01/2011

Open Gate 3 from 4.0 metres to 4.5 metres

It is noted that the hydro will continuing releasing $13 \mathrm{~m}^{3} / \mathrm{s}$. Please advise the Flood Operations Centre by fax once you have opened the radial gate to each of the required opening.

Engineer 4
Duty Engineer

Wivenhoe Directive 6

Date: Sunday 9 January 2011
Time: 04:30

SEQWATER FLOOD OPERATIONS CENTRE

FACSIMILE MESSAGE

Senior Flood Operations Engineer 3

Senior Flood Operations
Engineer 1

Flood Operations
Engineer 2

Flood Operations
Engineer 4

1.1.6 Flood Event - Operations Directive

TO: Wivenhoe Dam Operators	Date:	$09 / 01 / 2011$
	Time:	$04: 30$
	Directive	No: 06

This transmission comprises of this page and 0 other pages.

Message:

Please undertake the following gate operation at 05:00 on 09/01/2011

Open Gate 1 from 1.5 metres to 2.0 metres

It is noted that the hydro will continuing releasing $13 \mathrm{~m}^{3} / \mathrm{s}$. Please advise the Flood Operations Centre by fax once you have opened the radial gate to each of the required opening.

Engineer 4
Duty Engineer

APPENDIX L - FLOOD OPERATIONS DIRECTIVES

Wivenhoe Directive 7

Date: Sunday 9 January 2011
Time: 10:30

SEQWATER FLOOD OPERATIONS CENTRE

FACSIMILE MESSAGE

Senior Flood Operations
Engineer 3

Senior Flood Operations
Engineer 1

Flood Operations
Engineer 2

Flood Operations
Engineer 4

TO: Wivenhoe Dam Operators	Date:	$09 / 01 / 2011$
	Time:	$10: 30$
	Directive	No: 07

This transmission comprises of this page and 0 other pages.
Message:

Please undertake the following gate operation at 11:00 on 09/01/2011

$$
\text { Open Gate } 5 \text { from } 1.5 \text { metres to } 2.0 \text { metres }
$$

It is noted that the hydro will continuing releasing $13 \mathrm{~m}^{3} / \mathrm{s}$.

Please advise the Flood Operations Centre by fax once you have opened the radial gate to each of the required opening.

Engineer 2
Duty Engineer

Wivenhoe Directive 8

Date: Monday 10 January 2011
Time: 02:00

SEQWATER FLOOD OPERATIONS CENTRE

FACSIMILE MESSAGE

Senior Flood Operations
Engineer 3

Senior Flood Operations Engineer 1

Flood Operations
Engineer 2

Flood Operations
Engineer 4

1.1.8 Flood Event - Operations Directive

TO: Wivenhoe Dam Operators	Date:	10/01/2011
	Time:	$02: 00$
	Directive	No: 08

This transmission comprises of this page and 0 other pages.

Message:

Please undertake the following gate operations at 02:00 on 10/01/2011

Open Gate	1	from	2.0	metres	To	2.5	metres	At 02:00
Open Gate	5	from	2.0	metres	To	2.5	metres	At 03:00
Open Gate	2	from	2.5	metres	To	3.0	metres	At 04:00
Open Gate	4	from	2.5	metres	To	3.0	metres	At 05:00
Open Gate	2	from	3.0	metres	To	3.5	metres	At 06:00

It is noted that the hydro will continuing releasing $13 \mathrm{~m}^{3} / \mathrm{s}$.

Please advise the Flood Operations Centre by fax once you have opened the radial gate to each of the required opening.

Engineer 3
Duty Engineer

Wivenhoe Directive 9

Date: Monday 10 January 2011
Time: 06:30

SEQWATER FLOOD OPERATIONS CENTRE

FACSIMILE MESSAGE

Senior Flood Operations
Engineer 3

Senior Flood Operations Engineer 1

Flood Operations
Engineer 2

Flood Operations
Engineer 4

1.1.9 Flood Event - Operations Directive

| TO: Wivenhoe Dam Operators | Date: | 10/01/2011 |
| :--- | :--- | :--- | :--- |
| | Time: | $06: 30$ |
| | Directive | No:09 |

Message:

Please undertake the following gate operations at 07:00 on 10/01/2011

Open Gate	4	from	3.0	metres	To	3.5	metres	At 07:00
Open Gate	1	from	2.5	metres	To	3.0	metres	At 08:00
Open Gate	5	from	2.5	metres	To	3.0	metres	At 09:00
Open Gate	2	from	3.5	metres	To	4.0	metres	At 10:00
Open Gate	4	from	3.5	metres	To	4.0	metres	At 11:00

It is noted that the hydro will continuing releasing $13 \mathrm{~m}^{3} / \mathrm{s}$. At the end of these operations the dam will be releasing around $2,180 \mathrm{~m}^{3} / \mathrm{s}$.

Please advise the Flood Operations Centre by fax once you have opened the radial gate to each of the required opening.

Engineer 2
Duty Engineer

Wivenhoe Directive 10

Date: Monday 10 January 2011
Time: 08:30

SEQWATER FLOOD OPERATIONS CENTRE

FACSIMILE MESSAGE

Senior Flood Operations Engineer 3

Flood Operations
Engineer 2

Flood Operations Engineer 4
1.1.10 Flood Event - Operations Directive

\section*{TO: Wivenhoe Dam Operators
 | Date: | 10/01/2011 |
| :--- | :--- |
| Time: | $\mathbf{0 8 : 3 0}$ |
| Directive | No: 10 |}

This transmission comprises of this page and 0 other pages.

Message:

This directive replaces Directive \#9
Please undertake the following gate operations at 07:00 on 10/01/2011

Open Gate	4	from	3.0	metres	To	3.5	metres	at $07: 00$
Open Gate	1	from	2.5	metres	To	3.0	metres	at 08:00
Open Gate	5	from	2.5	metres	To	3.0	metres	at 09:00

Following the gate movement at 09:00 10/01/2011 gate will be held at the levels below until further advised.

Gate	Gate	Gate	Gate	Gate
1	2	3	4	5
3.0	3.5	4.5	3.5	3.0

It is noted that the hydro will continuing releasing $13 \mathrm{~m}^{3} / \mathrm{s}$.
Please advise the Flood Operations Centre by fax once you have opened the radial gate to each of the required opening.

Engineer 2

Duty Engineer

APPENDIX L - FLOOD OPERATIONS DIRECTIVES

Wivenhoe Directive 11

Date: Monday 10 January 2011
Time: 15:00

SEQWATER FLOOD OPERATIONS CENTRE

FACSIMILE MESSAGE

Senior Flood Operations Engineer 3

Senior Flood Operations Engineer 1

Flood Operations Engineer 2

Flood Operations Engineer 4
1.1.11 Flood Event - Operations Directive

| TO: Wivenhoe Dam Operators | Date: | $10 / 01 / 2011$ |
| :--- | :--- | :--- | :--- |
| | Time: | $15: 00$ |
| | Directive | No: 11 |
| Message: | | |

Please undertake the following gate operations at 15:00 on 10/01/2011

- Open Gate 2 to 4.0 m at 15:00
- Open Gate 4 to 4.0 m at 15:30
- Open Gate 3 to 5.0 m at $16: 00$
- Open Gate 1 to 3.5 m at 16:30
- Open Gate 5 to 3.5 m at 17:00
- Open Gate 2 to 4.5 m at 17:30
- Open Gate 4 to 4.5 m at 18:00
- Open Gate 1 to 4.0 m at $18: 30$
- Open Gate 5 to 4.0 m at 19:00
- Open Gate 1 to 4.5 m at 19:30

It is noted that the hydro will continuing releasing $13 \mathrm{~m}^{3} / \mathrm{s}$.
Please advise the Flood Operations Centre by fax once you have opened the radial gate to each of the required opening.

Engineer 2

APPENDIX L - FLOOD OPERATIONS DIRECTIVES

Duty Engineer

APPENDIX L - FLOOD OPERATIONS DIRECTIVES

Wivenhoe Directive 12

Date: Tuesday 11 January 2011
Time: 08:00
SEQWATER FLOOD OPERATIONS CENTRE

FACSIMILE MESSAGE

Senior Flood Operations
Engineer 1

Flood Operations
Engineer 2

Flood Operations
Engineer 4
1.1.12 Flood Event - Operations Directive

TO: Wivenhoe Dam Operators	Date:	$11 / 01 / 2011$
		Time:
	Directive	08:00
		No: 12

This transmission comprises of this page and 0 other pages.

Message:

Please undertake the following gate operations at 08:00 on 11/01/2011

- Open Gate 5 to 4.5 m at 08:00
- Open Gates 2 and 4 to 5.0 m at 08:30
- Open Gate 3 to 5.5 m at 09:00

It is noted that the hydro will continuing releasing $13 \mathrm{~m}^{3} / \mathrm{s}$.

Please advise the Flood Operations Centre by fax once you have opened the radial gate to each of the required opening.

Engineer 4
Duty Engineer

Wivenhoe Directive 13

Date: Tuesday 11 January 2011
Time: 09:00

SEQWATER FLOOD OPERATIONS CENTRE

FACSIMILE MESSAGE

Senior Flood Operations
Engineer 3

Senior Flood Operations
Engineer 1

Flood Operations
Engineer 2

Flood Operations
Engineer 4

1.1.13 Flood Event - Operations Directive

TO: Wivenhoe Dam Operators	Date:	11/01/2011
	Time:	$09: 00$
	Directive	No: 13

This transmission comprises of this page and 0 other pages.
Message:

Please undertake the following gate operations commencing at 09:30 on 11/01/2011

- Open Gates 2 and 4 to 5.5 m at $09: 30$
- Open Gates 1 and 5 to 5.5 m at 10:00
- Open Gate 3 to 6.0 m at 10:30
- Open Gates 2 and 4 to 6.0 m at 11:00
- Open Gates 1 and 5 to 6.0 m at 11:30

It is noted that the hydro will continuing releasing $13 \mathrm{~m}^{3} / \mathrm{s}$.

Please advise the Flood Operations Centre by fax once you have opened the radial gate to each of the required opening.

Engineer 4
Duty Engineer

Wivenhoe Directive 14

Date: Tuesday 11 January 2011
Time: 12:00

SEQWATER FLOOD OPERATIONS CENTRE

FACSIMILE MESSAGE

Senior Flood Operations
Engineer 3

Senior Flood Operations
Engineer 1

Flood Operations
Engineer 2

Flood Operations
Engineer 4

TO: Wivenhoe Dam Operators	Date:	$11 / 01 / 2011$
	Time:	$12: 00$
	Directive	No: 14

This transmission comprises of this page and 0 other pages.

Message:

Please undertake the following gate operations commencing at 12:00 on 11/01/2011

- Open Gates 2, 3 and 4 to 6.5 m at 12:00
- Open Gates 1 and 5 to 6.5 m at 12:30
- Open Gate 3 to 7.0 m at 13:00

Please advise the Flood Operations Centre by fax once you have opened the radial gate to each of the required opening.

Engineer 4

Duty Engineer

APPENDIX L - FLOOD OPERATIONS DIRECTIVES

Wivenhoe Directive 15

Date: Tuesday 11 January 2011
Time: 13:00

SEQWATER FLOOD OPERATIONS CENTRE

FACSIMILE MESSAGE

Senior Flood Operations
Engineer 3

Senior Flood Operations
Engineer 1

Flood Operations
Engineer 2

Flood Operations
Engineer 4

TO: Wivenhoe Dam Operators \quad Date: 11/01/2011
 Time: 13:00
 Directive No: 15

This transmission comprises of this page and 0 other pages.
Message:

Please open all gates to undertake the following gate operations commencing at 13:15 on 11/01/2011

- Open Gates $1,2,4$ and 5 to 7.0 m at $13: 15$

Please advise the Flood Operations Centre by fax once you have opened the radial gate to each of the required opening.

Engineer 2
Duty Engineer

APPENDIX L - FLOOD OPERATIONS DIRECTIVES

Wivenhoe Directive 16

Date: Tuesday 11 January 2011
Time: 13:00

SEQWATER FLOOD OPERATIONS CENTRE

FACSIMILE MESSAGE

Senior Flood Operations
Engineer 3

Flood Operations Engineer 2

Flood Operations
Engineer 4

1.1.16 Flood Event - Operations Directive

TO: Wivenhoe Dam Operators	Date:	11/01/2011	
		Time:	$13: 00$
	Directive	No: 16	

Please open all gates to undertake the following gate operations commencing at 14:00 on 11/01/2011

- Open Gates 1,2, 3, 4 and 5 to 7.5 m

Please advise the Flood Operations Centre by fax once you have opened the radial gate to each of the required opening.

Engineer 2
Duty Engineer

APPENDIX L - FLOOD OPERATIONS DIRECTIVES

Wivenhoe Directive 17

Date: Tuesday 11 January 2011
Time: 14:00

SEQWATER FLOOD OPERATIONS CENTRE

FACSIMILE MESSAGE

Senior Flood Operations
Engineer 3

Senior Flood Operations
Engineer 1

Flood Operations
Engineer 2

Flood Operations
Engineer 4
1.1.17 Flood Event - Operations Directive

TO: Wivenhoe Dam Operators	Date:	$11 / 01 / 2011$	
		Time:	$14: 00$
		Directive	No: 17

This transmission comprises of this page and 0 other pages.

Message:

Please open all gates to undertake the following gate operations commencing at 14:15 on 11/01/2011

- Open Gates $1,2,3,4$ and 5 to 8.0 m

Please advise the Flood Operations Centre by fax once you have opened the radial gate to each of the required opening.

Engineer 2
Duty Engineer

Wivenhoe Directive 18

Date: Tuesday 11 January 2011
Time: 14:15

SEQWATER FLOOD OPERATIONS CENTRE

FACSIMILE MESSAGE

Senior Flood Operations
Engineer 3

Senior Flood Operations
Engineer 1

Flood Operations
Engineer 2

Flood Operations
Engineer 4

1.1.18 Flood Event - Operations Directive

TO: Wivenhoe Dam Operators \quad Date: 11/01/2011
 Time: $\quad 14: 15$
 Directive No: 18
 This transmission comprises of this page and 0 other pages.
 Message:

Please open all gates to undertake the following gate operations commencing at 15:00 on 11/01/2011

- Open Gates 1,2, 3,4 and 5 to 8.5 m

Please advise the Flood Operations Centre by fax once you have opened the radial gate to each of the required opening.

Engineer 2
Duty Engineer

Wivenhoe Directive 19

Date: Tuesday 11 January 2011
Time: 15:15

SEQWATER FLOOD OPERATIONS CENTRE

FACSIMILE MESSAGE

Senior Flood Operations
Engineer 3

Senior Flood Operations
Engineer 1

Flood Operations
Engineer 2

Flood Operations
Engineer 4

1.1.19 Flood Event - Operations Directive

TO: Wivenhoe Dam Operators	Date:	11/01/2011
	Time:	$15: 15$
	Directive	No: 19

This transmission comprises of this page and 0 other pages.

Message:

Please open all gates to undertake the following gate operations commencing at 15:30 on 11/01/2011

- Open Gates $1,2,3,4$ and 5 to 9.0 m

Please advise the Flood Operations Centre by fax once you have opened the radial gate to each of the required opening.

Engineer 2
Duty Engineer

Wivenhoe Directive 20

Date: Tuesday 11 January 2011
Time: 15:30

SEQWATER FLOOD OPERATIONS CENTRE

FACSIMILE MESSAGE

Senior Flood Operations

 Engineer 3Senior Flood Operations
Engineer 1

Flood Operations
Engineer 2

Flood Operations
Engineer 4
1.1.20 Flood Event - Operations Directive

\section*{	TO: Wivenhoe Dam Operators	Date:	$11 / 01 / 2011$
	Time:	$15: 30$	
	Directive	No: 20	
This transmission comprises of this page and 0 other pages.			

Message:}

Please open all gates to undertake the following gate operations commencing at 16:00 on 11/01/2011

- Open Gates $1,2,3,4$ and 5 to 9.5 m

Please advise the Flood Operations Centre by fax once you have opened the radial gate to each of the required opening.

Engineer 2
Duty Engineer

APPENDIX L - FLOOD OPERATIONS DIRECTIVES

Wivenhoe Directive 21

Date: Tuesday 11 January 2011
Time: 16:15

SEQWATER FLOOD OPERATIONS CENTRE

FACSIMILE MESSAGE

Senior Flood Operations
Engineer 3

Senior Flood Operations
Engineer 1

Flood Operations
Engineer 2

Flood Operations
Engineer 4
1.1.21 Flood Event - Operations Directive

TO: Wivenhoe Dam Operators	Date:	$11 / 01 / 2011$
	Time:	$16: 15$
	Directive	No: 21

This transmission comprises of this page and 0 other pages.
Message:

Please open all gates to undertake the following gate operations commencing at 16:30 on 11/01/2011

- Open Gates 1,2, 3, 4 and 5 to 10.0 m

Please advise the Flood Operations Centre by fax once you have completed this operation.

Engineer 2
Duty Engineer

Wivenhoe Directive 22

Date: Tuesday 11 January 2011
Time: 16:45

SEQWATER FLOOD OPERATIONS CENTRE

FACSIMILE MESSAGE

Senior Flood Operations
Engineer 3

Senior Flood Operations
Engineer 1

Flood Operations
Engineer 2

Flood Operations
Engineer 4
1.1.22 Flood Event - Operations Directive

TO: Wivenhoe Dam Operators	Date:	$11 / 01 / 2011$
	Time:	$16: 45$
	Directive	No: 22

This transmission comprises of this page and 0 other pages.

Message:

Please open all gates to undertake the following gate operations commencing at 17:00 on 11/01/2011

- Open Gates 1,2, 3, 4 and 5 to 10.5 m

Please advise the Flood Operations Centre by fax once you have completed this operation.

Engineer 2
Duty Engineer

Wivenhoe Directive 23

Date: Tuesday 11 January 2011
Time: 17:15

SEQWATER FLOOD OPERATIONS CENTRE

FACSIMILE MESSAGE

Senior Flood Operations
Engineer 1

Flood Operations
Engineer 2

Flood Operations
Engineer 4
1.1.23 Flood Event - Operations Directive

TO: Wivenhoe Dam Operators	Date:	$11 / 01 / 2011$
	Time:	$17: 15$
	Directive	No: 23

This transmission comprises of this page and 0 other pages.
Message:

Please open all gates to undertake the following gate operations commencing at 17:30 on 11/01/2011

- Open Gates $1,2,3,4$ and 5 to 11.0 m

Please advise the Flood Operations Centre by fax once you have completed this operation.

Engineer 4
Duty Engineer

Wivenhoe Directive 24

Date: Tuesday 11 January 2011
Time: 18:00

SEQWATER FLOOD OPERATIONS CENTRE

FACSIMILE MESSAGE

Senior Flood Operations
Engineer 3

Senior Flood Operations
Engineer 1

Flood Operations
Engineer 2

Flood Operations
Engineer 4

1.1.24 Flood Event - Operations Directive

TO: Wivenhoe Dam Operators	Date:	11/01/2011	
		Time:	18:00
	Directive	No: 24	

Message:

Please open all gates to undertake the following gate operations commencing at 18:15 on 11/01/2011

- Open Gates $1,2,3,4$ and 5 to 12.0 m

Please advise the Flood Operations Centre by fax once you have completed this operation.

Engineer 4
Duty Engineer

Wivenhoe Directive 25

Date: Tuesday 11 January 2011
Time: 21:00

SEQWATER FLOOD OPERATIONS CENTRE

FACSIMILE MESSAGE

Senior Flood Operations
Engineer 3

Senior Flood Operations Engineer 1

Flood Operations
Engineer 2

Flood Operations
Engineer 4

1.1.25 Flood Event - Operations Directive

TO: Wivenhoe Dam Operators	Date:	$11 / 01 / 2011$
	Time:	$21: 00$
	Directive	No: 25

This transmission comprises of this page and 0 other pages.
Message:

Please open all gates to undertake the following gate operations commencing at 21:15 on 11/01/2011

- Close Gates 1,2, 3, 4 and 5 to 11.0 m

Please advise the Flood Operations Centre by fax once you have completed this operation.

Engineer 4
Duty Engineer

Wivenhoe Directive 26

Date: Tuesday 11 January 2011
Time: 21:30
SEQWATER FLOOD OPERATIONS CENTRE

FACSIMILE MESSAGE

Senior Flood Operations
Engineer 3

Senior Flood Operations
Engineer 1

Flood Operations
Engineer 2

Flood Operations
Engineer 4

TO: Wivenhoe Dam Operators	Date:	$11 / 01 / 2011$
		Time:
	Directive	$21: 30$
		No: 26

This transmission comprises of this page and 0 other pages.

Message:

Please undertake the following gate operations commencing at 21:45 on 11/01/2011

- Open Gates 1,2, 3, 4 and 5 to 11.5 m

Please use a time interval

Please advise the Flood Operations Centre by fax once you have completed this operation.

Engineer 1
Duty Engineer

Wivenhoe Directive 27

Date: Tuesday 11 January 2011
Time: 23:00

SEQWATER FLOOD OPERATIONS CENTRE

FACSIMILE MESSAGE

Senior Flood Operations
Engineer 3

Senior Flood Operations
Engineer 1

Flood Operations
Engineer 2

Flood Operations
Engineer 4
1.1.27 Flood Event - Operations Directive

TO: Wivenhoe Dam Operators	Date:	11/01/2011
	Time:	$23: 00$
	Directive	No: 27

This transmission comprises of this page and 0 other pages.
Message:

Please undertake the following gate operations commencing at 11:30 on 11/01/2011

- Close Gates $5,1,4,2$ and 3 to 10.0 m

Please advise the Flood Operations Centre by fax once you have completed this operation.

Engineer 1
Duty Engineer

APPENDIX L - FLOOD OPERATIONS DIRECTIVES

Wivenhoe Directive 28
(DIRECTIVE NOT SENT)

Date: Tuesday 11 January 2011
Time: 23:00

SEQWATER FLOOD OPERATIONS CENTRE

FACSIMILE MESSAGE

Senior Flood Operations
Engineer 3

Senior Flood Operations
Engineer 1

Flood Operations
Engineer 2

Flood Operations
Engineer 4

TO: Wivenhoe Dam Operators	Date:	11/01/2011
	Time:	$23: 00$
	Directive	No: 28

This transmission comprises of this page and 0 other pages.
Message:

Please undertake the following gate operations commencing at 11:30 on 11/01/2011

- Close Gates $5,1,4,2$ and 3 to 10.0 m

Please advise the Flood Operations Centre by fax once you have completed this operation.

Engineer 1
Duty Engineer

APPENDIX L - FLOOD OPERATIONS DIRECTIVES

Wivenhoe Directive 29

Date: Wednesday 12 January 2011
Time: 01:15
SEQWATER FLOOD OPERATIONS CENTRE

FACSIMILE MESSAGE

Senior Flood Operations
Engineer 3

Senior Flood Operations
Engineer 1

Flood Operations
Engineer 2

Flood Operations
Engineer 4

TO: Wivenhoe Dam Operators	Date:	12/01/2011
		Time:
	Directive	No: 29

This transmission comprises of this page and 0 other pages.

Message:

Please undertake the following gate operations commencing at 01:30 on 12/01/2011

- Close Gates $5,1,4,2$ and 3 to 9.0 m

Please advise the Flood Operations Centre by fax once you have completed this operation.

Engineer 1
Duty Engineer

APPENDIX L - FLOOD OPERATIONS DIRECTIVES

Wivenhoe Directive 30

Date: Wednesday 12 January 2011
Time: 03:15

SEQWATER FLOOD OPERATIONS CENTRE

FACSIMILE MESSAGE

Senior Flood Operations	Senior Flood Operations	Flood Operations	Flood Operations
Engineer 3	Engineer 1	Engineer 2	Engineer 4

1.1.30 Flood Event - Operations Directive

TO: Wivenhoe Dam Operators	Date:	12/01/2011
	Time:	$03: 15$
	Directive	No: 30

This transmission comprises of this page and 0 other pages.

Message:

Please undertake the following gate operations commencing at 03:30 on 12/01/2011

- Close Gates $5,1,4,2$ and 3 to 8.0 m

Please advise the Flood Operations Centre by fax once you have completed this operation.

[^12]Wivenhoe Directive 31

Date: Wednesday 12 January 2011
Time: 04:30
SEQWATER FLOOD OPERATIONS CENTRE

FACSIMILE MESSAGE

Senior Flood Operations
Engineer 3

Senior Flood Operations
Engineer 1

Flood Operations
Engineer 2

Flood Operations
Engineer 4

1.1.31 Flood Event - Operations Directive

TO: Wivenhoe Dam Operators	Date:	$12 / 01 / 2011$
		Directive No:
	Time:	31
		$04: 30$

This transmission comprises of this page and 0 other pages.
Message:

Please undertake the following gate operations commencing at 04:45 on 12/01/2011

- Close Gates 5,1,4,2 and 3 to 7.0 m

Please advise the Flood Operations Centre by fax once you have completed this operation.

Engineer 1
Duty Engineer

APPENDIX L - FLOOD OPERATIONS DIRECTIVES

Wivenhoe Directive 32

Date: Wednesday 12 January 2011
Time: 05:30

SEQWATER FLOOD OPERATIONS CENTRE

FACSIMILE MESSAGE

Senior Flood Operations	Senior Flood Operations	Flood Operations	Flood Operations
Engineer 3	Engineer 1	Engineer 2	Engineer 4

1.1.32 Flood Event - Operations Directive

TO: Wivenhoe Dam Operators	Date:	12/01/201
	Directive No:	32
	Time:	$05: 30$

This transmission comprises of this page and 0 other pages.
Message:

Please undertake the following gate operations commencing at 05:45 on 12/01/2011

- Close Gates 5, 1,4,2 and 3 to 6.0 m

Please advise the Flood Operations Centre by fax once you have completed this operation.

Engineer 4
Duty Engineer

Wivenhoe Directive 33

Date: Wednesday 12 January 2011
Time: 05:30

SEQWATER FLOOD OPERATIONS CENTRE

FACSIMILE MESSAGE

Senior Floop Operations
Engineer 3

Senior Flood Operations
Engineer 1

Flood Operations
Engineer 2

Flood Operations
Engineer 4

1.1.33 Flood Event - Operations Directive

TO: Wivenhoe Dam Operators	Date:	$12 / 01 / 201$
	Directive No:	33
	Time:	$05: 30$

This transmission comprises of this page and 0 other pages.
Message:

Please undertake the following gate operations commencing at 06:45 on 12/01/2011

- Close Gates $5,1,4,2$ and 3 to 5.0 m

Please advise the Flood Operations Centre by fax once you have completed this operation.

Engineer 4
Duty Engineer

Wivenhoe Directive 34

Date: Wednesday 12 January 2011
Time: 07:15

SEQWATER FLOOD OPERATIONS CENTRE

FACSIMILE MESSAGE

Senior Flood Operations Engineer 3

Senior Flood Operations
Engineer 1

Flood Operations
Engineer 2

Flood Operations
Engineer 4

1.1.34 Flood Event - Operations Directive

TO: Wivenhoe Dam Operators	Date:	$12 / 01 / 201$	
		Directive No:	34
		Time:	$07: 15$

This transmission comprises of this page and 0 other pages.

Message:

Please undertake the following gate operations commencing at 07:30 on 12/01/2011

- Close Gates 1 and 5 to 3.5 m
- Close Gates 2 and 4 to 4.0 m

Please advise the Flood Operations Centre by fax once you have completed this operation.

Engineer 4
Duty Engineer

APPENDIX L - FLOOD OPERATIONS DIRECTIVES

Wivenhoe Directive 35

Date: Thursday 13 January 2011
Time: 12:30

SEQWATER FLOOD OPERATIONS CENTRE

FACSIMILE MESSAGE

Senior Flood Operations

Engineer 3

Senior Flood Operations Engineer 1

Flood Operations

Engineer 2

Flood Operations
Engineer 4

1.1.35 Flood Event - Operations Directive

TO: Wivenhoe Dam Operators	Date:	$13 / 01 / 201$
	Directive No:	35
	Time:	$12: 30$

This transmission comprises of this page and 0 other pages.

Message:

Please undertake the following gate operations commencing at 13:00 on 13/01/2011

- Open Gate 2 from 4.0 metres to 4.5 metres at 1300.
- Open Gate 4 from 4.0 metres to 4.5 metres at 1400 .

Please advise the Flood Operations Centre by fax once you have completed this operation.

Engineer 4
Duty Engineer

APPENDIX L - FLOOD OPERATIONS DIRECTIVES

Wivenhoe Directive 36

Date: Thursday 13 January 2011
Time: 14:30

SEQWATER FLOOD OPERATIONS CENTRE

FACSIMILE MESSAGE

Senior Flood Operations	Senior Flood Operations	Flood Operations	Flood Operations
Engineer 3	Engineer 1	Engineer 2	Engineer 4.

Engineer 3

Engineer 1
Engineer 2

1.1.36 Flood Event - Operations Directive

TO: Wivenhoe Dam Operators	Date:	$13 / 01 / 201$
	Directive No:	36
	Time:	$14: 30$

This transmission comprises of this page and 0 other pages.

Message:

Please undertake the following gate operations commencing at 1500 on 13/01/2011

- Open Gate 1 from 3.5 metres to 4.0 metres at 1500.
- Open Gate 5 from 3.5 metres to 4.0 metres at 1600 .
- Open Gate 1 from 4.0 metres to 4.5 metres at 1700.
- Open Gate 5 from 4.0 metres to 4.5 metres at 1800.

Please advise the Flood Operations Centre by fax once you have completed these operations.

Engineer 4
Duty Engineer

Wivenhoe Directive 37

Date: Thursday 13 January 2011
Time: 18:00

SEQWATER FLOOD OPERATIONS CENTRE

FACSIMILE MESSAGE

Senior Flood Operations
Engineer 3

Senior Flood Operations Engineer 1

Flood Operations
Engineer 2

Flood Operations
Engineer 4

1.1.37 Flood Event - Operations Directive

TO: Wivenhoe Dam Operators	Date:	$13 / 01 / 201$
	Directive No:	37
	Time:	$18: 00$

This transmission comprises of this page and 0 other pages.
Message:

Please undertake the following gate operations commencing at 1830 on 13/01/2011

- Open Gate 2 from 4.5 metres to 5.0 metres at 1830.
- Open Gate 4 from 4.5 metres to 5.0 metres at 1900.
- Open Gate 1 from 4.5 metres to 5.0 metres at 1930.
- Open Gate 5 from 4.5 metres to 5.0 metres at 2000.
- Open Gate 3 from 5.0 metres to 5.5 metres at 2030.

Please advise the Flood Operations Centre by fax once you have completed these operations.

APPENDIX L - FLOOD OPERATIONS DIRECTIVES

Duty Engineer

Wivenhoe Directive 38

Date: Thursday 13 January 2011
Time: 20:30

SEQWATER FLOOD OPERATIONS CENTRE

FACSIMILE MESSAGE

Senior Flood Operations
Engineer 3

Senior Flood Operations
Engineer 1

Flood Operations
Engineer 2

Flood Operations
Engineer 4

1.1.38 Flood Event - Operations Directive

TO: Wivenhoe Dam Operators	Date:	$13 / 01 / 201$
	Directive No:	38
	Time:	$20: 30$

This transmission comprises of this page and 0 other pages.

Message:

Please undertake the following gate operations commencing at 2030 on 13/01/2011

- Open Gate 2 from 5.0 metres to 5.5 metres at 2100.
- Open Gate 4 from 5.0 metres to 5.5 metres at 2200.
- Open Gate 1 from 5.0 metres to 5.5 metres at 2300.
- Open Gate 5 from 5.0 metres to 5.5 metres at 0000 on 14/01/2011
- Open Gate 3 from 5.5 metres to 6.0 metres at 0100 on 14/01/2011
- Open Gate 2 from 5.5 metres to 6.0 metres at 0200 .
- Open Gate 4 from 5.5 metres to 6.0 metres at 0300.

Please advise the Flood Operations Centre by fax once you have completed these operations.

Engineer 1
Duty Engineer

APPENDIX L - FLOOD OPERATIONS DIRECTIVES

Wivenhoe Directive 39

Date: Friday 14 January 2011
Time: 19:15

SEQWATER FLOOD OPERATIONS CENTRE

FACSIMILE MESSAGE

Senior Flood Operations
Engineer 3

Senior Flood Operations
Engineer 1

Flood Operations
Engineer 2

Flood Operations
Engineer 4

TO: Wivenhoe Dam Operators	Date:	$14 / 01 / 201$
	Directive No:	39
	Time:	$19: 15$

This transmission comprises of this page and 0 other pages.

Message:

Please undertake the following gate operations commencing at 1930 on 14/01/2011

- Open Gate 1 from 5.5 metres to 6.0 metres at 1930.

Please advise the Flood Operations Centre by fax once you have completed these operations.

Engineer 4

Duty Engineer

APPENDIX L - FLOOD OPERATIONS DIRECTIVES

Wivenhoe Directive 40

Date: Saturday 15 January 2011
Time: 02:15

SEQWATER FLOOD OPERATIONS CENTRE

FACSIMILE MESSAGE

Senior Flood Operations
Engineer 3

Senior Flood Operations
Engineer 1

Flood Operations
Engineer 2

Flood Operations Engineer 4

TO: Wivenhoe Dam Operators	Date:	$15 / 01 / 201$
	Directive No:	40
	Time:	$02: 15$

This transmission comprises of this page and 0 other pages.

Message:

Please undertake the following gate operations commencing at 02:30 on 15/01/2011

- Open Gate 5 from 5.5 metres to 6.0 metres at 0230 .

Please advise the Flood Operations Centre by fax once you have completed these operations.

Engineer 4
Duty Engineer

Wivenhoe Directive 41

Date: Saturday 15 January 2011
Time: 10:30

SEQWATER FLOOD OPERATIONS CENTRE

FACSIMILE MESSAGE

Senior Flood Operations
Engineer 3

Senior Flood Operations
Engineer 1

Flood Operations
Engineer 2

Flood Operations
Engineer 4

1.1.41 Flood Event - Operations Directive

TO: Wivenhoe Dam Operators	Date:	$15 / 01 / 201$	
		Directive No:	41
	Time:	$10: 30$	
This transmission comprises of this page and 0 other pages.			
Message:			

Please undertake the following gate operations commencing at 10:30 on 15/01/2011

- Open Gate 3 from 6.0 metres to 6.5 metres at 1030.

Please advise the Flood Operations Centre by fax once you have completed these operations.

Engineer 2
Duty Engineer

APPENDIX L - FLOOD OPERATIONS DIRECTIVES

Wivenhoe Directive 42

Date: Saturday 15 January 2011
Time: 15:30

SEQWATER FLOOD OPERATIONS CENTRE

FACSIMILE MESSAGE

Senior Flood Operations
Engineer 3

Senior Flood Operations
Engineer 1

Flood Operations
Engineer 2

Flood Operations
Engineer 4

1.1.42 Flood Event - Operations Directive

TO: Wivenhoe Dam Operators	Date:	$15 / 01 / 201$
	Directive No:	42
	Time:	$15: 30$

This transmission comprises of this page and 0 other pages.
Message:

Please undertake the following gate operations commencing at 17:00 on 15/01/2011

- Open Gate 2 from 6.0 metres to 6.5 metres at 17:00.

Please advise the Flood Operations Centre by fax once you have completed these operations.

Engineer 3
Duty Engineer

Wivenhoe Directive 43

Date: Saturday 15 January 2011
Time: 22:00

SEQWATER FLOOD OPERATIONS CENTRE

FACSIMILE MESSAGE

Senior Flood Operations

Engineer 3

Senior Flood Operations Engineer 1

Flood Operations

Engineer 2

Flood Operations
Engineer 4

1.1.43 Flood Event - Operations Directive

TO: Wivenhoe Dam Operators	Date:	$15 / 01 / 201$
	Directive No:	43
	Time:	$22: 00$

This transmission comprises of this page and 0 other pages.

Message:

Please undertake the following gate operations commencing at 22:00 on 15/01/2011

- Open Gate 4 from 6.0 metres to 6.5 metres at 22:00.

Please advise the Flood Operations Centre by fax once you have completed these operations.

Engineer 3
Duty Engineer

Wivenhoe Directive 44

Date: Sunday 16 January 2011
Time: 02:45

SEQWATER FLOOD OPERATIONS CENTRE

FACSIMILE MESSAGE

Senior Flood Operations
Engineer 3

Senior Flood Operations
Engineer 1

Flood Operations
Engineer 2

Flood Operations Engineer 4

1.1.44 Flood Event - Operations Directive

TO: Wivenhoe Dam Operators	Date:	$16 / 01 / 201$
	Directive No:	44
	Time:	$02: 45$

This transmission comprises of this page and 0 other pages.

Message:

Please undertake the following gate operations commencing at 04:00 on 16/01/2011

- Open Gate 1 from 6.0 metres to 6.5 metres at 04:00 on 16/01/2011.

Please advise the Flood Operations Centre by fax once you have completed these operations.

Engineer 3
Duty Engineer

Wivenhoe Directive 45

Date: Sunday 16 January 2011
Time: 08:30
SEQWATER FLOOD OPERATIONS CENTRE

FACSIMILE MESSAGE

Senior Flood Operations
Engineer 3

Senior Flood Operations
Engineer 1

Flood Operations
Engineer 2

Flood Operations
Engineer 4
1.1.45 Flood Event - Operations Directive

TO: Wivenhoe Dam Operators	Date:	16/01/201
	Directive No:	45
	Time:	08:30
This transmission comprises of this page and 0 other pages.		
Message:		

Please undertake the following gate operations commencing at 09:00 on 16/01/2011

- Open Gate 5 from 6.0 metres to 6.5 metres at 09:00 on 16/01/2011.

Please advise the Flood Operations Centre by fax once you have completed these operations.

Engineer 1
Duty Engineer

APPENDIX L - FLOOD OPERATIONS DIRECTIVES

Wivenhoe Directive 46

Date: Sunday 16 January 2011
Time: 12:15

SEQWATER FLOOD OPERATIONS CENTRE

FACSIMILE MESSAGE

Senior Flood Operations	Senior Flood Operations	Flood Operations	Flood Operations
Engineer 3	Engineer 1	Engineer 2	Engineer 4

1.1.46 Flood Event - Operations Directive

TO: Wivenhoe Dam Operators	Date:	$16 / 01 / 201$
	Directive No:	46
	Time:	$12: 15$

Please undertake the following gate operations commencing at 13:00 on 16/01/2011

- Open Gate 3 from 6.5 metres to 7.0 metres at $13: 00$ on 16/01/2011.

Please advise the Flood Operations Centre by fax once you have completed these operations.

Engineer 1
Duty Engineer

Wivenhoe Directive 47

Date: Sunday 16 January 2011
Time: 15:15

SEQWATER FLOOD OPERATIONS CENTRE

FACSIMILE MESSAGE

Senior Flood Operations
Engineer 3

Senior Flood Operations
Engineer 1

Flood Operations
Engineer 2

Flood Operations
Engineer 4

1.1.47 Flood Event - Operations Directive

TO: Wivenhoe Dam Operators	Date:	$16 / 01 / 201$
	Directive No:	47
	Time:	$15: 15$

This transmission comprises of this page and 0 other pages.
Message:

Please undertake the following gate operations commencing at 16:00 on 16/01/2011

- Open Gate 2 from 6.5 metres to 7.0 metres at $16: 00$ on 16/01/2011.

Please advise the Flood Operations Centre by fax once you have completed these operations.

Engineer 1
Duty Engineer

Wivenhoe Directive 48

Date: Sunday 16 January 2011
Time: 18:45

SEQWATER FLOOD OPERATIONS CENTRE

FACSIMILE MESSAGE

Senior Flood Operations
Engineer 3

Senior Flood Operations
Engineer 1

Flood Operations
Engineer 2

Flood Operations Engineer 4

1.1.48 Flood Event - Operations Directive

TO: Wivenhoe Dam Operators	Date:	$16 / 01 / 201$
	Directive No:	48
	Time:	$18: 45$

This transmission comprises of this page and 0 other pages.

Message:

Please undertake the following gate operations commencing at 20:00 on 16/01/2011

- Open Gate 4 from 6.5 metres to 7.0 metres at 20:00 on 16/01/2011.

Please advise the Flood Operations Centre by fax once you have completed these operations.

Engineer 1
Duty Engineer

Wivenhoe Directive 49

Date: Monday 17 January 2011
Time: 13:45

SEQWATER FLOOD OPERATIONS CENTRE

FACSIMILE MESSAGE

Senior Flood Operations
Engineer 1

Flood Operations
Engineer 2

Flood Operations
Engineer 4

1.1.49 Flood Event - Operations Directive

TO: Wivenhoe Dam Operators	Date:	$17 / 01 / 201$
	Directive No:	49
	Time:	$13: 45$

This transmission comprises of this page and 0 other pages.

Message:

Please undertake the following gate operations commencing at 14:00 on 17/01/2011

- Close Gate 4 from 7.0 metres to 6.5 metres at 14:00 on 17/01/2011.
- Close Gate 2 from 7.0 metres to 6.5 metres at 14:20 on 17/01/2011
- Close Gate 3 from 7.0 metres to 6.5 metres at 14:40 on 17/01/2011
- Close Gate 5 from 6.5 metres to 6.0 metres at 15:00 on 17/01/2011

Please advise the Flood Operations Centre by fax once you have completed these operations.

Engineer 3
Duty Engineer

Wivenhoe Directive 50

Date: Monday 17 January 2011
Time: 14:45

SEQWATER FLOOD OPERATIONS CENTRE

FACSIMILE MESSAGE

Senior Flood Operations
Engineer 3

Senior Flood Operations Engineer 1

Flood Operations
Engineer 2

Flood Operations
Engineer 4

1.1.50 Flood Event - Operations Directive

TO: Wivenhoe Dam Operators	Date:	$17 / 01 / 201$
	Directive No:	50
	Time:	14
		$14: 45$

This transmission comprises of this page and 0 other pages.

Message:

Please undertake the following gate operations commencing at 15:15 on 17/01/2011

- Close Gate 4 from 6.5 metres to 6.0 metres at $15: 20$ on 17/01/2011.
- Close Gate 2 from 6.5 metres to 6.0 metres at $15: 40$ on 17/01/2011

Please advise the Flood Operations Centre by fax once you have completed these operations.

Engineer 3
Duty Engineer

Wivenhoe Directive 51

Date: Monday 17 January 2011
Time: 15:50

SEQWATER FLOOD OPERATIONS CENTRE

FACSIMILE MESSAGE

Senior Flood Operations
Engineer 3

Senior Flood Operations
Engineer 1

Flood Operations
Engineer 2

Flood Operations
Engineer 4

1.1.51 Flood Event - Operations Directive

TO: Wivenhoe Dam Operators	Date:	17/01/201
	Directive No:	51
Time:		
		$15: 50$

This transmission comprises of this page and 0 other pages.
Message:

Please undertake the following gate operations commencing at 16:00 on 17/01/2011

- Close Gate 1 from 6.5 metres to 6.0 metres at 16:00 on 17/01/2011
- Close Gate 3 from 6.5 metres to 6.0 metres at 16:20 on 17/01/2011.
- Close Gate 5 from 6.0 metres to 5.5 metres at 16:40 on 17/01/2011
- Close Gate 1 from 6.0 metres to 5.5 metres at 17:00 on 17/01/2011
- Close Gate 4 from 6.0 metres to 5.5 metres at 17:20 on 17/01/2011
- Close Gate 2 from 6.0 metres to 5.5 metres at 17:40 on 17/01/2011
- Close Gate 3 from 6.0 metres to 5.5 metres at 18:00 on 17/01/2011

Please advise the Flood Operations Centre by fax once you have completed these operations.

APPENDIX L - FLOOD OPERATIONS DIRECTIVES

Duty Engineer

Wivenhoe Directive 52

Date: Monday 17 January 2011
Time: 17:50
SEQWATER FLOOD OPERATIONS CENTRE

FACSIMILE MESSAGE

Senior Flood Operations
Engineer 3

Senior Flood Operations
Engineer 1

Flood Operations
Engineer 2

Flood Operations
Engineer 4

1.1.52 Flood Event - Operations Directive

TO: Wivenhoe Dam Operators	Date:	17/01/201
		Directive No:
Time:	52	
		$17: 50$

This transmission comprises of this page and 0 other pages.

Message:

Please undertake the following gate operations commencing at 18:30 on 17/01/2011

- Close Gate 5 from 5.5 metres to 5.0 metres at 18:30 on 17/01/2011
- Close Gate 1 from 5.5 metres to 5.0 metres at 19:00 on 17/01/2011.
- Close Gate 4 from 5.5 metres to 5.0 metres at 19:30 on 17/01/2011
- Close Gate 2 from 5.5 metres to 5.0 metres at 20:00 on 17/01/2011
- Close Gate 3 from 5.5 metres to 5.0 metres at 20:30 on 17/01/2011
- Close Gate 5 from 5.0 metres to 4.5 metres at 21:00 on 17/01/2011
- Close Gate 1 from 5.0 metres to 4.5 metres at 21:30 on 17/01/2011
- Close Gate 2 from 5.0 metres to 4.5 metres at 22:00 on 17/01/2011
- Close Gate 4 from 5.0 metres to 4.5 metres at 22:30 on 17/01/2011
- Close Gate 5 from 4.5 metres to 4.0 metres at 22:00 on 17/01/2011

Please advise the Flood Operations Centre by fax once you have completed these operations.

Duty Engineer

Wivenhoe Directive 53

Date: Monday 17 January 2011
Time: 21:30

SEQWATER FLOOD OPERATIONS CENTRE

FACSIMILE MESSAGE

Senior Flood Operations	Senior Flood Operations	Flood Operations	Flood Operations
Engineer 3	Engineer 1	Engineer 2	Engineer 4

1.1.53 Flood Event - Operations Directive

TO: Wivenhoe Dam Operators	Date:	17/01/201
	Directive No:	53
	Time:	21:30
Message: This transmission comprises of this page and 0 other		

Please undertake the following gate operations commencing at 23:00 on 17/01/2011

- Close Gate 5 from 4.5 metres to 4.0 metres at 23:00 on 17/01/2011
- Close Gate 1 from 4.5 metres to 4.0 metres at 23:30 on 17/01/2011
- Close Gate 5 from 4.0 metres to 3.5 metres at 00:00 on 18/01/2011
- Close Gate 1 from 4.0 metres to 3.5 metres at 00:30 on 18/01/2011
- Close Gate 4 from 4.5 metres to 4.0 metres at 01:00 on 18/01/2011
- Close Gate 2 from 4.5 metres to 4.0 metres at 01:30 on 18/01/2011
- Close Gate 5 from 3.5 metres to 3.0 metres at 02:00 on 18/01/2011
- Close Gate 1 from 3.5 metres to 3.0 metres at 03:00 on 18/01/2011
- Close Gate 3 from 5.0 metres to 4.5 metres at 04:00 on 18/01/2011
- Close Gate 4 from 4.0 metres to 3.5 metres at 05:00 on 18/01/2011
- Close Gate 2 from 4.0 metres to 3.5 metres at 06:00 on 18/01/2011
- Close Gate 5 from 3.0 metres to 2.5 metres at 07:00 on 18/01/2011
- Close Gate 1 from 3.0 metres to 2.5 metres at 08:00 on 18/01/2011

Please advise the Flood Operations Centre by fax once you have completed these operations.

Engineer 2

Duty Engineer

Wivenhoe Directive 54

Date: Tuesday 18 January 2011
Time: 00:45
SEQWATER FLOOD OPERATIONS CENTRE

FACSIMILE MESSAGE

Senior Flood Operations
Engineer 3

Senior Flood Operations
Engineer 1

Flood Operations
Engineer 2

Flood Operations
Engineer 4

1.1.54 Flood Event - Operations Directive

TO: Wivenhoe Dam Operators	Date:	$18 / 01 / 2011$
	Directive No:	54
Time:		
		$00: 45$

This transmission comprises of this page and 0 other pages.

Message:

Please cease all gate operations as at 00:45 on 18/01/2011 until further notice.

The last gate operation undertaken from the previous directive (\#53) should be as follows:

- Close Gate 1 from 4.0 metres to 3.5 metres at 00:30 on 18/01/2011

This directive supersedes all previous directives.

Please advise the Flood Operations Centre by fax once you have completed these operations.

Engineer 2
Duty Engineer

Wivenhoe Directive 55

Date: Tuesday 18 January 2011
Time: 08:45

SEQWATER FLOOD OPERATIONS CENTRE

FACSIMILE MESSAGE

Senior Flood Operations
Engineer 3

Senior Flood Operations
Engineer 1

Flood Operations
Engineer 2

Flood Operations
Engineer 4

1.1.55 Flood Event - Operations Directive

TO: Wivenhoe Dam Operators	Date:	$18 / 01 / 2011$	
		Directive No:	55
Time:	$08: 45$		

Please re-commence gate operations as at 09:00 on 18/01/2011.

- Close Gate 4 from 4.5 metres to 4.0 metres at 09:00 on 18/01/2011
- Close Gate 2 from 4.5 metres to 4.0 metres at 09:30 on 18/01/2011
- Close Gate 5 from 3.5 metres to 3.0 metres at 10:00 on 18/01/2011
- Close Gate 1 from 3.5 metres to 3.0 metres at 10:30 on 18/01/2011
- Close Gate 3 from 5.0 metres to 4.5 metres at 11:00 on 18/01/2011
- Close Gate 4 from 4.0 metres to 3.5 metres at 11:30 on 18/01/2011
- Close Gate 2 from 4.0 metres to 3.5 metres at 12:00 on 18/01/2011

Please advise the Flood Operations Centre by fax/email once you have completed these operations.

Please continue to report levels at hourly intervals.
Engineer 1
Duty Engineer

Wivenhoe Directive 56

Date: Tuesday 18 January 2011
Time: 12:15

SEQWATER FLOOD OPERATIONS CENTRE

FACSIMILE MESSAGE

Senior Flood Operations
Engineer 3

Senior Flood Operations
Engineer 1

Flood Operations
Engineer 2

Flood Operations
Engineer 4

1.1.56 Flood Event - Operations Directive

TO: Wivenhoe Dam Operators \quad Date: 18/01/2011
 Directive No:
 56
 Time: 12:15
 This transmission comprises of this page and 0 other pages.
 Message:

Please re-commence gate operations as at 12:30 on 18/01/2011.

- Close Gate 5 from 3.0 metres to 2.5 metres at 12:30 on 18/01/2011
- Close Gate 1 from 3.0 metres to 2.5 metres at 13:00 on 18/01/2011
- Close Gate 4 from 3.5 metres to 3.0 metres at 14:00 on 18/01/2011
- Close Gate 2 from 3.5 metres to 3.0 metres at 14:30 on 18/01/2011
- Close Gate 4 from 3.0 metres to 2.5 metres at 15:00 on 18/01/2011
- Close Gate 2 from 3.0 metres to 2.5 metres at 15:30 on 18/01/2011

Please advise the Flood Operations Centre by fax/email once you have completed these operations.

Please continue to report levels at hourly intervals.

Engineer 1
Duty Engineer

Wivenhoe Directive 57

Date: Tuesday 18 January 2011
Time: 15:15

SEQWATER FLOOD OPERATIONS CENTRE

FACSIMILE MESSAGE

Senior Flood Operations
Engineer 3

Senior Flood Operations
Engineer 1

Flood Operations
Engineer 2

Flood Operations
Engineer 4

TO: Wivenhoe Dam Operators	Date:	$18 / 01 / 2011$
	Directive No:	57
	Time:	$15: 15$

This transmission comprises of this page and 0 other pages.

Message:

Please cease gate operations as at 15:00 on 18/01/2011 so as to accommodate the repairs at Lowood pump station.

Current gate settings of :-
Gate 1 - Open 2.5 metres
Gate 2-Open 3.0 metres
Gate 3-Open 4.5 metres
Gate 4 - Open 3.0 metres
Gate 5 - Open 2.5 metres
Please confirm these current settings. It is expected these settings will be maintained for up to 12 hours.

Please continue to report levels at hourly intervals.
Engineer 1
Duty Engineer

Wivenhoe Directive 58

Date: Tuesday 18 January 2011
Time: 20:30

SEQWATER FLOOD OPERATIONS CENTRE

FACSIMILE MESSAGE

Senior Flood Operations
Engineer 3

Senior Flood Operations Engineer 1

Flood Operations

Engineer 2

Flood Operations
Engineer 4

1.1.58 Flood Event - Operations Directive

TO: Wivenhoe Dam Operators	Date:	$18 / 01 / 2011$
	Directive No:	58
	Time:	$20: 30$

This transmission comprises of this page and 0 other pages.
Message:

Please undertake the following gate operations commencing at 20:45 on 18/01/2011.

- Close Gate 4 from 3.0 metres to 2.5 metres at 20:45 on 18/01/2011
- Close Gate 2 from 3.5 metres to 2.5 metres at 21:15 on 18/01/2011

Please advise the Flood Operations Centre by fax/email once you have completed these operations.

Engineer 4
Duty Engineer

Wivenhoe Directive 59

Date: Tuesday 18 January 2011
Time: 21:30
SEQWATER FLOOD OPERATIONS CENTRE

FACSIMILE MESSAGE

Senior Flood Operations
Engineer 3

Senior Flood Operations
Engineer 1

Flood Operations
Engineer 2

Flood Operations
Engineer 4

TO: Wivenhoe Dam Operators	Date:	$18 / 01 / 2011$
	Directive No:	59
	Time:	$21: 30$

This transmission comprises of this page and 0 other pages.
Message:

Please undertake the following gate operations commencing at 21:30 on 18/01/2011.

- Close Gate 5 from 2.5 metres to 2.0 metres at 22:00 on 18/01/2011
- Close Gate 1 from 2.5 metres to 2.0 metres at 22:30 on 18/01/2011

Please advise the Flood Operations Centre by fax/email once you have completed these operations.

Engineer 4
Duty Engineer

Wivenhoe Directive 60

Date: Tuesday 18 January 2011
Time: 22:30

SEQWATER FLOOD OPERATIONS CENTRE

FACSIMILE MESSAGE

Senior Flood Operations Engineer 3

Senior Flood Operations Engineer 1

Flood Operations Engineer 2

Flood Operations Engineer 4

1.1.60 Flood Event - Operations Directive

TO: Wivenhoe Dam Operators	Date:	$18 / 01 / 2011$
	Directive No:	60
	Time:	$22: 30$

This transmission comprises of this page and 0 other pages.

Message:

Please undertake the following gate operations commencing at 23:00 on 18/01/2011.

- Close Gate 5 from 2.0 metres to 1.5 metres at 23:00 on 18/01/2011
- Close Gate 1 from 2.0 metres to 1.5 metres at 23:30 on 18/01/2011
- Close Gate 3 from 4.5 metres to 4.0 metres at 00:00 on 19/01/2011
- Close Gate 4 from 2.5 metres to 2.0 metres at 00:30 on 19/01/2011
- Close Gate 2 from 2.5 metres to 2.0 metres at 01:00 on 19/01/2011
- Close Gate 5 from 1.5 metres to 1.0 metres at 01:30 on 19/01/2011
- Close Gate 1 from 1.5 metres to 1.0 metres at 02:00 on 19/01/2011
- Close Gate 4 from 2.0 metres to 1.5 metres at 02:30 on 19/01/2011
- Close Gate 2 from 2.0 metres to 1.5 metres at 03:00 on 19/01/2011
- Close Gate 5 from 1.0 metres to 0.5 metres at 03:30 on 19/01/2011
- Close Gate 1 from 1.0 metres to 0.5 metres at 04:00 on 19/01/2011
- Close Gate 4 from 1.5 metres to 1.0 metres at 04:30 on 19/01/2011
- Close Gate 2 from 1.5 metres to 1.0 metres at 05:00 on 19/01/2011

Please advise the Flood Operations Centre by fax/email once you have completed these operations.

Duty Engineer

Wivenhoe Directive 61

Date: Wednesday 19 January 2011
Time: 05:15

SEQWATER FLOOD OPERATIONS CENTRE

FACSIMILE MESSAGE

Senior Flood Operations
Engineer 3

Senior Flood Operations
Engineer 1

Flood Operations
Engineer 2

Flood Operations
Engineer 4

1.1.61 Flood Event - Operations Directive

TO: Wivenhoe Dam Operators	Date:	$19 / 01 / 2011$
	Directive No:	61
	Time:	$05: 15$

This transmission comprises of this page and 0 other pages.

Message:

Please undertake the following gate operations commencing at 05:30 on 19/01/2011.

- Close Gate 5 from 0.5 metres to fully closed at 05:30 on 19/01/2011
- Close Gate 1 from 0.5 metres to fully closed at 06:00 on 19/01/2011
- Close Gate 4 from 1.0 metres to 0.5 metres at 06:30 on 19/01/2011
- Close Gate 2 from 1.0 metres to 0.5 metres at 07:00 on 19/01/2011
- Close Gate 3 from 4.0 metres to 3.5 metres at 07:30 on 19/01/2011
- Close Gate 4 from 0.5 metres to fully closed at 08:00 on 19/01/2011
- Close Gate 2 from 0.5 metres to fully closed at 08:30 on 19/01/2011

Please advise the Flood Operations Centre by fax/email once you have completed these operations.

Engineer 4
Duty Engineer

Wivenhoe Directive 62

Date: Wednesday 19 January 2011
Time: 08:15

SEQWATER FLOOD OPERATIONS CENTRE

FACSIMILE MESSAGE

Senior Flood Operations
Engineer 3

Senior Flood Operations
Engineer 1

Flood Operations
Engineer 2

Flood Operations
Engineer 4

| TO: Wivenhoe Dam Operators | Date: | $19 / 01 / 2011$ |
| :--- | :--- | :--- | :--- |
| | Directive No: | 62 |
| | Time: | $08: 15$ |
| | | |
| Message: | | | This transmission comprises of this page and 0 other pages.

Please undertake the following gate operations commencing at 09:00 on 19/01/2011:

Time between successive gate movements is 30 minutes.

- Close Gate 3 from 3.5 metres to 3.0 metres at 09:00 on 19/01/2011
- Close Gate 3 from 3.0 metres to 2.5 metres at 09:30 on 19/01/2011
- Close Gate 3 from 2.5 metres to 2.0 metres at 10:00 on 19/01/2011
- Close Gate 3 from 2.0 metres to 1.5 metres at 10:30 on 19/01/2011
- Close Gate 3 from 1.5 metres to 1.0 metres at 11:00 on 19/01/2011
- Close Gate 3 from 1.0 metres to 0.5 metres at 11:30 on 19/01/2011
- Close Gate 3 from 0.5 metres to fully closed at 12:00 on 19/01/2011

Please advise the Flood Operations Centre by fax/email once you have completed these operations.

Engineer 2
Duty Engineer

SOMERSET DAM

Somerset Directive 1

Date: Friday 7 January 2011
Time: 17:00

SEQWATER FLOOD OPERATIONS CENTRE

FACSIMILE MESSAGE

Senior Flood Operations Engineer 3

Senior Flood Operations
Engineer 1

Flood Operations
Engineer 2

Flood Operations
Engineer 4
1.1.63 Flood Event - Operations Directive

TO: Somerset Dam Operators	Date:	07/01/2011
	Time:	17:00
	Directive No: 01	
This transmission comprises of this page and		0 other pages.

Message:

Please open a regulator 100\%

Engineer 2
Duty Engineer

Somerset Directive 2

Date: Friday 7 January 2011
Time: 18:00

SEQWATER FLOOD OPERATIONS CENTRE

FACSIMILE MESSAGE

Senior Flood Operations	Senior Flood Operations	Flood Operations	Flood Operations
Engineer 3	Engineer 1	Engineer 2	Engineer 4

1.1.64 Flood Event - Operations Directive

| TO: Somerset Dam Operators | Date:07/01/2011

 Time: $18: 00$ |
| :--- | :--- | :---: |
| | Directive No: 2 |

This transmission comprises of this page and 0 other pages.

Message:

Given the headwater level in Wivenhoe is still rising and may impact upon the open regulator at Somerset in the next 12 hours, it is preferable to close the regulator and open a sluice.

At 19:00, close Regulator \#3 and open Sluice L.

Regards

Engineer 2
Duty Engineer

Somerset Directive 3

Date: Saturday 8 January 2011
Time: 11:30

SEQWATER FLOOD OPERATIONS CENTRE

FACSIMILE MESSAGE

Senior Flood Operations Engineer 3

Senior Flood Operations Engineer 1

Flood Operations
Engineer 2

Flood Operations
Engineer 4

1.1.65 Flood Event - Operations Directive

TO: Somerset Dam Operators	Date:	08/01/2011
	Time:	$11: 30$

Directive No: 3

This transmission comprises of this page and 0 other pages.

Message:

Somerset Dam is expected to peak at around mid-day at about EL 100.48 m . As we have exceeded EL 100.45 m (fixed crest level), but Wivenhoe Dam is still rising we will need to implement Strategy S 2.

This strategy is aimed at maximising the benefits of the mitigation storage in both Somerset and Wivenhoe dams. Consequently we will endeavour to follow the target line as defined in the manual.

- Please open Sluice M to 100% at 12:00.

Please confirm this gate operation by fax once you have completed the opening.
Regards
Engineer 1
Duty Engineer

APPENDIX L F FLOOD OPERATIONS DIRECTIVES

Somerset Directive 4

Date: Sunday 9 January 2011
Time: 08:15

SEQWATER FLOOD OPERATIONS CENTRE

FACSIMILE MESSAGE

Senior Flood Operations	Senior Flood Operations	Flood Operations	Flood Operations
Engineer 3	Engineer 1	Engineer 2	Engineer 4

Engineer 2
Engineer 4

| TO: Somerset Dam Operators | Date: $09 / 01 / 2011$

 Time: 08:15
 Directive No: 4 |
| :--- | :--- | ---: |

This transmission comprises of this page and 0 other pages.

Message:

Inflows to Somerset Dam are expected to increase in the next few hours due to rain in the last 6 hours with falls up to 75 mm

- Please open Sluice K to 100% at 09:00.

Please confirm this gate operation by fax once you have completed the opening.

Regards

Engineer 2
Duty Engineer

APPENDIX L - FLOOD OPERATIONS DIRECTIVES

Engineer 1
Duty Engineer

Somerset Directive 7

Date: Tuesday 11 January 2011
Time: 10:15

SEQWATER FLOOD OPERATIONS CENTRE

FACSIMILE MESSAGE

Senior Flood Operations
Engineer 3

Senior Flood Operations Engineer 1

Flood Operations
Engineer 2

Flood Operations
Engineer 4
1.1.69 Flood Event - Operations Directive

TO: Somerset Dam Operators	Date:	12/01/2011
	Directive No:	7
	Time:	10:15
This transmission comprises of this page and 0 other pages.		
Message:		

Please undertake the following operations:-

- Fully Open Sluice L at 10:30.

Please confirm this gate operation by fax once you have completed the requested operations.

Regards

Engineer 4
Duty Engineer

APPENDIX L - FLOOD OPERATIONS DIRECTIVES

Somerset Directive 8

Date: Wednesday 12 January 2011
Time: 10:15

SEQWATER FLOOD OPERATIONS CENTRE

FACSIMILE MESSAGE

Senior Fiood Operations	Senior Flood Operations	Flood Operations	Flood Operations
Engineer 3	Engineer 1	Engineer 2	Engineer 4

1.1.70 Flood Event - Operations Directive

TO: Somerset Dam Operators	Date:	$12 / 01 / 2011$	
		Directive No:	8
	Time:	$10: 15$	
Message:			

Please undertake the following operations:-

- Fully Open Sluice L at 10:30.

Please confirm this gate operation by fax once you have completed the requested operations.

Regards

Engineer 4
Duty Engineer

Somerset Directive 9

Date: Thursday 13 January 2011
Time: 08:15

SEQWATER FLOOD OPERATIONS CENTRE

FACSIMILE MESSAGE

Senior Flood Operations
Engineer 3

Senior Flood Operations
Engineer 1

Flood Operations
Engineer 2

Flood Operations
Engineer 4

1.1.71 Flood Event - Operations Directive

TO: Somerset Dam Operators	Date:	$13 / 01 / 2011$
	Directive No:	9
	Time:	$8: 15$

This transmission comprises of this page and 0 other pages.
Message:

Please undertake the following operations:-

- Fully Open Sluice M at 08:30.

Please confirm this gate operation by fax once you have completed the requested operations.

Regards

Engineer 4
Duty Engineer

Somerset Directive 10

Date: Thursday 13 January 2011
Time: 12:30

SEQWATER FLOOD OPERATIONS CENTRE

FACSIMILE MESSAGE

Senior Flood Operations
Engineer 3

Senior Flood Operations
Engineer 1

Flood Operations
Engineer 2

Flood Operations
Engineer 4

1.1.72 Flood Event - Operations Directive

Please undertake the following operations:-

- Fully Open Sluice K at 13:00.

Please confirm this gate operation by fax once you have completed the requested operations.

Regards

Engineer 4
Duty Engineer

Somerset Directive 11

Date: Thursday 13 January 2011
Time: 20:45

SEQWATER FLOOD OPERATIONS CENTRE

FACSIMILE MESSAGE

Senior Flood Operations
Engineer 3

Senior Flood Operations
Engineer 1

Flood Operations
Engineer 2

Flood Operations Engineer 4

1.1.73 Flood Event - Operations Directive

TO: Somerset Dam Operators	Date:	$13 / 01 / 2011$
	Directive No:	11
	Time:	$20: 45$

This transmission comprises of this page and 0 other pages.

Message:

Please undertake the following operations:-

- Fully Open Sluice N at 21:00.

Please confirm this gate operation by fax once you have completed the requested operations.

Regards

Engineer 1
Duty Engineer

Somerset Directive 12

Date: Sunday 16 January 2011
Time: 21:30

SEQWATER FLOOD OPERATIONS CENTRE

FACSIMILE MESSAGE

Senior Flood Operations	Senior Flood Operations	Flood Operations	Flood Operations
Engineer 3	Engineer 1	Engineer 2	Engineer 4

1.1.74 Flood Event - Operations Directive

TO: Somerset Dam Operators	Date:	$16 / 01 / 2011$
	Directive No:	13
	Time:	$21: 30$

This transmission comprises of this page and 0 other pages.

Message:

Please undertake the following operations:-

- Fully Close Sluice K at 22:00 on 16/01/2011
- Fully Close Sluice M at 03:00 on 17/01/2011
- Fully Close Sluice L at 07:00 on 17/01/2011
- Fully Open Regulator

Please confirm this gate operation by fax once you have completed the requested operations.

Regards

Engineer 4
Duty Engineer

Somerset Directive 13

Date: Sunday 16 January 2011
Time: 21:30

SEQWATER FLOOD OPERATIONS CENTRE

FACSIMILE MESSAGE

Senior Flood Operations
Engineer 3

Senior Flood Operations
Engineer 1

Flood Operations
Engineer 2

Flood Operations
Engineer 4
1.1.75 Flood Event - Operations Directive

TO: Somerset Dam Operators	Date:	$16 / 01 / 2011$
	Directive No:	13
	Time:	$21: 30$

This transmission comprises of this page and 0 other pages.

Message:

Please undertake the following operations:-

- Fully Close Sluice K at 22:00 on 16/01/2011
- Fully Close Sluice M at 03:00 on 17/01/2011
- Fully Close Sluice L at 07:00 on 17/01/2011
- Fully Open Regulator 12 at 07:15 on 17/01/2011

Please confirm this gate operation by fax once you have completed the requested operations.

Regards

Engineer 4
Duty Engineer

APPENDIX M - FLOOD EVENT LOG

Note: The names of individuals have been removed from this version of the Flood Event log.

APPENDIX M - FLOOD EVENT LOG

Date	Time	Action	Category	Title
.	12:43 PM	MBRC called. Engineer 2 advised that water will be over Savages Crossing until end of the week.	Correspondence	Flood Officer 7
	12:46 PM	Engineer 2 advised BCC Wivenhoe Dam will commence gate operations later today.	Correspondence	Flood Officer 7
	1:30 PM	Revised Operating Strategy 1200 6/1/2011	Situation Report	Engineer 2
	1:32 PM	Engineer 2 left message for SRC to return his call.	Correspondence	Flood Officer 7
	1:35 PM	Engineer 2 advised MBRC Wivenhoe gate operations will be delayed to Saturday morning This is due to higher than expected inflows from Lockyer.	Correspondence	Flood Officer 7
	1:45. PM	Engineer 2 advised ICC Wivenhoe's gate operations will be delayed till Saturday morning. This is due to higher than expected inflows from Lockyer.	Correspondence	Flood Officer 7
	1:46 PM	Engineer 2 left message for BCC to retum his call.	Correspondence	Flood Officer 7
	1:47 PM	Engineer 2 left message for BCC to return his call.	Correspondence	Flood Officer 7
	2:41 PM	MBRC asked for Engineer 2's mobile. He wanted to share MBRC's'text message informing people living downstream from North Pine Dam.	Correspondence	Flood Officer 7
	2:45 PM	BCC called for situation update. Engineer 2 provided an update.	Correspondence	Flood Officer 7
	$3: 00 \mathrm{PM}$	SDWD Model Updated - SDWD-201101061500.xls	Model Run	Flood Officer 9
	$3: 11$ PM	BoM called to discuss with Engineer 2 about readings from Upper Brisbane \& Lockyer. They are in agreement on readings.	Correspondence	Flood Officer 7
	3:19 PM	MBRC called. Engineer 2 advised her North Rihe Dam will commence gates operations from 19:00 hrs.	Correspondence	Flood Officer 7
	4:00 PM	SDWD Model Updated - SDWD-201101061600.xls	Model Run	Flood Officer 9
	4:00 PM	NPD model updated - NPD-201101661600.xls	Model Run	
	5:33 PM	Situation Report - 18:00 on Thursday 6 January 2011	Situation Report	Engineer 2
	6:57 PM	North Pine Dam Operator falled to inform that MBRC workmen were waiting until 19:00 hrs to close Young's Crossing boom gates. This delayed dam gate opening by 15 minutes.	Correspondence	Flood Officer 1
	7:45 PM	Somerset Dam called to enquire about the release strategy. Engineer 1 advised the impacts of the Lockyer flow were being monitored. Communication by e-mail was O.K.'ed.	Correspondence	Flood Officer 1
		B^{4}		
	9:00 PM	NPD model updated - NPD-201101062100.xis	Model Run	
	9:00 PM	SDWD Model Updated - SDWD-201101062100.xls	Model Run	Flood Officer 9

APPENDIX M - FLOOD EVENT LOG

Date	Time	Action	Category	Title
	6:07 AM	Situation Report - 06:00 on Friday 7 January 2011	Situation Report	Engineer 1
Friday 7 January 2011	7:00 AM	Engineer 2 and Flood Officer 8 commenced day shift.	Other	Flood Officer 8
	8:00 AM	NPD model updated - NPD-201101070800.xls	Model Run	
	8:00 AM	Advice from BoM indicates that SEQ can expect some high rainfall totals over the next 5 days up to Tuesday 11/1/11 with the largest falls predicted for Sunday and Monday.	Correspondence	Flood Officer 8
	8:05 AM	Situation Report - 08:00 on Friday 7 January 2011	Situation Report	Engineer 2
	8:21 AM	Called Somerset Council to inform him that the Lockyer is running - all bridges in Somerset Region will be cut off this morning. Wivenhoe gates will be opened once the Lockyer peak is through.	Correspondence	Flood Officer 8
	8:30 AM	Flood Officer 7 spoke with Dam Operator 9 (Stand-in Central Coordinator) about readiness of staff for flood operations. Graham confirms that staff have been rostered and are ready.	Correspondence	Flood Officer 7
	8:40 AM	FOC called MBRC to inform them that North Pine will be operate for the next few days - probably till Tuesday.	Correspondence	Flood Officer 8
	8:44 AM	Called BCC to inform that Wivenhoe gates will be opened again this aftemoon and releases might peak at $1500 \mathrm{~m} 3 / \mathrm{s}$. This might continue until the end of next week.	Correspondence	Flood Officer 8
	8:47 AM	Called ICC to inform him that Wivenhoe gates will be opened again this afternoon and releases might peak at $1500 \mathrm{~m} 3 / \mathrm{s}$. This might continue until the end of next week.	Correspondence	Flood Officer 8
	8:50 AM	Moreton Bay Regional Council (MBRC) called tofquery about flows at Fernvale bridge. Engineer 2 provided an update for possible gate operations.	Correspondence	Flood Officer 7
	9:05 AM	NPD Operator called to inform that North Pine Dam staff have been rostered and are ready.	Correspondence	Flood Officer 7
	9:40 AM	Dam Operations Manager called to infoym that Ipswich City Council (ICC) has returned to the office and is contactable. He also requested for asifuation update.	Correspondence	Flood Officer 7
	10:12 AM	Called BCC to provide situation report.	Correspondence	Flood Officer 8
	11:00 AM	ICC called for a situation update. Engineer 2 shared the release strategy for tonight.	Correspondence	Flood Officer 7
	11:49 AM	Engineer 2 advised MERe Call Centre that North Pine Dam will commence gate operations tonight. He requested for MBRC to call hifh	Correspondence	Flood Officer 7
	12:00 PM	NPD model updated - NPD-201101071200.xls	Model Run	Flood Officer 9
	12:00 PM	SDWD Model Updated - SDWD-201101071200.xls	Model Run	Flood Officer 9
	12:04 PM	MBRCfilled. Engineer 2 advised her that the latest North Pine Dam gates may be opened will be 7:00pm today. FOC with advise them accordingly.	Correspondence	Flood Officer 7
	12:43 PM	MBRC called. Engineer 2 advised that water will be over Savages Crossing until end of the week.	Correspondence	Flood Officer 7

APPENDIX M - FLOOD EVENT LOG

Date	Time	Action	Category	Title
	12:46 PM	Engineer 2 advised Brisbane City Council (BCC) Wivenhoe Dam will commence gate operations later tofay.	Correspondence	Flood Officer 7
	1:32 PM	Engineer 2 left message for Somerset Regional Council (SRC) to return his call.	Correspondence	Flood Officer 7
	$1: 35$ PM	Engineer 2 advised MBRC Wivenhoe gate operations will be delayed to Saturday morning. Thisfore to higher than expected inflows from Lockyer.	Correspondence	Flood Officer 7
	1:45 PM	Engineer 2 advised ICC Wivenhoe's gate operations will be delayed till Saturday morning. This is due to higher than expected inflows from Lockyer.	Correspondence	Flood Officer 7
	1:46 PM	Engineer 2 left message for $B C C$ to retum his call.	Correspondence	Flood Officer 7
	1:47 PM	Engineer 2 left message for BCC to retum his call.	Correspondence	Flood Officer 7
	2:41 PM	MBRC asked for Engineer 2 mobile. He wanted to share MBRC's text message informing people living downstream from North Pine Dam.	Correspondence	Flood Officer 7
	2:45 PM	BCC called for situation update. Engineer 2 provided an update.	Correspondence	Fiood Officer 7
	3:00 PM	SDWD Model Updated - SDWD-201101061500.xls	Model Run	Flood Officer 9
	3:02 PM	BCC called FOC with concerns that dam release will add afother 200 mm on top of abnormal high tide. Engineer 2 spoke to BoM who advised that the effect could be arouni* 50 mm - if that can be measured.	Correspondence	Flood Officer 8
	3:11 PM	BoM called to discuss with Engineer 2 about readings from Upper Brisbane \& Lockyer. BoM \& Engineer 2 are in agreement on readings.	Correspondence	Flood Officer 7
	3:19 PM	MBRC called. Engineer 2 advised her North Phe Dam will commence gates operations from 19:00 hrs.	Correspondence	Flood Officer 7
	4:00 PM	SDWD Model Updated - SDWD-201101061600.xls	Model Run	Flood Officer 9
	4:00 PM	NPD model updated - NPD-20110106 $1600 . x$ ls	Model Run	
	5:57 PM	Situation Report - 18:00 on Friday 7 January 2011	Situation Report	Engineer 2
	6:00 PM	SDWD Model Updated - SDV $201101071800 . \mathrm{xls}$	Model Run	Flood Officer 9
	6:57 PM	North Pine Dam Operator called to inform that MBRC workmen were waiting until 19:00 hrs to close Young's Crossing boom gates. This delayed dam gate opening by 15 minutes.	Correspondence	Flood Officer 1
	7:45 PM	Dam Operator 4,(Somerset Dam) called to enquire about the release strategy. Engineer 1 advised the impacts of the Lockyer flow were being monitored. Communication by e-mail was O.K.	Correspondence	Flood Officer 1
	9:00 PM	NPD model updated - NPD-201101062100.xls	Model Run	
	9:00 PM	SDWD Model Updated - SDWD-201101062100.xls	Model Run	Flood Officer 9
Saturday 8	6:32 AM	Situation Report - 06:00 on Saturday 8 January 2011	Situation Report	Engineer 4

APPENDIX M - FLOOD EVENT LOG

APPENDIX M - FLOOD EVENT LOG

Date	Time	Action	Category	Title
	7:15 PM	FOC called Director Dam Safety advising him that FOC is now looking at much larger flows and will have to ramp up releases to around 3000 cumecs as by as early as midnight which is likely to have flooding impacts on low-lying areas of Brisbane.	Correspondence	Flood Officer 6
	7:20 PM	Engineer 2 called BCC advising him of potential for high releases sooner than previously expegfed.	Correspondence	Flood Officer 6
	7:25 PM	NPD Operator called to advise dam level is at $39.82 \mathrm{mAHD}, 3$ gates are at increment 2 and two are at increment 1. The two at increment 1 are currently being raised to increment 2 (next few minutes).	Correspondence	Flood Officer 6
	8:00 PM	SDWD Model Updated - SDWD-201101092000withnorain.xls 8^{8}	Model Run	Flood Officer 9
	8:05 PM	Engineer 1 called NPD Operator to confirm last directive is completed. All gates at increment 2.	Correspondence	Flood Officer 6
	8:30 PM	ICC returned call and spoke to Engineer 3. He was informed of current situation and the likelihood of high releases tomorrow causing flood damage.	Correspondence	Flood Officer 6
	8:50 PM	Engineer 1 called BCC to request copy of flood damages curve from 2007 study. BCC will send a copy tomorrow.	Correspondence	Engineer 1
	8:55 PM	BCC called back and spoke with Engineer 3. Confirmed BCC mobilisation triggers need to be in place. Status report is in preparation and will be emailed out shortly.	Correspondence	Flood Officer 6
	9:10 PM	Dam Operations Manager called and spoke with Engineer 1. Dam Operations Manager confirmed that releases will need to be ramped up from current 1400 cumecs to 2500 cumecs which will cause flooding in low lying areas of Brisbane. Brisbane flood information centre has not yet been mobilised. Somerset RC has no DTMR A/H contacts and will be contacting them in the morning. Dam Operations Manager will locate DTMR contacts. Confirmed volumes getting close to 1974 levels. Confirmed situation report has gone out.	Correspondence	Flood Officer 6
	9:15 PM	BoM called and spoke with Engineer 2. They eliscussed on rainfall expectations and flood warning requirements for Brisbane. Bremer/Narrill situation being monitored. Actual and projected flows sent to BoM.	Correspondence	Flood Officer 6
	9:20 PM	ICC spoke with Engineer 1. Emailing DTMR A/H contact to flood room. Kiosk caretaker at Colleges Crossing is being evacuated.	Correspondence	Flood Officer '6
	10:00 PM	SDWD Model Updated - SDWW-201101092200withnorain.xls, SDWD-201101092200-Forecast24hr.xls	Model Run	Flood Officer9
	10:00 PM	NPD model updated - NPD-201101092200.xls	Model Run	Flood Officer 9
	10:00 PM	Engineer 3 called Wivelhhoe operator (Dam Operator 7) and confirmed current flooding expectations based on rainfall predictions and expected impacts.	Correspondence	Flood Officer 6
	10:15 PM	FOC called SRC. A situation update was provided. Fernvale Bridge closure likely to be required in view of probable releases from Somerset to Wivenhoe.	Correspondence	Flood Officer 6
	10:20 PM	Dam Openations Manager called and spoke with Engineer 1. A teleconference with Water Grid Manager and DERAWas completed. Explained 9:00pm situation report. Water Grid Manager will be distributing media release in f_{he} morning regarding closure of bridges.	Correspondence	Flood Officer 6

APPENDIX M - FLOOD EVENT LOG

Date	Time	Action	Category	Title
	12:55 AM	Engineer 3 called Dam Operations Manager to discuss BCC's view on damaging flow. Engineer 3 confirined that if flows were kept below 3500 the fuse plug would be triggered. Agreed that situation reports will not allude to damage levels - the councils can make decisions on what to report in this regard.	Correspondence	Flood Officer 6
	1:00 AM	SDWD Model Updated - SDWD-201101100100withnorain.xis	Model Run	Flood Officer 9
	1:00 AM	Engineer 1 called Dam Operator 1 (Somerset Dam) regarding purported dam stability issues (via ICC - two reports received). Dam Operator 1 confirmed that inspection had revealed no issues.	Correspondence	Flood Officer 6
	3:00 AM	SDWD Model Updated - SDWD-201101100300withnorain.xls	Model Run	Flood Officer 9
	3:00 AM	NPD model updated - NPD-201101100300.x/s	Model Run	Flood Officer 9
	4:10 AM	Engineer 3 discussed Wivenhoe status and release strategy with Dam Operator 7.	Correspondence	Flood Officer 6
	5:00 AM	SDWD Model Updated - SDWD-201101100500withnorain.xis	Model Run	Flood Officer 9
	5:00 AM	Dam Operator 4 called and discussed Somerset situation with Engineer 1.	Correspondence	Flood Officer 6
	5:00 AM	NPD model updated - NPD-201101100500.xls	Model Run	Flood Officer 9
	5:05 AM	Dam Operations Manager called and received situation update from Engineer 3.	Correspondence	Flood Officer 6
	5:20 AM	Engineer 1 called BoM regarding next forecast update \Leftrightarrow due at 9:00 am.	Correspondence	Flood Officer 6
	6:00 AM	Send out situation report for this morning.	Correspondence	Flood Officer 8
	7:40 AM	Talked to BOM - we are in general agreement about current flows in the Brisbane River.	Correspondence	Flood Officer 8
	8:30 AM	FOC left a message for BCC to call back.	Correspondence	Flood Officer 8
	8:38 AM	Talked to BoM to discuss our plannedstrategy i.e. to maintain gate openings for the next 24 hrs. This increases flood storage by 75000 ML which is equivalent to 0.2 m rise and limits flows in the Brisbane to $3000 \mathrm{~m} 3 / \mathrm{s}$ this provides a buffer for potential rundffor the next 24 hrs .	Correspondence	Flood Officer 8
	9:38 AM	Conference call with BCC - informed them that release from Wivenhoe will be maintained at $2000 \mathrm{~m} 3 / \mathrm{s}$ for the next 24 hrs . This will be revised in 24 hrs . The strategy is to limit the flows to $3000-3500 \mathrm{~m} 3 / \mathrm{s}$. At $3500 \mathrm{~m} 3 / \mathrm{s}$ about 322 (the whole property) will be submerged and about 7000 properties will be affected somehow damage bill $\$ 7 \mathrm{mil}$). If the rainfall in the Bremer and Lockyer increases substantially - it is likely the flows from these catchments can peak at $1000 \mathrm{~m}^{3} / \mathrm{s}$ (on top of Wivenhoe release)	Correspondence	Flood Officer 8
	10:08 AM	Received QPE ${ }^{\text {to0 }} \mathrm{mm}$ in Brisbane and 150 mm North Pine catchment	Other	Flood Officer 8
	10:15 AM	Received phone call from EMQ and Logan/Scenic Rim District Disaster Coordinator - gave them the same information as what we gave BCC before.	Correspondence	Flood Officer 8
	10:46 AM	Boftilio inform that Engineer 2 can do the model and with $600 \mathrm{~m} 3 / \mathrm{s}$ in the Bremmer the flows in Brisbane will go up tQ $3600 \mathrm{~m} 3 / \mathrm{s}$. BoM will discuss with BCC .	Correspondence	Flood Officer 8

APPENDIX M - FLOOD EVENT LOG

Date,	Time	Action, , , , , , , , , , , , , , , , , , ,	Category	Title
	11:14 AM	ICC called to clarify our strategy. Gave him the same.info as above.	Correspondence	Flood Officer 8
	1:00 PM	SDWD Model Updated - SDWD-201101101300withnorain.xls	Model Run	Flood Officer 9
	12:02 PM	Spoke with Seqwater CEO to answer elaborate on Situation Report and inform him of large rainfalls currently occurring in the Wivenhoe catchment.	Correspondence	Flood Officer 8
	12:33 PM	Called BCC twice. No answer, left messages.	Correspondence	Flood Officer 8
	12:36 PM	Spoke with ICC, informed them that we are moving strategy from urban damage control to dam safety priority	Correspondence	Flood Officer 8.
	12:41 PM	NPD operator called to inform FOC the level is dropping. Instructed them not to close gates - heavy rain fell in catchment.	Correspondence	Flood Officer 8
	2:00 PM	Send out third situation report for today.	Correspondence	Flood Officer 8
	2:30 PM	Called BCC 3 times before getting through to Flood Information Centre (EC). Discussed latest strategy with them i.e. changing from "Flood Mitigation" to "Dam Safety". We will start Opening Wivenhoe gates from 15:00.	Correspondence	Flood Officer 8
	3:00 PM	Called Disaster Coordinator. No answer.	Correspondence	Flood Officer 8
	4:00 PM	NPD model updated - NPD-201101101600.xls (S)	Model Run	Flood Officer 9
	$3: 15 \mathrm{PM}$	Had conference call with BoM. They agree with FCC on model discharge results. However, BoM included 6hrs of additional rain which takes the discharge to $4600 \mathrm{~m} 3 / \mathrm{s}$	Correspondence	Flood Officer 8
	4:09 PM	Engineer 2 spoke to a Police Officer about Cressbrook Dam - advising that FOC does not manage Cressbrook but gave him a contact at Toowoomba RC	Correspondence	Flood Officer 8
	5:00 PM	SDWD Model Updated - SDWD-201101101700withnorain.xls, SDWD-201101101700with50mmrain.xls	Model Run	Flood Officer 9
	5:09 PM	Dam Operator 2 phoned and reported water from Wivenhoe in getting into the hydro	Correspondence	Flood Officer 8
	6:06 PM	Get weather update from BoM - the forecast now is - still more of the same of what we had today.	- Other	Flood Officer 8
	6:45 PM	North Pine Dam operator raised concerns with school groups using Lake Kurwongbah for rowing exercise while water is running over the spilway at 500 mm . He was referred to Rangers.	Correspondence	Flood Officer 8
	7:30 PM	Dam Operator 2 (Somerset) called to inform that Somerset hydro is inundated with water. He believes he has located source of leak, has tightened seals to prevent further leakage. He also noted that there is oil in the water.	Correspondence	Flood Officer 9
	8:00 PM	SDWD Model Updated - SDWD-201101102000withnorain.xls, SDWD-201101102000-Lockyer.xls, SDWD201101102009 TMinflows.x/s	Model Run	Flood Officer 9
	20:00 PM	BoM called to advise of situation regarding flows in Lockyer. Estimated very heavy localised rainfall (e.g. 600 mm in few hours) on Toowoomba escarpment to cause observed flood flooding. Will monitor via Glenore Grove gauging station.	Correspondence	Flood Officer 9

APPENDIX M - FLOOD EVENT LOG

APPENDIX M - FLOOD EVENT LOG

Date	Time	Action	Category	Title
	9:21 AM	Dam Operator 2 from Somerset called Engineer 2. Water ingress through doors at the bottom of dam	Correspondence	Flood Officer 4
	9:22 AM	Engineer 4 advised NPD Operator that Strathpine Rd is expected to be closed.	Correspondence	Flood Officer 4
	9:26 AM	Engineer 4 advised NPD Operator verbally that all gates can go to 9 increments based on waterel as per manual.	Correspondence	Flood Officer 4
	9:40 AM	Engineer 2 called Flood Officer 7 and requested a technically knowledgeable person be dispatched to test HF radio links and satellite phone are in working condition	Correspondence	Flood Officer 4
	9:51 AM	Voicemail: Tactical Maintenance Planner left message. He's contacted Energex afdenergex suspect a dirty feed. Currently all helicopters are grounded. Specialist Trade Technician is lead at Mtgrósby. Energex will get as close as they can and get helicopter lift when possible.	Correspondence	Flood Officer 4
	10:00 AM	NPD model updated - NPD-201101111000.xls	Model Run	Flood Officer 9
	10:25 AM	North Pine Dam Operator called to report Lake level at EL 40.490mAthe. All gates currently at setting No. 10.	Correspondence	Flood Officer 4
	10:29 AM	Seqwater called Engineer 2, in conference with Principal Dams and Weirs Planning. Internal questioning of release strategy. Internal discussion regarding current approved strategy.	Correspondence	Flood Officer 4
	10:45 AM	Engineer 4 advised MBRC of current situation.	Correspondence	Flood Officer 4
	10:54 AM	Dam Operations Manager called. Bad line and disconnected.	Correspondence	Flood Officer 4
	11:00 AM	SDWD Model Updated - SDWD-201101111100xiftrorain.xls	Model Run	Flood Officer 9
	11:01 AM	Message received by Engineer 4. Kilcoy Police rang Somerset, Engineer 4 advised general status information to be provided by dam operators, predictions to go through FOC.	Correspondence	Flood Officer 4
	11:02 AM	Seqwater CEO requested update on sifuation.	Correspondence	Flood Officer 4
	11:04 AM	Engineer 4 called Dam Operator 7. Discussed that if forecast rain falls, fuse plug likely to go.	Correspondence	Flood Officer 4
	11:06 AM	FAX not working at Wivenhof	Other	Flood Officer 4
	11:07 AM	BoM called. Inflow into NPD of 1500 cumecs. Advised Wivenhoe strategy to be revised.	Correspondence	Flood Officer 4
	11:17 AM	Principal Dams and Wels Planning called Engineer 2 - on the way to talk to Grid Manager. Engineer 2 advised current strategy is 3 mourly.	Correspondence	Flood Officer 4
	11:19 AM	Engineer 4 called MBRC. Advised North Pine still rising. Current releases to exceed 2000cumces.	Correspondence	Flood Officer 4
	11:30 AM	North Pine Dam operator called to report lake level EL 40.740 mAHD . Water level rising slowly. All gates now at setting, 射:	Correspondence	Flood Officer 4
	11:38 AM	Engineer 2 called BoM. Unable to contact BoM. Will call back.	Correspondence	Flood Officer 4

APPENDIX M - FLOOD EVENT LOG

(continued)

Date	Time	Action	Category	Title
	11:38 AM	Engineer 4 called Seqwater CEO and advised that releases at Wivenhoe will be ramped up to 4000 cumecs and strategy will be revised on an hourly basis. In reality releasing slightly less than the Flood Ops manual.	Correspondence	Flood Officer 4
	11:51 AM	Incoming Phone call from Engineer 1. Advised SS that Wivenhoe will ramp up to 4000 cumecs. Also advised that staff likely to stay in offices overnight.	Correspondence	Flood Officer 4
	$11: 56 \mathrm{AM}$	Engineer 4 called MBRC and left message again. Outflow will exceed 2000cumecs	Correspondence	Flood Officer 4
	11:57 AM	Engineer 4 called MBRC. Left message: North Pine Dam outflow likely to exceed 2000cumecs.	Correspondence	Flood Officer 4
	11:59 AM	Engineer 4 called MBRC. Left message, outflow from North Pine Dam will exceed 2000 lomices .	Correspondence	Flood Officer 4
	12:04 PM	North Pine Dam Operator called to report lake level at EL 40.883 mAHD. Gates are currently set at setting 16.	Correspondence	Flood Officer 4
	12:10 PM	Flood Officer 2 called from FOC satellite phone. Made contact with Somerset and North Pine. Connection issues with Landline to Wivenhoe.	Correspondence	Flood Officer 4
	12:17 PM	MBRC called. Engineer 2 advised discharge in excess of 1989 flood (1500cumecs). Current releases in excess of 2000cumecs.	Correspondence	Flood Officer 4
	12:30 PM	North Pine Dam Operator called to report lake level is now at 4 (40.950 mAHD and rising. Gate settings at 17.	Correspondence	Flood Officer 4
	12:42 PM	Redlands Shire Council called requesting information for Lesley Harrison. Was told to call Operations Coordinator South.	Correspondence	Flood Officer 4
	12:42 PM	Call from Mary Valley Lead Operator. Asked what islequired of the Northern dams. Was advised to monitor dams more closely when/if 1 in 50 year event occurs.	Correspondence	Flood Officer 4
	1:02 PM	North Pine Dam Operator called to report Lake level EL 41.040 m AHD. Gate settings at setting 18.	Correspondence	Flood Officer 4
	1:26 PM	Seqwater CEO called and requested the FOC request the BoM to consider if Wivenhoe is releasing 9000cumecs.	Correspondence	Flood Officer 4
	$1: 44 \mathrm{PM}$	North Pine Dam called on Satellite phone to confirm it is operational.	Correspondence	Flood Officer 4
	1:50 PM	North Pine Dam Operator called to report lake level at EL 41.105mAHD. Gates currently at setting 19.	Correspondence	Flood Officer 4
	1:56 PM	Dam Operations Manager requesting status update.	Correspondence	Flood Officer 4
	2:00 PM	SDWD Model Updated ${ }^{\text {a }}$ SDWD-201101111400withnorain.xls	Model Run	Flood Officer 9
	2:24 PM	Seqwater Wivenhoe Admin Officer called to pass on message. QLD Fire Rescue called to enquire about Wivenhoe Releases. Unable to call at this stage.	Correspondence	Flood Officer 4
	2:37 PM	Seqwater CEO called to discuss current situation.	Correspondence	Flood Officer 4
	2:46 PM	North Pine Dam Operator called to report lake level steady at 41.110 for last 30 minutes.	Correspondence	Flood Officer 4
	2:53 PM	Noft Pine Dam is isolated as per conversation with operator.	Correspondence	Flood Officer 4

APPENDIX M - FLOOD EVENT LOG

Date	Time	Action	Category	Title
	3:00 PM	NPD model updated - NPD-20110111500.xls	Model Run	Flood Officer 9
	3:06 PM	Manager WTP Operations North (Seqwater) called to enquire about the current release rate from Wiyshioe Dam.	Correspondence	Flood Officer 4
	3:14 PM	Seqwater CEO called to discuss the proposed release of 10,000 cumecs. Engineer 4 and Engineer 2 explained release strategy is constantly being revised.	Correspondence	Flood Officer 4
	$3: 49 \mathrm{PM}$	BoM had a conference with Engineer 1, 2, 3 and 4 about current release strategy and possible maximum release scenario of $10000 \mathrm{~m} 3 / \mathrm{s}$. This would be of a similar magnitude to the 1893 event ($\sim 8.36 \mathrm{n} 贝 \mathrm{M}$ M Brisbane Port Office)	Correspondence	Flood Officer 4
	3:54 PM	Manager WTP Operations North (Seqwater) called and talked to Engineer 4 regarding current inflow strategy.	Correspondence	Flood Officer 4
	$3: 58$ PM	Called NPD Operator (at Wivenhoe Dam) to check if all is ok, levels are slowlyreducing.	Correspondence	Flood Officer 4
	4:29 PM	Lowood Police rang to request water level of Wivenhoe and discuss the current release strategy with respect to the fuse plug (conversed with Flood Officer 9).	Correspondence	Flood Officer 4
	4:33 PM	Phone call with Engineer 2 and Seqwater CEO. Discussed that evert fough the magnitude flood in Brisbane is similar to 1974 flood event, the no-dam flood would be significantovarger without Wivenhoe.	Correspondence	Flood Officer 4
	4:41 PM	Director Dam Safety phone call. He requested more technical information in the status reports released by Duty Engineers. Director Dam Safety will send through an example of the technical data requested in the report.	Correspondence	Flood Officer 4
	4:46 PM	Principal Incident and Emergency Management (Seqwater) called to request update in inflow/outflow of Wivenhoe Dam.	Correspondence	Flood Officer 4
	5:00 PM	SDWD Model Updated - SDWD-201101111700withnorain.xls	Model Run	Flood Officer 9
	5:12 PM	Engineer 4 called North Pine Dam operatofregarding gate operating strategy. Engineer 4 advised to keep gates at current setting until water is clear of the Controls. Gate closing strategy then to follow Flood Manual.	Correspondence	Flood Officer 4
	5:22 PM	BoM, Engineer 2 and Engineer 3 discussed current Wivenhoe inflows and anticipated outflows. Engineer 2 confirmed that 7500cumecs is still likely early tonight.	Correspondence	Flood Officer 4
	5:27 PM	North Pine Dam operator calfedto report of NPD level EL 40.7 m AHD. Engineer 4 verbally advised 10 minute gate closure intervals is okintil 39.9 m AHD - then back to 15 min intervals.	Correspondence	Flood Officer 4
	5:48 PM	Dam Operations Manager asking Tarong Energy to hold off releasing water from Splityard Creek.	Correspondence	Flood Officer 4
	6:00 PM	NPD model updated - NPD-20110111800.xls, NPD-20110111800 Final.xls	Model Run	Flood Officer 9
	6:00 PM	SDWD Model Updated - SDWD-201101111800withnorain.xls	Model Run	Flood Officer 9
	6:04 PM	Mary Valleylead Operator called to advise he is unable to reach Lake Macdonald to take readings.	Correspondence	Flood Officer 4
	6:07 PM	Recap of current release strategy amongst Duty Engineers. Current Wivenhoe scenario: $74.9 \mathrm{~m}-$ all gates at 12 m . Won't go to 13 m settings until level reaches 75.0 m AHD.	Correspondence	Flood Officer 4

APPENDIX M - FLOOD EVENT LOG

(continued)

Date	Time	Action,, ,	Category	Title
	1:15 AM	Engineer 1 rang Dam Operator 7 (Wivenhoe Dam) advising next directive. We want to get releases dowgis quick as possible while still lowering lake levels. Advised that we may possibly have a communications proberan in the morning if power to 179 Turbot Street is cut.	Correspondence	Flood Officer 3
	2:10 AM	BCC rang enquiring about a release strategy. Advised one will be issued at about 3:00am. Talked about the activities of the last 24 hours.	Correspondence	Flood Officer 3
	3:10 AM	Engineer 3 rang NPD Operator and advised no changes to gate settings planned for the fext hour or so.	Correspondence	Flood Officer 3
	3:30 AM	Seqwater Mt Crosby WTP Manager called enquiring about levels at Mt Crosby.	Correspondence	Flood Officer 3
	$3: 50 \mathrm{AM}$	Engineer 1 called BoM advising him that because inflows are not as much as eadjef anticipated, the releases from Wivenhoe are less than previously suggested.	Correspondence	Flood Officer 3
	4:05 AM	OIC of Lowood Police rang enquiring about the Wivenhoe fuse plug. Flood Officer 9 advised that there is no danger of the fuse plug failing, and that current releases from Wivenhoe Dam are about 4,900 cumecs.	Correspondence	Flood Officer 3
	4:40 AM	Seqwater Mt Crosby WTP Manager rang to check that his emails, xitb the Mt Crosby levels were being received. They are.	Correspondence	Flood Officer 3
	5:15 AM	Dam Operations Manager rang enquiring current storage levels and releases. Engineer 3 advised.	Correspondence	Flood Officer 3
	5:30 AM	Dam Operations Manager rang enquiring estimated time for closing North Pine Dam. Engineer 1 advised possible today, but it has not yet been decided. Also advised fhe inflows into North Pine Dam were equivalent to a $1: 10,000$ event.	Correspondence	Flood Officer 3
	5:30 AM	Engineer 3 called Wivenhoe Dam for the current level. Dropped 2 cm in 30 minutes.	Correspondence	Flood Officer 3
	5:50 AM	Engineer 2 called BoM advising him that We have significantly scaled back releases from Wivenhoe Dam, and will probably continue to scale back more, Agreed that Savages Crossing has peaked.	Correspondence	Flood Officer 3
	6:00 AM	SDWD Model Updated - SDWD-201101120600withnorain.xls	Model Run	Flood Officer 9
	6:00 AM	North Pine Dam rang enquiring doout closing down. Engineer 4 advised that we have not yet decided.	Correspondence	Flood Officer 3
	6:10 AM	Dam Operations Manager rang and suggested that the fish recovery may be a fairly big job. Engineer 4 suggested that our staff can check this morning and then decide.	Correspondence	Flood Officer 3
	6:15 AM.	BCC rang enquiring the level of the pump station at Mt Crosby. Engineer 4 said we can't help, but that he should contact the treatment plant Manager.	Correspondence	Flood Officer 3
	6:30 AM	Engineer 4 rang Dam Operator 7 (Wivenhoe Dam) advising that a directive will soon follow to lower gates to 5m.	Correspondence	Flood Officer 3
	6:35 AM	DERM. Hyadrographer rang. Engineer 4 discussed current strategy.	Correspondence	Flood Officer 3
	7:00 AM	Liaised with Bureau regarding expected peak in lower Brisbane.	Correspondence	Flood Officer 9
	7:50 AM	SulWater called to confirm that 179 Turbot St had power.	Correspondence	Flood Officer 9

APPENDIX M - FLOOD EVENT LOG

Date	Time	Action	Category	Title
	8:20 AM	Dam Operations Manager rang enquiring current storage levels and releases. Engineer 4 advised.	Correspondence	Flood Officer 2
	9:20 AM	North Pine Dam Operator rang wanting to speak to Engineer 4.	Correspondence	Flood Officer 2
	9:50 AM	Lowood Police rang enquiring current storage releases from Wivenhoe Dam. Engineer 4 advised.	Correspondence	Flood Officer 2
	10:20 AM	Dam Operator 2 (Somerset Dam) called querying whether FOC have received fax and email hegarding storage level. He was checking the walls before and will be at his desk for the next 30 minutes. Damoperator 13 is there with him.	Correspondence	Flood Officer 2
	10:50 PM	Seqwater rang wanting to thank Flood Officer 1 for his and John's heroic effort in clearing Seqwater basement. Flood Officer 7 called to inform that he and Senior Hydrographer (Seqwater) ate tot able to access Enviromon. He asked if Engineer 2 can check the system.	Correspondence	Flood Officer 2
	11:20 AM		Correspondence	Flood Officer 2
	11:50 AM	Seqwater CEO called to ask that all communications be forwarded to him.	Correspondence	Flood Officer 9
	12:20 PM	Flood Officer 1 called Dam Operator 10 (Wivenhoe Dam) to advisefhat Seqwater comms are to be switched off due to flooding of the Margaret Street offices. Please send all future hourly bulletins to the FOC via fax, or alternatively, phone or TPG link.	Correspondence	Flood Officer 1
	12:25 PM	Flood Officer 1 called North Pine Dam advising that Seqwater comms are to be switched off due to flooding of the Margaret Street offices. Please send all future hourly bulletins to the FOC via fax, or alternatively, phone or TPG link.	Correspondence	Flood Officer 1
	12:32 PM	Leslie Harrison Dam Operator called Engineer 4. .Bue to the failure of Seqwater comms, he was seeking direction on how to submit a final report on operations at approx. 1600 today. Engineer 4 said to phone in to the FOC.	Correspondence	Flood Officer 1
	12:55 PM	BoM visited FOC to liaise with the Duty Engineers.	Correspondence	Flood Officer 1
	1:10 PM	Principal Dams and Weirs Planning galted to request electronic copy of Wiv - Som Flood Ops manual to be forwarded to him.	Correspondence	Flood Officer 1
	1:15 PM	Dam Operator 10 (Wivenhoe Dam) called to report lake level: 74.79mAHD @13:00hrs. Note: Reading taken in surging water. Wivenhoe fax appears to have failed.	Correspondence	Flood Officer 1
	2:05 PM	North Pine Dam Operat 6 called to inform that North Pine level was 39.74 mAHD and based on this level he is recommending at leastone gate closure.	Correspondence	Flood Officer 1
	2:10 PM	Dam Operator 9 phoned from Wivenhoe Dam. The SES (and irrigators) at Fernvale have concerns that a flood peak might be coming down the Lockyer within the next couple of hours. Engineer 1 assured Dam Operator 9 that the flood heights have reduced by up to 3 metres and any increase would be less than 1 metre.	Correspondence	Flood Officer 1
	2:25 PM	Dam Oporator 10 (Wivenhoe Dam) called to report lake level: 74.81mAHD @14:00hrs. Note: Reading taken in surging water. Wivenhoe fax confirmed as failed.	Correspondence	Flood Officer 1

APPENDIX M - FLOOD EVENT LOG

Date	Time	Action,	Category	Title
	2:30 PM	North Pine Dam Operator called to advise that the automatic height gauge is drifting further from the manual gauge board readings. He will continue to provide both versions at hourly intervals but will rely on the manual gauge readings for gate operations.	Correspondence	Flood Officer 1
	3:05 PM	Dam Operator 7 (Wivenhoe Dam) called to report lake level of 74.81mAHD @ 15:00hrs.	Correspondence	Flood Officer 1
	$3: 30 \mathrm{PM}$	BoM called Engineer 2 to discuss re-appraisal of the expected flood peak in Brisbane. Peak now may be 5.2 metres early on Thursday 13/12011.	Correspondence	Flood Officer 1
	4:00 PM	SDWD Model Updated - SDWD-201101121600.xls R	Model Run	Flood Officer 9
	4:00 PM	Dam Operator 7 (Wivenhoe Dam) called to report lake level of 74.80 mAHD @16:00hrs.	Correspondence	Flood Officer 1
	4:00 PM	North Pine Dam Operator called to report that Sideling Creek Dam is spilling 20.560 mAHD . Spillway level is 20.37 mAHD .	Correspondence	Flood Officer 1
	4:20 PM	BCC called FOC and had phone conference with Duty Engineers. He was seeking update for briefing with Lord Mayor.	Correspondence	Flood Officer 1
	4:52 PM	DERM called FOC and left message for Engineer 2. They (DERM) will be gauging at Jindalee all night to catch the peak. Senior Hydrographer (Seqwater) has been contacted and will be joining the crew.	Correspondence	Flood Officer 1
	5:00 PM	Dam Operator 7 (Wivenhoe Dam) called to report lake level of 74.82mAHD @17:00hrs.	Correspondence	Flood Officer 1
	6:00 PM	Dam Operator 7 Wivenhoe Dam) called to report lake level of $74.80 \mathrm{mAHD} @ 18: 00 \mathrm{hrs}$.	Correspondence	Flood Officer 1
	7:00 PM	Dam Operator 7 (Wivenhoe Dam) called to report lake level of 74.82 @19:00hrs.	Correspondence	Flood Officer 7
	7:45 PM	Engineer 1 \& Engineer 3 advised BoM that FOC will be sending updated projected releases from Wivenhoe Dam. This has been prepared with the aim of, finpiting flows at Moggill to 3,500 cumecs.	Correspondence	Flood Officer 7
	8:00 PM	Engineer 1 \& Engineer 3 advised BCC Flood Information Centre that FOC will be sending updated projected releases from Wivenhoe Dam. This has been prepared with the aim of limiting flows at Moggill to 3,500 cumecs.	Correspondence	Flood Officer 7
	8:55 PM	Dam Operator 7 (Wivenhoe Damb called to report lake level 74.82mAHD @ 21:00hrs. They will now report levels every 2 hours.	Correspondence	Engineer 1
	9:15 PM	Dam Operator 7 (Wivenhoe Dam) called to inform that Energex restored power at Wivenhoe Dam at 21:15 hours.	Correspondence	Flood Officer 7
	9:50 PM	Mt Crosby WTP Manager provided an update on Kholo \& Mt Crosby: Kholo 19:15hrs 20.0 m Mt Crosby 2100023.5 m He asked for a situation update. Engineer 1 shared Wivenhoe Dam's release strategy.	Correspondence	Flood Officer 7
	10:00 PM	Dam Operator 7 (Wivenhoe Dam) called to report lake level $74.81 \mathrm{mAHD} @ 22: 00 \mathrm{hrs}$. Will now report levels every 2 hours.	Correspondence	Flood Officer 7

APPENDIX M - FLOOD EVENT LOG

(continued)

APPENDIX M - FLOOD EVENT LOG

Date	Time	Action	Category	Title
	11:00 AM	SDWD Model Updated - SDWD-201101131100.xis	Model Run	Flood Officer 9
	1:00 PM	SRC rang to enquire about Kilcoy Creek and Mary Smokes Bridge. Duty Engineers advised that it mave out of water tonight, certainly by tomorrow morning.	Correspondence	Flood Officer 9
	1:15 PM	Dam Operations Manager called to advise that Police had called to ask when Kilcoy would be accessible. Engineer 4 advised Dam Operations Manager that it would be by 6 am tomorrow morning (14/1).	Correspondence	Flood Officers
	1:40 PM	Mt Crosby WTP Manager called for update on Mt Crosby. Engineer 2 informed him that, HeVel would be maintained at 17.5 metres for next 7 days.	Correspondence	Flood Officer 9
	2:15 PM	Phone call from MBRC. Advice as follows: * damage to Gympie Rd abutments * No evacuations * No suburban flooding * Not aware of any over floor flooding. Pine Shire had 0.75m freeboard.	Correspondence	Flood Officer 9
	2:30 PM	Wivenhoe directive \#36 issued - Open Gate 1 from 3.5 metres to 4.0 metres at 1500 . - Open Gate 5 from 3.5 metres to 4.0 metres at 1600 . - Open Gate 1 from 4.0 metres to 4.5 metres at 1700. - Open Gate 5 from 4.0 metres to 4.5 metres at 1800.	Correspondence	Flood Officer 9
	3:50 PM	NPD Operator called to confirm if FOC received Dam Observation report for North Pine Dam. Approx 6 of 40 uplift pressure gauges has abnormal readings.	Correspondence	Flood Officer 9
	4:45 PM	MBRC was advised that NPD gates will beefosed at 0500 Friday	Correspondence	Engineer 2
	7:37 PM	SunWater called to confirm building services were working and all in order.	Correspondence	Flood Officer 4
	7:51 PM	Engineer 1 called North Pine Dam Qrerator to discuss the current drainage strategy to close all gates by 5am tomorrow. Water level in North Pine Dam will be frequently monitored against the predictive model results, and gate opening will be adjusted acoordingly if required.	Correspondence	Flood Officer 4
	8:30 PM	Engineer 1 called Dam Operator 4 to advise of directive \#11.	Correspondence	Flood Officer 4
	8:41 PM	Engineer 1 called Dantioperations Manager top advise of current release rates from Wivenhoe, Somerset and North Pine Dams.	Correspondence	Flood Officer 4
Friday 14 January 2011	12:46 AM	Ipswich District (Fernvale) Police rang to enquire into the integrity of Somerset Dam, based on information received by the Police. Engineer 1 indicated that surveillance procedures are in place to monitor the integrity of the Dam, and that Engineer 1 will confirm with the operators.	Correspondence	Flood Officer 4
	12:47 AM	Engineer 1 called Dam Operator 1 at Somerset to enquire to the integrity of Somerset Dam. Operator indicated all wasigood and no anomalies have been detected.	Correspondence	Flood Officer 4

APPENDIX M - FLOOD EVENT LOG (eminues)

Date	Time	Action	Category	Title
	12:49 AM	Engineer 1 called lpswich District Police back on \square to confirm that Somerset was recently inspected and all was ok.	Correspondence	Flood Officer 4
	5:13 AM	Fax received from North Pine Dam confirming closure of all gates.	Correspondence	Flood Officer 4
	5:15 AM	Engineer 1.called MBRC to advise that North Pine Dam has closed the final gate at 5am.	Correspondence	Flood Officer 4
	5:16 AM	North Pine Dam Operator called to confirm that all gates are closed, and Young's Crossing should be passable within 2 hours. Lake Kurwongbah level is 20.43 m .	Correspondence	Flood Officer 4
	5:28 AM	Dam Operations Manager called to obtain a situation report. Engineer 1 provided the key information.	Correspondence	Flood Officer 4
	5:37 AM	BCC called requesting information for Wivenhoe Dam and checking sit-rep date. Enquired about flows throughout the event, Engineer 2 advised that not currently in a position to discuss these	Correspondence	Flood Officer 4
	7:40 AM	Dam Operations Manager rang FOC to enquire about river levels at Lowood. Pumps required to be installed to supply Lowood WTP. Engineer 2 advised RD that no significant rises were expected in the Brisbane River levels in the foreseeable future.	Correspondence	Flood Officer 1
	7:45 AM	ICC phoned the FOC. Enquiring about renewed rises in the Brisbane / Bremer River systems. He cannot contact BOM for an update. Engineer 2 advised that no significantrises were expected at Moggill. A constant flow in the river was the plan as a consequence of Wivenhoe releases.	Correspondence	Flood Officer 1
	8:20 AM	Principal Dams and Weirs Planning phoned Engineer 2. Enquiry regarding the Wivenhoe Dam fuse plugs (design calcs/parameters).	Correspondence	Flood Officer 1
	8:21 AM	Seqwater CEO phoned the FOC. Engineer 2 giscussed with CEO the release strategy from Wivenhoe Dam with a view to opening the Fernvale Bridge and Mt Sposby Bridge at the earliest possible time. Engineer 2 also updated CEO on the projected City Gauge heighłover the next few days. This being ~ 2.5 metres due to continuous releases from Wivenhoe Dam.	Correspondence	Flood Officer 1
	8:30 AM	Engineer 2 returned call back to Principal Dams and Weirs Planning. Engineer 2 extended an invitation to him and others to pay a visit to the FOC to inspect operations.	Correspondence	Flood Officer 1
	10:10 AM	Dam Operator 2 rang fromsormerset Dam. Checking that all comms avenues (faxes \& e-mails) are functioning. All good.	Correspondence	Flood Officer 1
	10:25 AM	BCC rang TM. Enquiring if any chance of cutting back Wivenhoe releases to lower flows than the current figure of 3,500 cumecs. Engineer 2 response was NO!	Correspondence	Flood Officer 1
	10:40 AM	SunWater trats,mitted a message to Principal Dams and Weirs Planning that the right bank abutment to Mt Crosby Bridge hass saffered some erosion due to the flooding and there are concerns that the abutment may be further affected by piping once the water level falls.	Correspondence	Flood Officer 1

APPENDIX M - FLOOD EVENT LOG

Date	Time	Action	Category	Title
Saturday 15 January 2011	8:40 AM	Dam Operations Manager rang. Engineer 2 advised strategy to possibly go below FSL at Wivenhoe by Thils day.	Correspondence	Flood Officer 3
	8:42 AM	Seqwater CEO rang to advise that the media come into the FOC today to take photos.	Correspondence	Flood Officer 3
	11:30 AM	Dam Operations Manager rang to request a summary of the Operations Manual for Wivenhoe. Fngmeer 2 to provide after checking with all duty engineers.	Correspondence	Flood Officer 3
	12:12 PM	Dam Operations Manager rang to advise of a phone hook-up with the Minister and Seqwater CEO at $2: 00 \mathrm{pm}$, and requested that Engineer 1 be in at the FCO at that time.	Correspondence	Flood Officer 3
	12:20 PM	Seqwater CEO rang to confirm a phone hook-up with the Minister and CEO at 2:00.0.	Correspondence	Flood Officer 3
	12:55 PM	Engineer 2 advised Engineer 1 to come into the FOC for the phone hook-up at 2:00pm.	Correspondence	Flood Officer 3
	1:10 PM	Director Dam Safety phoned about the Wivenhoe Flood manual summary Exgineer 2 told Director Dam Safety that the summary is with the other duty engineers for checking before issting.	Correspondence	Flood Officer 3
	1:15 PM	Dam Operations Manager rang with some questions on the Wivenhoe Flood manual summary.	Correspondence	Flood Officer 3
	1:45 PM	Engineer 1 and Engineer 4 arrived at the FOC for the 2:00pmpthone hook-up.	Correspondence	Flood Officer 3
	2:00 PM	Phone hook-up with Engineer 2, Engineer 1, Engineer 4 with Dam Operations Manager, Director Dam Safety, Seqwater CEO, Joh Bradley and Bob Reilly to discuss a report for the minister by COB Sunday.	Correspondence	Flood Officer 3
	5:00 PM	Dam Operations Manager arrived to help write reponter minister briefing.	Correspondence	Flood Officer 3
	7:30 PM	Dam Operator 7 from Wivenhoe called to discuss strategy for the next 12 hours.	Correspondence	Flood Officer 4
Sunday 15 January 2011	4:12 AM	Called Dam Operator 7 at Wivenhoe to corfikn directive received via email. Directive being actioned ASAP.	Correspondence	Flood Officer 4
	7:10 AM	Dam Operator 2 (Somerset Dam) emailed flood centre indicating he believed flood centre phones were out. Tried to contact Dam Operator 2 by office and mobile phones with no success (Telstra message bank on office phone and Dam Operator 2's message on mobile). Flood centre phones were checked - working OK. Problem is with Somerset phones. Believe fax also not receiving. Dam Operator 2 emailed to confirm they have local calls but no STD. Continued checking mobile - no response.	Correspondence	Flood Officer 6
	8:20 AM	Called Dam Operator 10 gttyivenhoe to confirm directive 45 received. Confirmed not received - busy status on fax confirmation. Confirmed directive received via email.	Correspondence	Flood Officer 6
	9:40 AM	Retried all phones at Somerset - no response. Dam Operator 2 emailed to confirm that all phones are down at Wivenhoe. Email is still working and he will be checking emails every hour on the hour.	Correspondence	Flood Officer 6
	10:20 AM	Email confrimation received that Somerset Directive \#12 implementation has been completed.	Correspondence	Flood Officer 6

APPENDIX M - FLOOD EVENT LOG

Date	Time	Action	Category	Title
	10:15 AM	SRC was contacted and advised gate close will commence this afternoon and Fernvale Bridge will be ouf of the water sometime Tuesday morning	Correspondence	Flood Officer 8
	10:20 PM	BCC was contacted (left message) advising gate close will commence this afternoon.	Correspondence	Flood Officer 8
	10:20 PM	ICC was contacted (left message) advising gate close will commence this afternoon. ${ }^{\text {a }}$	Correspondence	Flood Officer 8
	11:15 PM	Called Mt Crosby WTP Manager to inform him that flow in Lockyer is $75 \mathrm{~m} 3 / \mathrm{s}$ and falling.	Correspondence	Flood Officer 8
	11:15 PM	Spoke to BCC. Advised him about gate closure. He mentioned that BCC will not provide any info on flood recurrence until they discussed with FOC.	Correspondence	Flood Officer 8
	11:20 AM	Dam Operations Manager called - Council wants to know draw down rates, so they can determine the effects on Coronation Dr. Engineer 3 informed Dam Operations Manager that BCC did not raise this when they spoke 10 mins before.	Correspondence	Flood Officer 8
	11:20 AM	Seqwater CEO called saying he will email a revised copy of responseldocument	Correspondence	Flood Officer 8
	12:20 PM	Engineer 3 contacted BCC to get an update on Coronation Dr situation. Engineer 3 spoke to BCC. BCC advised he had spoken to BCC Geotec Officers and they had advised that @ this stage as Coronation Dr was back within the banks that they could not see an immediate problern. Some bank slumping have been identified further up the river. Council would like the recession of flow to be as flat as practicable but also that releases be as small as possible @ the Port Office gauge by the time of the high tide on Friday. This is consistent with our current strategy of closing releases by Wednesday 20 Jan 2010.	Correspondence	Flood Officer 8
	12:30 PM	Dam Operations Manager called, requesting amysdate on discussions with BCC. He requested that BCC confirm the discussion of 12:20 in writing.	Correspondence	Flood Officer 8
	1:01 PM	Dam Operations Manager called, saying MBRC wanted to know if there will be any more releases from NPD. Engineer 3 said nil planned unless we get more rain.	Correspondence	Flood Officer 8
	2:15 PM	Dam Operations Manager called, asking for dates and times for Wivenhoe operations at the peak of the flood.	Correspondence	Flood Officer 8
	3:15 PM	BoM called to confirm that he received the info on the discrepancy in the auto level recorder	Correspondence	Flood Officer 8
	4:15 PM	BoM - they have not received manual observations for days	Correspondence	Flood Officer 8
Tuesday 18 January 2011	12:30 AM	Seqwater CEO called to inform that rapidly dropping water level at Lowood was causing issues with pumping for WTP. Asked if FOC could call Esk WTP Team Leader and then notify him via txt of the outcome.	Correspondence	Flood Officer 9
	12:35 AM	FOC contacted Esk WTP Team Leader in regards to pumping issues at Lowood. Engineer 3 decided to halt all gate operatients until further notice in order to ensure security of water supply to Lowood.	Correspondence	Flood Officer 9
	1:00 AM	Text message sent to Seqwater CEO to advise of cessation of Wiverihoe gate operations until further notice.	Correspondence	Flood Officer 9
	2:00 AM		Correspondence	Flood Officer 9
	5:00 AM	Dam Operator 7 called to advise that Fernvale Bridge was emerging from river. Current release 2054 cumecs.	Correspondence	Fiood Officer 9

Date	Time	Action	Category	Title
	5:40 AM	Dam Operator 7 called to advise that the approach to the Fernvale Bridge from the Fernvale side was stifi underwater due to water backed up in the quarry.	Correspondence	Flood Officer 9
	5:45 AM	Called Esk WTP Team Leader to advise that Wivenhoe gate operations would recommence close down sequence from 9 am as per original strategy. He to advise FOC if pumping operation at Lowood would benefit from additional 3-6 hours delay in gate operations.	Correspondence	Flood Officer 9
	7:25 AM	Dam Operator 7 (Wivenhoe) called to advise that a Surveyor is taking a routine deformatrol survey	Correspondence	Flood Officer 5
	7:35 AM	BCC enquired about preliminary assessment of magnitude of flood. BCC suggested that Seqwater, BOM and BCC should arrive at a consensus regarding any assessment on the magnitude of the event. Engineer 1 agreed. $B C C$ also enquired if we had done an assessment of the effects of the dam on peak flow. Engineer 1 indicated that our prelim figure was a 13000 cumec peak at City Gauge without the Dams.	Correspondence	Flood Officer 5
	8:25 AM	Dam Operator 10 (Wivenhoe) called to acknowledge Directive 55	Correspondence	Flood Officer 5
	10:10 AM	Seqwater at Mt Crosby has requested some forward projections for flows at Mt Crosby Weir for the next 48 hours. They are looking at sludge dilution.	Correspondence	Flood Officer 5
	10:15 AM	Engineer 1 called West Bank WTP back to provide the followigg info re projected flows at Mt Crosby Weir: 18/1/2011 10:00-2300 cumecs 19/1/2011 10:00-1130 cumecs 20/1/2011 10:00-360 cumecs	Correspondence	Flood Officer 5
	10:19 AM	BCC Flood Information Centre called to advise that Campbell Newman wants an indication of what the flood would have been without dams and asked if the figure of 13000 cumecs provided to BCC earlier could be released to the public.	Correspondence	Flood Officer 5
	10:24 AM	Engineer 1 spoke to Dam Operations Manager to ask Seqwater's policy re release of information above. Dam Operations Manager to confirm with fis.comms people.	Correspondence	Flood Officer 5
	10:30 AM	Seqwater comms officer called to advise that the minister's office has recommended that no info regarding releases from WD be released to anybody. He will now communicate this response to the BCC Flood Info Centre.	Correspondence	Flood Officer 5
	10:38 AM	$S R C$ requested info re whep Burtons Bridge is expected to be free from inundation. Under our current shutdown sequence, Engineer 1 actysed that we expect Burtons to be free around midnight on Wed evening. SRC also advised that the bridgeo New England Creek will become flood free at around the same time. SRC indicated that at 8am today the approaches to Femvale were clear of water. However, power lines and silt need to be removed. He exkects the bridge to be open this afternoon.	Correspondence	Flood Officer 5
	10:55 AM	Principal Dams and Weirs Planning (Seqwater) called to confirm that we received the hydraulic model from WRM. (affirmative)	Correspondence	Flood Officer 5
	12:05 PM	Seqwater CEO called to advise that he and DERM will come and visit the FOC at 2:30 this afternoon.	Correspondence	Flood Officer 5

APPENDIX M - FLOOD EVENT LOG

Date	Time	Action	Category	Title
	12:26 PM	Dam Operations Manager called to confirm programmed final shutdown. Engineer 1 advised scheduled for 9am Thursday 20/1 2011. Dam Operations Manager to confirm fish recovery.	Correspondence	Flood Officer 5
	$1: 22 \mathrm{PM}$	Confirmed with Dam Operator 10 that gate closure sequence was in accordance with directive ascerail received from WD re 13:00 closure was incorrect.	Correspondence	Flood Officer 5
	2:00 PM	Engineer 4 called for an update of the closedown sequence	Correspondence	Flood Officer 5
	2:15 AM	Engineer 1 called WRM re hydraulic model of Brisbane River...login and password notiofking...help not available at present	Correspondence	Flood Officer 5
	2:30 PM	Seqwater CEO and DERM visited FOC to check current situation and to pass on thanks for job performed so far. Also requested that we hold further gate operations until problems at Lowood Pump Station are resolved.	Other	Flood Officer 5
	4:05 PM		Correspondence	Flood Officer 5
	4:30 PM	Dam Operations Manager rang noting the current storms and requested that Engineer 1 call MBRC to advise of the possibility of operating North Pine Dam.	Correspondence	Flood Officer 5
	4:34 PM	Email from Seqwater CEO containing approval to vary the floød elease regime to enable a constant flow for the Lowood WTP offtake.	Correspondence	Flood Officer 5
	$4: 45 \mathrm{PM}$	Engineer 1 rang MBRC to advise of the possibility of operating North Pine Dam in the next day or so if predicted falls of up to 50 mm occurred.	Correspondence	Flood Officer 5
	6:25 PM	Dam Operations Manager called to discuss situafion report for North Pine.	Correspondence	Flood Officer 5
	6:57 PM	Engineer 4 phoned MBRC. Message left regarding plans to open NPD gates this evening as the lake level is approaching trigger level with more rain / showers forecast.	Correspondence	Flood Officer 1
	7:02 PM	Engineer 4 phoned NPD Operator regarding mobilising for NPD gate opening this evening. Tentative plan is for commencement of gate opening at 20.30 .	Correspondence	Flood Officer 1
	7:05 PM	Engineer 4 phoned the Duty Officer at MBRC regarding the planned imminent opening of the NPD gates. Target time is 20:30 if Council has the barriers in place closing Youngs Crossing Road and the dam is fully manned.	Correspondence	Flood Officer 1
	7:05 PM	Flood Officer 1 phoned Opm Operations Manager to provide an update on the NPD mobilisation and proposed gate openings.	Correspondence	Flood Officer 1
	7:07 PM	Engineer 4 phoned Operations Coordinator North to advise of planned gate opening of NPD this evening. Cessation of operations (i.e. gate closure) is expected to be arranged for tomorrow morning (19/1) in order for Youngs Crossing Road to be opened to peak hour traffic. Engineer 4 advised Operations Coordinator North to plan for an early morning fish recovery exercise at NPD.	Correspondence	Flood Officer 1
	7:10 PM	MBRGfeturned phone call to Engineer 4. Engineer 4 repeated information already conveyed to MBRC Duty Officer - regarding requirement for Youngs Crossing Road to be closed to traffic to allow NPD gates to be operated by. 20:30 if possible.	Correspondence	Flood Officer 1

Date	Time	Action	Category	Title
	7:15 PM	Engineer 4 phoned Seqwater regarding Engineer 4 inability to access Citrix. Outage (?). Message left.	Correspondence	Flood Officer 1
	7:15 PM	Engineer 4 phoned Dam Operations Manager regarding Citrix comms outage. Message left requesting Dam Operations Manager to intervene to have the problem fixed.	Correspondence	Flood Officer 1
	7:20 PM	IT (Seqwater) rang and 'reset' Citrix for Engineer 4.	Correspondence	Flood Officer 1
	7:30 PM	Engineer 4 phoned NPD Operator to confirm gate opening arrangements for 20:30 if Youngs Crossing Road has been closed to traffic by Council at that time.	Correspondence	Flood Officer 1
	7:40 PM	Dam Operations Manager rang the FOC to enquire if the Citrix issue was sorted. Citrix connection now functioning. Engineer 4 expressed concern about the current release strategy for Wivenhoe Dam. If the current release rate is maintained (set to accommodate Lowood temporary raw water pumps), the model indicates that the lake level could fall well below FSL (~ EL 65.00??).	Correspondence	Flood Officer 1
	7:42 PM	Engineer 4 phoned Executive GM Water Delivery (Seqwater) to seek advice on who could supply the most up-todate status report on the current situation at Lowood regarding riseflevels and pumping activities to supply the WTP. He suggested Water Treatment Team Leader (Seqwater).	Correspondence	Flood Officer 1
	7:45 PM	Engineer 4 phoned Principal Strategic Asset Maintenance Engineer (Seqwater) seeking info Re: Lowood. Maintenance Engineer referred Engineer 4 to Strategic Asset Maintenance Engineer (Civil).	Correspondence	Flood Officer 1
	7:50 PM	Engineer 4 phoned Maintenance Engineer (Civil). - Reportedly on site at Lowood PS. No answer. Message left:	Correspondence	Flood Officer 1
	7:52 PM	Engineer 4 phoned Lowood WTP Operator to enquire as to current status regarding temporary pumping arrangements of raw water from the Brisbane River.	Correspondence	Flood Officer 1
	7:55 PM	Dam Operator 2 (Somerset Dam operatar) phoned the FOC from home seeking the Duty Engineer's intentions for operations at Somerset Dam overnight Engineer 4 requested a Gauge Board reading of the lake level and advised that an operations strategysomerset Dam would be addressed within 30 minutes - following satisfactory mobilisation of NPD.	Correspondence	Flood Officer 1
	8:00 PM	Seqwater IT phoned Engineer 4 to check status of Citrix connection. Citrix connection is functioning.	Correspondence	Flood Officer 1
	8:05 PM	Dam Operator 2 phonedfrom Somerset Dam. Current lake level is EL 98.95 unchanged from lake level at 15:35 today.	Correspondence	Flood Officer 1
	8:05 PM	Engineer 4 phoned Dam Operator 9 at home. Engineer 4 requested Dam Operator 9 to visit Lowood pumping intake site and report on status as unable to contact Maintenance Engineer (Civil).	Correspondence	Flood Officer 1
	8:11 PM	Engineer 4 phoned Dam Operator 2 (Somerset). Dam Operator 2 to send fax in with lake level. Likely strategy will be ta close off the regulator overnight and re-assess the situation in the morning.	Correspondence	Flood Officer 1

APPENDIX M - FLOOD EVENT LOG

APPENDIX M - FLOOD EVENT LOG

Date	Time.	Action	Category	Title
	9:53 PM	BCC's Flood Operations (Disaster Management) Centre phoned Engineer 4: Wivenhoe release strategy and effect on Coronation Drive discussed. BCC have no concems about imminent cessation of Wivenhoe releases. Engineer 4 explained that it was more likely that the tidal variation at Toowong would have a greater impact on the river banks than the Wivenhoe releases.	Correspondence	Flood Officer 1
	10:00 PM	Engineer 4 phoned NPD Operator to discuss release strategy i.e. planned gate openings to sęting \#2 followed by closure sequence to be completed by early tomorrow morning (19/1).	Correspondence	Flood Officer 1
	10:02 PM	Dam Operations Manager phoned Engineer 4. Release strategy and final lake level at gate closure at Wivenhoe discussed.	Correspondence	Flood Officer 1
	10:14 PM	Dam Operator 9 phoned Engineer 4. Situation at Lowood is under control. Engineer 4 advised Dam Operator 9 that the releases at Wivenhoe are planned to cease by early afternoon tomorgew (19/1).	Correspondence	Flood Officer 1
Wednesday 19 January 2011	3:30 AM	Engineer 4 phoned the Mount Crosby WTP to obtain an update on the status of the Mount Crosby Weir Bridge. It is currently clear of water and came out of inundation approx 14:00 yesterday (18/1). The bridge has reportedly suffered some damage. Details unknown.	Correspondence	Flood Officer 1
	4:38 AM	Engineer 4 advised Dam Operator 7 at Wivenhoe Dam that the strategy for further gate closures after 0500 was dependant on the outcome of a discussion with Seqwater CEO anticipated within the hour. Dam Operator 7 advised that the Femvale Bridge was clear of floodwater bett that it had power lines down on /around it.	Correspondence	Flood Officer 1
	5:05 AM	Dam Operator 7 from Wivenhoe Dam phoned the FOC to report that some erosion has occurred in the vicinity of the plunge pool downstream of the flip bucket. This has become evident now that the gate releases have been reduced. Some large boulders ($\sim 10 t$) are evident piled up against the bench D/S of the flip bucket. Engineer 4 will need to inspect the damage ASAP.	Correspondence	Flood Officer 1
	5:10 AM	Engineer 4 phoned Seqwater CEO to obtaim Govt. view on how long to maintain releases and to where the lake level should be held following closure ofall gates. Timing of the gate closure might be dependant on the erosion issue.	Correspondence	Flood Officer 1
	5:15 AM	Engineer 4 phoned Engineer 2 to arrange for Engineer 2 to relieve Engineer 4 ASAP in the FOC as he is required to inspect the reported damage at Wivenhoe Dam.	Correspondence	Flood Officer 1
	5:20 AM	Engineer 4 phoned Prin@ipalDams and Weirs Planning (Seqwater) to arrange a joint inspection of the erosion damage at Wivenhoe Dam as reported by Dam Operator 7.	Correspondence	Flood Officer 1
	5:25 AM	Dam Operations Manager phoned Engineer 4 to obtain an update. Engineer 4 advised Dam Operations Manager that damage has been reported to the area D/S of the flip bucket at Wivenhoe. An inspection ASAP is warranted.	Correspondence	Flood Officer 1
	5:30 AM	Engineer 4notoned Director Dam Safety to advise that damage had been reported at Wivenhoe Dam by the operatore Intial information indicates that large boulders are piled up in the plunge pool D/S of the flip bucket. The sourcelof these boulders is unknown as releases are still continuing from the gates. Engineer 4 has arranged to inspett the site with Principal Dams and Weirs Planning in a few hours and an invitation was extended to Director ロam Safety as an interested party to attend the inspection. Engineer 4 will provide updates as they come to hand.	Correspondence	Flood Officer 1

APPENDIX M - FLOOD EVENT LOG

Date	Time	Action	Category	Title
	5:35 AM	Dam Operator 7 phoned Engineer 4 on his mobile phone with an update report.	Correspondence	Flood Officer 1
	8:08 AM	Engineer 4 phoned Engineer 2. Things seem to be O.K. but we will continue to close all gates by this deternoon.	Correspondence	Flood Officer 2
	8:20 AM	Engineer 2 phoned Flood Waming Centre advising that flood operation for current event will be shut down around lunch time.	Correspondence	Flood Officer 2
	9:23 AM	Engineer 4 phoned Engineer 2 asking whether we should run a regulator.	Correspondence	Flood Officer 2
	9:51 AM	Engineer 2 phoned Engineer 4 regarding modelling results.	Correspondence	Flood Officer 2
	10:00 AM	Engineer 2 phoned Engineer 4 regarding modelling results. Engineer 2 wants to advise Dam Operator 7 to stop at Gate 3 at 1 metre, but they agree to close as planned and maintain operationat release instead of flood release.	Correspondence	Flood Officer 2
	10:15 AM	Engineer 4 has discussed the event closure with Director Dam Safety. It was agreed that the flood will be considered closed with the closure of the gates at 1200. At that time, control of the dam will revert to Seqwater. As the low flow channel to the regulator is blocked, the centre gate will be opened to 1 metre to manage on-going inflows with the aim of getting to 95% (EL 66.5).	Correspondence	Engineer 2
	10:43 AM	Received QPF - 15mm-25mm generally, heavier falls to abouthemm in Brisbane and North Pine catchments.	Other	Flood Officer 2
	11:14 AM	Engineer 3 phoned Engineer 2 - Still operational until tonight.	Correspondence	Flood Officer 2
	11:28 AM	Seqwater at Mt Crosby phoned FOC requesting for pelt flow at Mt Crosby Weir during the latest event.	Correspondence	Flood Officer 2
	11:36 AM	Engineer 2 phoned Engineer 4 confirming that Engineer 3 and Flood Officer 8 will be on tonight.	Correspondence	Flood Officer 2
	11:45 AM	Engineer 2 phoned Mt Crosby advising that peat flow over Mt Crosby Weir was about 9150 cumecs.	Correspondence	Flood Officer 2
	11:51 AM	Engineer 2 phoned (left message with) MBRC regarding potential for closing operation tonight.	Correspondence	Flood Officer 2
	11:52 AM	Engineer 2 phoned (left message with) Operations Coordinator North to call him back.	Correspondence	Flood Officer 2
	11:59 AM	Engineer 4 phoned Engineer 2 stating that divers will investigate erosion d/s Wivenhoe Dam today.	Correspondence	Flood Officer 2
	1:25 PM	Mt Crosby phoned Engineer 2 discussing about the information which Engineer 2 sent.	Correspondence	Flood Officer 2
	1:39 PM	Dam Operator 10 phoned Engineer 2 advising Wivenhoe Dam EL is 66.89 m AHD .	Correspondence	Flood Officer 2
	3:21 PM	MBRC phoned wanting AJ Wyllie Bridge to be closed at 9:00 PM rather than 7:00 PM, and stating that she will update 24 hour callcentre number. They will send email to confirm all this.	Correspondence	Flood Officer 2
	4:00 PM	Received QPF - $15 \mathrm{~mm}-25 \mathrm{~mm}$ generally, heavier falls to about 50 mm in Brisbane and North Pine catchments.	Other	Flood Officer 2
	7:30 PM	MBRC calsed to say that the alternate route @ Petri is open (sooner than the 9 PM forecast)	Correspondence	Flood Officer 8
	9:10 PM	Called Operations Coordinator North to inform him that NPD will be mobilised.	Correspondence	Flood Officer 8
	9:10 PM	Galfed NPD Operator to mobilise. The WL is approaching trigger level for gate opening.	Correspondence	Flood Officer 8

APPENDIX M - FLOOD EVENT LOG
 (continued)

APPENDIX M - FLOOD EVENT LOG

Date	Time	Action	Category	Title
	11:15 AM	Flood Officer 9 called enquiring peak height and discharge at Lowood with Wivenhoe Dam gates closed We decided to just minus 100 cumecs from previous estimation. He also warits FOC to email him the Lowod rating curve.	Correspondence	Flood Officer 2
	11:33 AM	Engineer 1 called NPD Operator (re Directive 36)	Correspondence	Flood Officer 2
	11:36 AM	Engineer 1 called Engineer 2. Engineer 2 will monitor situation overnight and Engineer 1 withbecome Duty Engineer again tomorrow.	Correspondence	Flood Officer 2
	11:44 AM	Communications Advisor, Media and Ministerial (Seqwater) called to confirm whether we have closed all gates at Wivenhoe Dam. Flood Officer 2 said yes.	Correspondence	Flood Officer 2
	1:07 PM	Dam Operations Manager called confirming NPD closure.	Correspondence	Flood Officer 2
	1:35 PM	Communications Advisor, Media and Ministerial (Seqwater) called about Lowood pump motor sitting on the platform and wanting to know what flow will come down from Lockyer. Engirleer 1 said about 300 cumecs.	Correspondence	Flood Officer 2
	1:37 PM	Engineer 2 called. Flood Officer 8 will be on tonight (Flood Officerfshould ring him this afternoon). Mt Crosby Weir gauge is broken so Water Treatment boys will give manual reádings via BoM website. City gauge is currently reading 0.3 m high.	Correspondence	Flood Officer 2
	2:10 PM	Engineer 1 advised MBRC that North Pine Dam gate operations had ceased at 14:00 and that Youngs Crossing should be clear of water within the next hour to an hour and half.	Correspondence	Engineer 1
	2:15.PM	Engineer 1 called NPD Operator and indicated that Etigineer 2 will be on call tonight monitoring the situation. NPD Operator advised that the tree branch snaggedin Gate C had swung around and was now resting on pier therefore okay. However a 75 mm branch was boaught in the ropes of Gate B and may need to be removed before another operation. Operations Coordinatof Dorth has organised for the Rangers to examine tomorrow.	Correspondence	Engineer 1
	2:40 PM	Dam Operator 2 called from Somerset Dam and enquired as to proposed operational release strategy. Engineer 1 advised that no releases planned for now until Wivenhoe spillway issues are resolved.	Correspondence	Engineer 1
	3:20 PM	Engineer 1 called MBRC Call Centre to provide heads up on possible gate operations tonight. Indicated that with 25 mm over catchment we wilfommence gate operations at 21:00.	Correspondence	Engineer 1

APPENDIX N - FLOOD OPERATIONS ENGINEERS RESUMES

Engineer 1

Engineer 1 has a Bachelor of Engineering (Civil) and a Post Grad Certificate in Hydrology. He has over 26 years experience in water engineering during which time he has gained expertise in hydrology and water resource studies. He is currently Manager of a major design group which provides civil design services for a range of water supply infrastructure projects including dams, weirs and fish transfer systems. The team's 20 professional and technical staff are responsible to Engineer 1 for service delivery to clients.

Engineer 1's main areas of expertise include design flood estimation and hydraulic modeling of flood plain flows and project management. He is proficient in the use numerous hydrologic and hydraulic modeling packages and he is involved in leading a number of project teams. He has authored numerous technical reports and pisilications.

He has also served on technical panels within the water industry.

Engineer 2

Engineer 2 holds a Bachelor of Engineering and a Master of Engineering Science. He has held senior positions in well recognized major modeling groups. His core specialist skills are in hydrological modeling including real time forecasting and design flood hydrology. He is recognized in the area of flood forecastig and authored/co-authored many papers in the field.

His hydrological modeling skills have peen developed through over 25 years experience in the water industry including the desering of major hydrological models and flood forecasting systems in Australia@d overseas. He has delivered training programs to both national and international forod forecasting agencies and has authored numerous flood management reports

Engineer 2 has provided advice and expertise in the field of flood forecasting to interstate and international agericies.

He has also served on technical panels within the water industry.
He is currently managing the development of a major flood forecasting package.

APPENDIX N - FLOOD OPERATIONS ENGINEERS RESUMES

Engineer 3

Engineer 3 has a degree in engineering and a post graduate qualification in Engineering where his studies had a focus on hydrology. He is an experienced hydrologist with almost 30 years experience in the water industry. He has broad range of expertise in hydrology which includes such topics as catchment hydrology, erosion, flood hydrology, hydraulic modeling, water security, real time flood management and design flood hydrology. He has authored numerous technical reports and papers covering these topics.

He has been involved in a number of national projects which have developed some of the methodologies associated with design flood hydrology for dam design and floodplain management.

Engineer 3 is currently managing a large group of professionals working in the water industry.

He has also served on technical panels within the water industry.

Engineer 4

Engineer 4 has a degree in Civil Engineer with almost $\$ 0$ years experience in the Queensland Water Industry. Engineer 4 has held redes in design, construction and operations working on major bulk water supply projects throughout Queensland. Engineer 4 is one of Australia's most experienced civil ehgineers in relation to the management of flood operations at gated dams, having at varlous times been responsible for managing operations and maintenance at eight majopgated dams.

As well as being an experienced civiléngineer, Engineer 4 holds complementary tertiary qualifications in environmental impact assessment, infrastructure management, operations management, electrical engineering and computing.

Engineer 4 is currently respionsible for developing dam safety management programs.

APPENDIX O-HOURLY RAINFALL TABLES

(continued)

ALERT ID	BOMID	Station	Location		Rainfall (mm) 24 Hours Ending 09:00							$13 / 01$	8 Day Total
			Latitude	Longitude	6/01.	7/01.	$8 / 01$	9101.	10/01	11/01	12/01		
6500	540184	Mt Glorious-B	-27.3120	152.7470									
6511	541057	Mt Pechy	-27.3167	152.0817	44	16	16	7	81	101	18	0	283
6514	540139	Gregor Ck-P	-26.9800	152.4040	27	39	11	25	221	77	25	1	426
6517	540140	Gregor Ck-B	-27.0000	152.4040									
6520	540141	Boat Mountain	-26.9789	152.2847	40	52	20	25	179	62	26	4	408
6523	540142	Cressbrook Dam	-27.2650	152.1950	32	28	14	7	-94	120	11	1	307
6526	540143	Helidon	-27.5440	152.1130	56	42	25	6	101	33	0	0	263
6529	540144	St Aubyns	-27.0619	151.8944	25	26	23	20	74	123	8	2	301
6540	540145	Yarraman	-26.8358	151.9692	32	40	21	20	113	130	0	1	357
6542	540146	Cooyar Ck	-26.7417	152.1367	23		28	18	118	118	3	1	364
6550	540147	Walloon-P	-27.6170	152.6680	25	14	14	3	69	42	114	0	281
6553	540148	Rosentretters Br	-27.1383	152.3294	28	27	25	4	129	111	23	4	351
6555	540479	Atkinson Dam	-27.4320	152.4640	44	28	9	5	109	119	98	0	412
6556	540149	Glenore Grove	-27.5242	152.4081		24	13	4	84	77	129	0	347
6559	540150	Savages Xing	-27.4410	152.6680	4	27	5	5	113	246	144	0	544
6562	540151	Kalbar Weir	-27.9230	152.6010	42	39	7	4	15	67	55	0	229
6565	540152	Tenthill	-27.6360	152.2140									
6568	540153	O'Reillys Weir	-27.4197	152.5892	10	36	6	2	98	146	206	0	504
6571	540154	Harrisville	-27.8150	152.6406	14	19	10	1	30	76	53	0	203
6574	540155	Caboonbah	6 21460	152.4900	24	23	39	9	130	154	54	0	433
6577	540156	Gatton	-27.5564	152.2731	17	36	21	4	87	68	88	0	321
6580	540157	Adams $\mathrm{Br} \mathrm{CO}^{5}$	-27.8294	152.5108	33	30	13	2	36	93	92	1	300
6583	540158	Showground Weir	-27.6386	152.3844	13	27	18	1	68	103	117	0	347
6590	540160	Somerset Bam HWB	-27.1200	152.5510	20	18	42	22	159	136	65	1	463

APPENDIX O - HOURLY RAINFALL TABLES

(continued)

ALERT ID	BOM ID	Station	Location		$6 / 01$	Rainfall (mm) 24 Hours Ending 09:00						$13 / 01$	8 Day Total
			Latitude	Longitude		7101	$8 / 01$	$9 / 01$	$10 / 01$	$11 / 01$	$12 / 01$		
6593	540159	Somerset Dam HW-	-27.1000	152.5510									
6596	540161	Crows Nest	-27.2308	152.0311	44	21	15	11	115	98	18	0	322
6598	540162	Toowoomba	-27.5114	151.9536	44	18	27	9	81	117	24	1	321
6600	540163	Kilcoy	-26.9481	152.5836	12	38	18	24	179	96	61	2	430
6601	540494	Mt Binga	-26.9920	151.9850	38	39	35	22	121	118	13	2	388
6602	540164	Top of Brisbane	-26.4772	152.1567	45	52	70		41	66	0	0	291
6603	540493	Blackbutt	-26.8860	152.1020	45	75	30	33	160	107	13	0	463
6604	540165	Toogoolawah	-27.0858	152.3722	16	26			177	103	27	2	385
6605	540492	Eskdale	-27.1670	152.1860							:		
6606	540166	West Woodbine	-27.7847	152.1497	35		5	4	17	88	33	0	199
6607	540491	Lindfield	-26.8370	152.5810	50	34	18	90	271	86	65	1	615
6608	540167	Jimna	-26.6610	152.4510	29	44	28	42	117	47	22	1	330
6609	540490	Monsildale	-26.5820	152.3250	25	43	62	49	117	160	4	2	462
6610	540168	Kluvers Lkt	-27.2070	152.7030)	4	52	24	17	126	164	191	4	582
6611	540489	Redbank Creek	-27.2770	152.2890	32	40	21	7	130	170	27	1	428
6612	540488	Mt Stanley	-26.6820	*22.2050	24	61	32	32	137	160	2	1	449
6613	540487	Hazeldean	-27.0280	152.5370	9	38	32	18	204	123	90	5	519
6614	540486	Westvale	-27.018	152.6100									
6615	540169	Thornton	-27.8211	152.3800	23	31	12	5	46	123	98	0	338
6617	540170	Little Egypt	<-727.7042	152.0650	50	18	8	1	30	92	30	1	230
6619	540171	Mt Castle	-27.9636	152.3756	52	55	17	4	88	195	122	21	554
6621	540172	Nukinenca,	-27.0567	152.1072	11	43	19	13	114	113	10	2	325
6623	540173	Tarome	-27.9867	152.5008	31	55	9	0	26	81	82	0	284
6624	540474	Moogerah Dam	-28.0310	152.5450	23	55	16	1	21	96	76	0	288

APPENDIX O-HOURLY RAINFALL TABLES

(continued)

ALERT	BOMID						nfa	m)	ours	ding			8 Day Total
			Latitude	Longitude	$6 / 01$	7101	$8 / 01$	$9 / 01$	10101	11101	$12 / 01$	$13 / 01$	
6626	540475	Maroon Dam	-28.1840	152.6340	20	19	1	5	34	78	46	0	203
6630	540175	Lyons $\mathrm{Br}-\mathrm{B}$	-27.4717	152.5236	25	25	13	4	83	130	239	0	519
6633	540174	Lyons Br-P	-27.4717	152.5236	26	22	11	5	75	114	214	0	467
6636	540177	Wivenhoe Dam HWB	-27.3550	152.5960	6	29	6	4	87		197	0	464
6641	540179	Wivenhoe Dam TWB	-27.3900	152.5960	8	32	6	5	99	157	206	0	513
6643	540178	Wivenhoe Dam TWP	-27.4100	152.5960	7	30	7	2	101	160	218	0	525
6646	540183	Lowood-B	-27.4700	152.5930	8	29	7	4	104	183	210	0	545
6649	540182	Lowood-P	-27.4900	152.5930	6	22	68	9	99	163	194	0	501
6651	540180	Amberley-P	-27.6780	152.6990	39	13	16	3	68	32	86	0	257
6653	540181	Amberley-B	-27.6783	152.6989	38 ct2		16	3	59	32	81	1	242
6656	540472	Bill Gunn Dam	-27.6320	152.3790	13	31	23	1	74	102	132	0	376
6658	540473	Lake Clarendon Dam	-27.5160	$152.3530 \lll 21$		35	20	5	88	76	134	0	379
6680	540138	Mt Glorious-P	-27.3220	152.7470	29	46	16	24	204	260	228	2	809
6690	540185	Mt Mee-P	-27.0700	452.7800	10	55	46	30	220	137	179	10	687
6701	540246	Mt Mee-B	-27.0700	152.7800	9	55	49	28	219	138	179	9	686
6702	540338	Woodford-B	-26.930	152.7600	8	42	43	37	181	88	196	5	600
6705	540337	Woodford-P	-26.9500	152.7600	8	41	43	38	182	88	196	5	601
6708	540188	Devon Hills	< 26.9000	152.3210	28	42	43	55	162	68	16	1	415
6711	540189	Baxters Ck	-27.1958	152.8000	3	37	23	17	127	170	192	0	569
6714	540190	Ferris Knep ${ }^{\text {r }}$	-26.8542	152.8167	0	33	24	90	250	78	224	11	710
6716	540191	West Bellthorpe	-26.8230	152.6780	50	30	14	104	312	134	95	7	746
6717	540261	Linville	-26.8050	152.2720	30	39	32	37	139	51	34	0	362

APPENDIX O-HOURLY RAINFALL TABLES

(continued)

APPENDIX O-HOURLY RAINFALL TABLES

\begin{tabular}{|c|}
\hline \multirow[t]{2}{*}{ALERT} \& \multirow[t]{2}{*}{Station} \& \multirow[b]{2}{*}{10} \& \multirow[b]{2}{*}{11} \& \multirow[b]{2}{*}{12} \& \multirow[b]{2}{*}{13} \& \multirow[b]{2}{*}{14} \& \multirow[b]{2}{*}{15} \& \multirow[b]{2}{*}{16} \& \multirow[b]{2}{*}{17} \& \multirow[t]{2}{*}{curly} \& \multirow[t]{2}{*}{Rain

19} \& \multirow[t]{2}{*}{fall} \& \multirow[t]{2}{*}{nm)} \& \multirow[t]{2}{*}{ndin} \& \multirow[t]{2}{*}{\begin{tabular}{l}
$9 a m$

\hline

} \& \multirow[b]{2}{*}{00.} \& \multirow[t]{2}{*}{nuar} \& \multirow[b]{2}{*}{02} \& \multirow[b]{2}{*}{03} \& \multirow[b]{2}{*}{04} \& \multirow[b]{2}{*}{05} \& \multirow[b]{2}{*}{06} \& \multirow[b]{2}{*}{07} \& \multirow[b]{2}{*}{08} \& \multirow[b]{2}{*}{09} \& \multirow[t]{2}{*}{

Daily Total

mm
\end{tabular}}

\hline \&

\hline 6500 \& Mt Glorious-B \&

\hline 6680 \& Mt Glorious-P \& 3 \& 8 \& 1 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 19 \& \& 1 \& 0 \& 0 \& 0 \& 0 \& 0 \& 2 \& 17

\hline 6514 \& Gregor Ck-P \& 0 \& 0 \& 9 \& 7 \& 1 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 1 \& 2 \& 2 \& 2 \& 0 \& 2 \& 4 \& 3 \& 4 \& 0 \& 37

\hline 6517 \& Gregor Ck-B \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& - \& \& \& \& \& \& \& \& \& \&

\hline 6520 \& Boat Mountain \& 0 \& 0 \& 23 \& 7 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 1 \& 1 \& 1 \& 1 \& 0 \& 1 \& 6 \& 3 \& 4 \& 2 \& 50

\hline 6523 \& Cressbrook Dam \& 8 \& 10 \& 3 \& 1 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 2 \& 0 \& 0 \& 2 \& 1 \& 0 \& 0 \& 0 \& 1 \& 0 \& 0 \& 2 \& 28

\hline 6526 \& Helidon \& 28 \& 7 \& 2 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 3 \& 2 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 42

\hline 6529 \& St Aubyns \& 2 \& 5 \& 2 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& (8) \& 0 \& 0 \& 1 \& 0 \& 0 \& 0 \& 0 \& 0 \& 2 \& 5 \& 8 \& 2 \& 27

\hline 6540 \& Yarraman \& 0 \& 7 \& 22 \& 2 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 1 \& 0 \& 2 \& 0 \& 1 \& 1 \& 4 \& 40

\hline 6542 \& Cooyar Ck \& 0 \& 0 \& 16 \& 27 \& 2 \& 0 \& 0 \& 0 \& 0 \& 0 O \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 1 \& 2 \& 1 \& 2 \& 2 \& 0 \& 2 \& 1 \& 56

\hline 6550 \& Walloon-P \& 1 \& 5 \& 4 \& 0 \& 1 \& 1 \& 0 \& 0 \& 0 \& 0 \& 0 \& 1 \& 2 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 1 \& 0 \& 0 \& 0 \& 0 \& 16

\hline 6553 \& Rosentretters Br \& 3 \& 0 \& 13 \& 1 \& 0 \& 0 \& 0 \& 0 \& - \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 2 \& 1 \& 1 \& 1 \& 0 \& 1 \& 1 \& 3 \& 2 \& 29

\hline 6555 \& Atkinson Dam \& 4 \& 9 \& 6 \& 2 \& 2 \& 1 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 1 \& 0 \& 0 \& 0 \& 0 \& 4 \& 29

\hline 6556 \& Glenore Grove \& 2 \& 6 \& 3 \& 2 \& 3 \& 0 \& $$
\theta
$$ \& \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 4 \& 0 \& 0 \& 0 \& 0 \& 1 \& 0 \& 2 \& 23

\hline 6559 \& Savages Crossing \& 0 \& 6 \& 4 \& 1 \& 1 \& 0 \& 1 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 2 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 12 \& 27

\hline 6562 \& Kalbar Weir \& 6 \& 13 \& 4 \& 2 \& 1. \& 1 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 1 \& 4 \& 1 \& 2 \& 0 \& 0 \& 1 \& 3 \& 0 \& 0 \& 0 \& 39

\hline 6565 \& Tenthill \&

\hline 6568 \& O'Reillys Weir \& 0 \& 10 \& 11 \& 6 \& 2 \& 0 \& 1 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 1 \& 11 \& 37

\hline 6571 \& Harrisville \& 1 \& 9 \& 4 \& 1 \& 0 \& 2 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 1 \& 0 \& 1 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0. \& 0 \& 0 \& 0 \& 19

\hline 6574 \& Caboonbah \& 0 \& 0 \& ${ }^{2}$ \& 2 \& 2 \& 1 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 6 \& 2 \& 0 \& 0 \& 1 \& 2 \& 0 \& 4 \& 1 \& 23

\hline 6577 \& Gatton \& 9 \& 18 \& 1 \& 2 \& 1 \& 1 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 1 \& 2 \& 0 \& 0 \& 0 \& 0 \& 0 \& 1 \& 36

\hline 6580 \& Adams Br \& 9 \& \& 5 \& 3 \& 2 \& 2 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 1 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 31

\hline 6583 \& Showground Weir \& 4 \& 11 \& 2 \& 1 \& 4 \& 1 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 2 \& 1 \& 0 \& 0 \& 0 \& 1 \& 0 \& 0 \& 27

\hline
\end{tabular}

APPENDIX O - HOURLY RAINFALL TABLES

(continued)

ALERT ID	Station	10	11	12	\%					ourl	Rai	fall	Im)	ndin	9		nuar									Daily Total
						14.	15	16	17.	18.	19	20.	21	22	23	00.	01.	02.	03	04	05	06	07	08	09	mm
6590	Somerset Dam HW-B	0	0	0	4	2	1	0	0	0	0	0	0	0	0	0			0	0	0	3	0	5	1	19
6593	Somerset Dam HW-P																									
6596	Crows Nest	2	11	1	0	0	0	0	0	0	0	0	0	0	0		1	0	1	0	0	0	2	1	1	21
6598	Toowoomba	9	3	1	1	0	0	0	0	0	0	0	0	0	0	0	0	2	1	1	0	0	0	1	0	19
6600	Kilcoy	0	0	9	9	1	1	0	1	0	0	0	0	0	0	1	1	1	1	1	3	0	2	5	1	37
6601	Mt Binga	1	9	6	2	0	0	0	0	0	0	0	0	0	0	3	0	0	1	0	0	5	4	4	4	39
6602	Top of Brisbane	0	0	0	12	15	0	3	0	0	0			0	0	0	0	0	0	6	0	2	1	3	4	46
6603	Blackbutt	0	7	43	7	0	0	1	0	0	0	0	0	0	0	1	0	1	0	0	2	3	1	5	5	76
6604	Toogoolawah	1	0	5	3	0	0	0	0	0	Q	0	0	0	0	0	2	2	2	0	1	2	5	4	1	28
6605	Eskdale																									
6606	West Woodbine	9	4	2	0	1	0	0			0	0	0	0	0	0	0	0	1	0	0	0	0	1	0	18
6607	Lindfield	0	0	0	11	2	3	2	1	2	0	0	0	0	0	1	1	2	0	0	2	0	3	1	4	35
6608	Jimna	0	0	0	4	1	15	(10)	3	0	0	0	0	0	0	3	1	1	0	0	2	0	2	0	0	42
6609	Monsildale	0	0	2	2	17	7	3	2	1	0	0	0	0	0	0	1	0	0	0	3	1	1	0	2	42
6610	Kluvers Lkt	0	7	6	12			4	0	0	0	0	0	0	0	0	1	0	0	0	0	2	0	14	4	52
6611	Redbank Creek	13	12	5	2	0	0	0	0	0	0	0	0	0	0	0	1	1	1	0	0	0	0	1	5	41
6612	Mt Stanley	0	0	7	22	21	0	0	0	0	0	0	0	0	1	0	0	1	0	0	4	2	1	0	1	60
6613	Hazeldean	0	0	2	14	1	1	0	0	0	0	0	0	0	0	0	4	5	0	0	1	6	2	4	0	40
6614	Westvale		6																							
6615	Thornton	17	5	3	2	2	1	1	0	0	0	0	0	1	0	0	0	0	0	0	0	1	0	0	0	33
6617	Little Egypt	$\%^{6}$	3	2	0	1	0	0	0	0	0	0	0	0	0	0	0	1	4	2	0	0	0	0	0	19
6619	Mt Castie	8	5	7	0	2	3	0	0	0	0	0	0	2	4	0	5	4	9	1	0	2	3	1	0	56

ALERT ID	Station	\%							Hourly Rainfall (mm) ending 9am 7 January										03.	04	05	06	07.	08.	09	Daily Total mm
			11	12	13	14	15	16	17	18	19	20.	21	22	23	00	01	02								
6621	Nukinenda	3	7	19	0	0	0	0	0	0	0	0	0	0	0	1	0	1	1	0	0	2	3	3	2	42
6623	Tarome	12	4	7	2	2	2	0	0	0	0	0	0	1	2	5	3	3	5	3	1	3	2	0	0	57
6624	Moogerah Dam	8	5	5	5	0	3	0	0	0	0	0	0	0	1		5	2	2	6	1	5	6	0	0	57
6630	Lyons $\mathrm{Br}-\mathrm{B}$	1	7	5	1	2	4	0	0	0	0	0	0	0	0	0	0	1	0	1	0	0	0	0	3	25
6633	Lyons $\mathrm{Br}-\mathrm{P}$	1	6	4	1	2	4	0	0	0	0	0	0	0	10	0	0	2	0	0	0	0	0	0	3	23
6636	Wivenhoe Dam HW-B	0	9	3	2	2	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	12	30
6641	Wivenhoe Dam TW-B	0	9	5	2	2	1	0	0	0	0	O		0	0	0	0	1	0	0	0	0	0	0	12	32
6643	Wivenhoe Dam TW-P	0	9	5	2	2	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	12	32
6646	Lowood-B	0	7	8	0	3	0	1	0			0	0	0	0	0	0	1	0	1	0	0	0	0	7	28
6649	Lowood-P	0	4	6	0	2	1	0	0	0	0	0	0	0	0	0	0	3	0	0	0	0	0	0	7	23
6651	Amberley-P	0	3	5	0	1	1	0	S0	80	0	0	1	2	1	0	0	0	0	0	0	0	0	0	0	14
6653	Amberley-B	1	1	4	1	0	1	0	0	0	0	0	1	3	0	0	0	0	0	0	0	0	0	0	0	12
6656	Bill Gunn Dam	4	10	2	2	4		θ	0	0	0	0	0	0	0	0	0	5	2	- 0	0	0	1	0	0	31
6658	Clarendon Dam	5	16	2	4	3	0	0	0	0	0	0	0	0	0	0	0	2	1	0	0	0	0	0	1	34
6680	Mt Glorious-P	0	0	13	6	50	1	3	2	0	0	0	0	0	0	0	1	2	1	0	0	0	0	7	10	46
6690	Mt Mee-P	0	0	0	16	0	1	3	1	0	0	0	0	0	0	0	1	1	0	3	4	1	12	7	4	54
6701	Mt Mee-B	0	0			0	1	3	1	0	0	0	0	0	0	0	1	1	0	3	4	1	12	7	4	54
6702	Woodford-B	0	0	0	13	0	2	2	2	2	0	0	0	0	0	0	0	0	0	1	5	2	9	0	2	40
6705	Woodford-P	0	N^{6}	0	13	0	2	2	2	2	0	0	0	0	0	0	0	0	0	1	5	2	9	0	2	40
6708	Devon Hills	0	0	14	11	1	0	0	0	0	0	0	0	0	0	0	0	1	1	0	2	2	1	8	0	41
6711	Baxters Ck		0	0	6	1	2	4	2	1	0	0	0	0	0	0	0	0	0	1	0	0	1	15	4	37
6714	Ferris Knob	0	0	0	1	1	0	5	2	5	0	1	0	0	0	1	0	0	1	1	2	2	9	1	2	34

APPENDIX O-HOURLY RAINFALL TABLES

ALERT ID	Station		11	12	13	14	15	16	17	Hourly Rainfall (mm) ending 9am 7 January									03	04	05	06	07	08	09	Daily Total mm
										18	19	20	21	22	23	00	01	02								
6716	West Bellihorpe	0	0	0	8	1	3	3	2	2	0	0	0	0	0	1	1		0	0	1	1	4	0	4	32
6717	Linville	0	0	17	7	5	0	0	0	0	0	0	0	0	0	0	1	0	1	0	3	0	2	1	2	39
6730	Jindalee	1	2	10	3	1	2	1	0	0	0	0	2	0	0			0	1	0	0	0	0	0	13	36
6733	Rosewood	2	5	2	1	1	2	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	14
6736	Kuss Rd	1	7	2	2	1	2	0	0	0	0	0	0	0	a	0	0	0	0	1	0	0	0	0	0	16
6739	Washpool	2	2	1	1	2	2	0	0	0	0	0	0	1	5	3	0	0	0	0	0	0	0	0	0	19
6742	Walloon-B	1	5	4	0	0	2	0	0	0	0	0		2	0	0	0	0	0	0	1	0	0	0	0	16
6748	Brisbane City	0	1	0	7	2	0	3	1.	2	0	1	0	0	0	0	0	0	1	0	0	0	0	0	17	35
6751	Mt Crosby	0	10	12	4	0	1	0	0	0	0	θ	2	1	0	0	0	0	0	1	0	0	0	0	8	39
6754	Moggill-P	1	1	10	1	1	1	0	0	0	0	0	1	4	0	0	0	0	0	0	0	0	0	0	20	40
6759	North Pine Dam-B	0	0	0	10	2	1	4	4			0	0	0	0	0	0	0	0	0	0	0	0	18	2	44
6760	North Pine Dam	0	0	0	11	1	1	4	4	2	1	0	0	0	0	0	0	0	0	0	0	0	0	18	2	44
6763	Petrie	0	0	8	12	5	0	4	Cl^{4}	2	1	0	0	0	0	0	0	0	0	0	0	0	0	22	2	60
6766	Lake Kurwongbah	0	0	0	7	7	0	5	4	1	2	0	0	0	0	0	0	0	0	0	0	0	1	12	0	39
6769	Drapers Xing	0	11	1	7	1			4	1	0	0	0	0	0	0	1	0	0	0	0	0	0	12	6	47
6774	Wilsons Peak-P																									
6775	Peachester																									
6778	Samford	0	0	0	14	1	0	3	4	0	1	0	0	0	0	0	0	0	0	0	0	0	0	8	9	40

$\begin{aligned} & \text { ALERT } \\ & \text { ID } \end{aligned}$	Station	10	11	12	13	14	15	16	Hourly Rainfall (mm) ending 09:00 8 January 2011										03	04	05	06	07	08	09	Daily Total mm
									17.	18	19	20	21	22	23	00	01	02								
6500	Mt Glorious-B																									
6680	Mt Glorious-P	6	2	3	2	2	0	0	0	0	0	0	0	0	0	0	1	-	0	0	0	0	0	0	0	16
6514	Gregor Ck-P	1	0	1	7	3	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	13
6517	Gregor Ck-B																									
6520	Boat Mountain	4	0	4	10	1	0	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	21
6523	Cressbrook Dam	1	2	6	3	1	2	0	0	0	0	0	0	0	10)	0	0	0	0	0	0	0	0	0	0	15
6526	Helidon	5	5	6	3	2	5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	26
6529	St Aubyns	0	2	2	5	7	6	1	0	0	0	1	0	O	0	0	0	0	0	0	0	0	0	0	0	24
6540	Yarraman	2	1	0	0	7	5	5	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	21
6542	Cooyar Ck	0	0	0	5	9	10	4	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	29
6550	Walloon-P	12	2	0	1	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	16
6553	Rosentretters Br	0	4	14	5	2	0	0	0	0	-1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	27
6555	Atkinson Dam	4	2	3	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	10
6556	Glenore Grove	6	0	6	1	0	0	0	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	13
6559	Savages Crossing	2	0	2	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	6
6562	Kalbar Weir	1	6	0	1	0			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	8
6565	Tenthill																									
6568	O'Reillys Weir	1	2	2	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	7
6571	Harrisville	3	3	1	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	11
6574	Caboonbah	2	17			1	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	40
6577	Gatton	6	5	6	1	0	2	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	21
6580	Adams Br	1	60		6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	14
6583	Showground Weir	6	7	3	1	0	2	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	20
6590	Somerset Dam HW-B	4	26	6	4	2	0	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	44

APPENDIX O-HOURLY RÄINFALL TABLES

(continued)

ALERT	Station	Hourly Rainfall (mm) ending 09:00 8 January 2011																								Daily Total mm
		10	11	12	13	14	15	16	17	18	19	20	21	22	23	00	01	02	03	04	05	06	07.	08	09	
6630	Lyons Br-B	5	1	5	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	14
6633	Lyons Br-P	5	1	4	2	0	0	0	0	0	0	0	0	0	0	0	0	θ^{2}	0	0	0	0	0	0	0	12
6636	Wivenhoe Dam HW-B	0	1	3	1	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	7
6641	Wivenhoe Dam TW-B	1	1	3	1	0	0	0	0	2	0	0	0	0	0		0	0	0	0	0	0	0	0	0	8
6643	Wivenhoe Dam TW-P	0	1	3	1	0	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	7
6646	Lowood-B	5	0	3	0	0	0	0	0	0	0	0			1	0	0	0	0	0	0	0	0	0	0	9
6649	Lowood-P	5	0	3	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	9
6651	Amberley-P	12	3	0	1	0	0	0	0	0	0	人	0	0	0	0	1	0	0	0	0	0	0	0	0	17
6653	Amberley-B	12	3	0	1	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	17
6656	Bill Gunn Dam	8	9	3	1	0	2	0	0	0	18	0	1	0	0	0	0	0	0	0	0	0	0	0	0	24
6658	Lake Clarendon Dam	9	2	4	3	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	20
6680	Mt Glorious-P	4	2	8	0	0	0		8 .	2	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	17
6690	Mt Mee-P	13	28	4	1	1	0	0	0	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	49
6701	Mt Mee-B	13	28	4	1	1	留	0	0	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	49
6702	Woodford-B	8	11	17	6	- 0	0	0	0	0	0	0	0	0	0	0	1.	0	0	0	0	0	0	0	0	43
6705	Woodford-P	8	. 11	17		∞^{∞}	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	43
6708	Devon Hills	7	7	8	11	5	2	1	0	0	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	43
6711	Baxters Ck	1	19	A	0	0	0	0	0	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	24
6714	Ferris Knob	1	1	10	12	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	25
6716	West Bellthorpe	0	x°	2	10	2	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	16
6717	Linville	1	1	0	9	9	9	2	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	32
6730	Jindalee	5	1	1	0	0	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	9

APPENDIX O - HOURLY RAINFALL TABLES

APPENDIX O-HOURLY RAINFALL TABLES

ALERT ID	Station	Hourly Rainfall (mm) ending 09:009 January 2011																								Daily Total mm
		10	11	12.	13	14	15	16	17	18	19	20.	21	22	23	00	01	02	03	04	05	06	07	08	09	
6500	Mt Glorious-B																									
6680	Mt Glorious-P	0	0	0	0	0	0	6	0	0	0	0	0	0	0	0	0	09	1	0	0.	0	0	0	0	7
6514	Gregor Ck-P	0	0	0	0	0	1	0	1	0	1	0	0	0	0	0	0	0	1	0	0	9	12	0	0	25
6517	Gregor Ck-B																									
6520	Boat Mountain	0	0	0	0	0	1	1	0	0	1	2	0	0	0	0	0	0	1	0	0	7	13	1	0	27
6523	Cressbrook Dam	0	0	0	0	0	2	4	0	0	0	0	0	0			0	0	0	0	0	1	1	0	0	8
6526	Helidon	0	0	0	0	0	3	1	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	6
6529	St Aubyns	0	0	0	0	0	0	5	3	0	0	2	0	60	0	0	1	0	0	0	0	0	9	1	0	21
6540	Yarraman	0	0	0	0	0	0	0	0	0	0	4	1	0	0	1	0	0	0	0	0	1	2	7	3	19
6542	Cooyar Ck	0	0	0	0	0	1	2	1	0	0	1	1	0	0	0	0	0	0	0	0	2	4	8	0	20
6550	Walloon-P	0	0	0	0	3	0	1	0	0	0	0	0	0	1	0	0	0	0	1	0	0	0	0	0	6
6553	Rosentretters Br	0	0	0	0	0	0	0	0	0	Q	2	0	0	0	0	0	0	0	1	0	2	0	0	0	5
6555	Atkinson Dam	0	0	0	0	0	3	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	5
6556	Glenore Grove	0	0	0	0	0	1	2	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	4
6559	Savages Crossing	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	1	0	0	1	6
6562	Kalbar Weir	0	0	0	0	0			0	0	0	0	0	5	0	0	0	0	0	0	0	0	0	0	0	5
6565	Tenthill																									
6568	O'Reillys Weir	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0	0	0	3
6571	Harrisville	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
6574	Caboonbah	0	0			0	2	1	0	0	1	0	0	1	0	0	0	0	0	0	1	4	0	0	0	10
6577	Gatton	0	0	0	0	0	0	1	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	1	4
6580	Adams Br	0	00^{0}	0	0	0	0	1	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	3
6583	Showground Weir	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1

APPENDIX O-HOURLY RAINFALL TABLES

(continued)

APPENDIX O - HOURLY RAINFALL TABLES

(continued)

ALERT ID	Station	Hourly Rainfall (mm) ending 09:009 January 2011																								Daily Total mm
		10	11.	12	13	14	15	16	17	18	19	20	21	22	23	00	01	02	03	04	05	06	07	08	09	
6623	Tarome	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0	0	0	0	0	0	0	0	2
6624	Moogerah Dam	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1			0	0	0	0	0	0	1
6630	Lyons Br-B	0	0	0	0	1	3	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1	6
6633	Lyons Br-P	0	0	0	0	1	4	0	0	0	0	0	0	0	0	0		0	0	0	1	0	0	0	0	6
6636	Wivenhoe Dam HW-B	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	4
6641	Wivenhoe Dam TW-B	0	0	0	0	1	1	0	0	0	0	0	0			0	0	0	0	1	1	0	0	0	1	5
6643	Wivenhoe Dam TW-P	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0	0	1	5
6646	Lowood-B	0	0	0	0	3	0	0	0	0	0			0	0	0	0	0	2	0	0	0	0	0	1	6
6649	Lowood-P	0	0	0	0	0	0	0	3	0	0	0	0	0	0	0	0	0	2	0	0	1	0	0	1	7
6651	Amberley-P	0	0	0	0	2	1	0	0	0	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3
6653	Amberley-B	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	3
6656	Bill Gunn Dam	0	0	0	0	0	1	0			0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	2
6658	Lake Clarendon Dam	0	0	0	0	0	2	3	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	6
6680	Mt Glorious-P	0	1	1	1	4			1	0	1	0	3	3	0	0	0	1	1	1	0	4	0	1	0	23
6690	Mt Mee-P	0	0	0	0	1	0	0	1	4	1	0	1	2	1	0	0	0	1	3	6	7	0	0	1	29
6701	Mt Mee-B	0	0	0	0	0	0	0	1	4	1	0	1	2	1	0	0	0	0	4	6	7	0	0	1	29
6702	Woodford-B	0	0	1	0	3	2	0	2	1	1	3	0	0	0	1	0	0	0	1	13	7	1	0	1	37
6705	Woodford-P	0	0			3	2	0	2	1	1	3	0	0	0	1	0	0	0	1	13	7	1	0	1	37
6708	Devon Hills	0	0	0	0	0	3	0	0	0	4	4	0	1	1	0	1	0	0	1	1	13	24	4	0	57
6711	Baxters Ck	0	0^{0}	0	2	2	0	0	1	3	1	0	1	0	0	0	0	0	1	3	2	1	0	0	0	17
6714	Ferris Knob	0	0	0	0	8	2	6	7	0	0	0	0	0	0	0	0	0	2	1	26	33	3	0	3	91
6716	West Bellthorpe	0	0	1	0	3	10	1	17	1	2	0	0	0	0	0	0	0	0	2	11	27	28	2	1	106

APPENDIX O-HOURLY RAINFALL TABLES

(continued)

ALERT ID	Station		+11	12		14	15	!	Hourly Rainfall (mm) ending 09:009 January 2011																	Daily Total mm
									17.	18	19.	20	21	22	23	00.	01	02.	03.	04.	05	06.	07.	08.	09	
6717	Linville	0	0	0	0	0	1	2	0	1.	2	1	0	1	0	0	0	0	0	1	0	3	8	17	1	38
6730	Jindalee	0	0	0	1	0	0	0	0	0	1	0	2	0	0	0	0	1	0	1	0	0	0	1	0	7
6733	Rosewood	0	0	0	0	1	0	2	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	4
6736	Kuss Rd	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	(0)	0	0	0	0	0	0	0	0	1
6739	Washpool	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
6742	Walloon-B	0	0	0	0	3	0	1	0	0	0	0	0	0		0	0	0	0	1	0	0	0	0	0	6
6748	Brisbane City	0	0	0	1	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0	1	1	10	1	16
6751	Mt Crosby	0	0	0	0	3	0	0	0	0	0	0	0	$)^{\square}$	1	0	0	0	1	1	0	0	0	0	0	6
6754	Moggill-P	0	0	0	0.	3	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	0	5
6759	North Pine DamB	0	0	1	0	4	0	0	1	0	0		80	0	0	0	0	0	0	2	1	0	0	1	0	11
6760	North Pine Dam	0	0	1	0	4	0	0	1	0	0	1	0	0	0	0	0	0	0	2	1	0	0	1	0	11
6763	Petrie	0	0	2	1	5	0	0	0	Q 60		1	0	0	0	0	0	0	0	4	0	0	0	0	0	13
6766	Lake Kurwongbah	0	0	1	1	4	0	0	0	0	0	0	0	1	0	0	0	0	0	4	0	0	1	0	0	12
6769	Drapers Xing	0	0	1	0	3	0	000		0	0	0	1	0	0	0	0	1	1	0	0	1	0	2	0	10
6774	Wilsons Peak-P																									
6775	Peachester						x																			
6778	Samford	0	0	1	0	3	0	0	0	0	0	0	3	0	0	0	0	0	0	1	0	1	0	3	0	12

ALERT	Station	10	11	12	13	14	15	16		Hourly Rainfall (mm) ending 9am 10 January									03.	04	05	06	07	08	09	Daily Total mm
									17.	18	19	20	21	22	23	00	01	02								
6500	Mt Glorious-B																									
6680	Mt Glorious-P	0	1	2	9	6	2	4	19	3	3	4	10	1	7	3	0	0		0	2	1	1	0	3	81
6514	Gregor Ck-P	1	10	5	5	11	24	37	24	27	25	9	5	10	3	7	0	0	1	2	5	1	2	6	2	222
6517	Gregor Ck-B																									
6520	Boat Mountain	0	4	17	3	14	4	39	8	13	16	7	3	9	5	11	0	0	2	0	1	0	0	7	3	166
6523	Cressbrook Dam	0	1	8	10	0	3	8	18	5	5	8	12	1			1	0	0	0	2	3	1	1	4	97
6526	Helidon	0	0	8	11	4	3	5	11	14	11	4	7	9	2	0	1	0	0	0	0	5	3	1	2	101
6529	St Aubyns	0	0	2	2	5	6	13	5	8	14	7	3	52	2	1	2	0	0	0	1	0	0	0	1	74
6540	Yarraman	0	1	1	10	37	21	5	4	6	9	6	3	5	3	1	2	1	0	0	0	0	1	0	0	116
6542	Cooyar Ck	0	8	1	12	34	10	5	2	7	8	18		3	5	1	2	3	0	0	0	0	0	0	0	116
6550	Walloon-P	1	13	5	0	0	0	1	3	1	2	2	7	3	1	0	1	1	0	0	0	7	0	10	10	68
6553	Rosentretters Br	0	9	13	7	1	11	17	11	16	\1t	6	4	1	2	3	1	0	0	0	5	3	1	4	3	129
6555	Atkinson Dam	0	8	8	0	0	0	10	13	1	1	6	31	5	2	4	0	0	0	1	3	11	0	4	2	110
6556	Glenore Grove	0	5	9	1	2	0	3	315		4	2	8	4	1	2	0	1	0	0	1	4	2	1	4	86
6559	Savages Crossing	0	10	2	0	0	1	18	14	0	2	16	8	7	4	2	4	0	0	1	7	5	1	9	2	113
6562	Kalbar Weir	0	0	3	1	0	30	\%	0	0	0	0	1	0	0	0	0	0	0	0	1	2	2	1	1	15
6565	Tenthill																									
6568	O'Reillys Weir	0	11	1	0	(s)	0	: 12	12	1	0	12	13	5	4	3	1	0	0	0	5	10	1	6	1	98
6571	Harrisville	0	0	3	0	0	0	1	0	0	0	1	1	0	0	0	0	0	0	1	2	3	4	9	5	30
6574	Caboonbah	1	10	$13 \cdot$		0	22	15	5	22	6	7	4	1	5	4	0	0	0	1	5	4	0	3	3	131
6577	Gatton	0	0	18	2	1	2	5	10	9	8	2	7	6	1	1	1	0	0	0	1	5	2	1	4	86
6580	Adams Br	0	80	10	0	0	2	1	0	0	0	1	2	0	0	1	0	0	0	0	0	3	4	0	13	37
6583	Showground Weir	0	2	11	2	1	1	8	3	8	3	0	10	7	0	1	1	0	0	0	0	3	1	0	5	67

APPENDIX O-HOURLY RAINFALL TABLES

(continued)

ALERT ID	Station	\%	\#	12	13	14		16	Hourly Rainfall (mm) ending 9am 10 January										03.	04	05	06	07.	08	09	Daily Total mm
									17	18	19	20	21	22	23	00	01.	02.								
6590	Somerset Dam HW-B	2	17	22	1	0	41.	5	9	16	5	4	4	1	4	5	1		0	3	5	4	0	5	3	158
6593	Somerset Dam HW-P																									
6596	Crows Nest	0	0	6	7	2	8	11	32	13	9	6	10	1	3			0	0	0	2	1	0	1	3	117
6598	Toowoomba	0	0	2	12	3	2	2	16	7	5	4	4	9	1	1	0	0	1	0	0	3	3	1	3	79
6600	Kilcoy	8	10	3	4	12	16	28	20	24	8	7	6	6			1	0	0	4	4	3	2	9	1	184
6601	Mt Binga	0	0	4	5	21	9	23	5	6	16	10	3	3	3	5	3	0	1	0	0	0	0	2	3	122
6602	Top of Brisbane	8	0	0	6	0	6	4	3	2	5	1			1	0	0	0	0	0	0	0	0	0	0	42
6603	Blackbutt	0	3	1	7	17	54	5	4	5	20	8	4	5	5	10	1	2	1	0	0	1	0	5	2	160
6604	Toogoolawah	0	9	25	7	3	22	26	18	30	7	6	3	2	3	3	0	1	0	1	3	2	2	4	2	179
6605	Eskdale																									
6606	West Woodbine	0	0	2	7	1	0	0	1			0	0	1	0	0	0	1	0	0	0	0	1	0	3	18
6607	Lindfield	4	10	12	4	54	25	23	20	33	14	9	12	4	8	3	6	0	1	5	1	2	5	13	1	269
6608	Jimna	3	4	12	15	16	8	3		\% 12	9	9	6	4	5	1	1	0	0	0	0	0	2	2	0	117
6609	Monsildale	23	4	13	24	7	4	5	2	10	5	4	7	4	4	1	0	0	0	0	0	0	1	0	0	118
6610	Kluvers Lkt	7	10	7	1	2	18		5	6	5	9	2	1	5	4	2	2	1	3	8	4	2	6	4	125
6611	Redbank Creek	0	2	14	11	1	3	16	15	4	6	14	13	1	5	4	2	0	0	1	3	4	1	3	5	128
6612	Mt Stanley	8	25	8	14	26	6	7	2	7	7	12	6	3	6	1	1	0	0	0	0	0	1	0	0	140
6613	Hazeldean	1	19	10	5	1	33	36	18	20	21	10	4	6	4	3	2	1	0	0	2	2	1	2	2	203
6614	Westvale				y																					
6615	Thornton	0	0	12	6	0	1	4	0	1	0	2	1	1	0	1	0	0	0	0	0	3	2	0	12	46
6617	Little Egypt	0	0	2	9	0	0	0	4	3	0	1	1	4	1	0	0	1	0	0	0	0	1	1	2	30
6619	Mt Castie	1	3	0	24	5	6	9	1	3	4	0	4	1	0	0	0	0	0	1	0	2	5	4	14	87
6621	Nukinenda	0	0	16	2	8	3	13	9	22	17	6	3	3	2	1	4	0	0	0	1	1	0	0	2	113

APPENDIX O-HOURLY RAINFALL TABLES

(continued)

APPENDIX O - HOURLY RAINFALL TABLES

(continued)

ALERT ID	Station	10	+	12.	13	14	15	16	Hourly Rainfall (mm) ending 9am 11 January										03	04	05	06	07	08	09	Daily Total mm
									17.	18	19.	20.	21	22	23.	00	01	02								
6500	Mt Glorious-B																									
6680	Mt Glorious-P	0	0	2	35	12	2	2	1	0	0	0	3	1	0	3	0			7	12	8	0	1	1	101
6514	Gregor Ck-P	0	1	33	2	1	1	1	0	0	2	3	1	1	1	0	1	1	7	6	10	0	2	0	1	75
6517	Gregor Ck-B																									
6520	Boat Mountain	0	1	25	9	0	2	0	0	0	2	0	0	1	0	0	2	1	7	5	7	0	2	0	2	66
6523	Cressbrook Dam	0	1	5	54	3	14	0	0	0	0	2	5	0			0	4	2	0	13	18	0	0	0	122
6526	Helidon	0	2	2	13	11	1	2	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	33
6529	St Aubyns	0	0	2	9	1	2	1	0	0	2	2	0		3	8	59	2	6	17	5	2	0	0	1	124
6540	Yarraman	0	0	1	1	0	1	2	0	0	0	0	0	8	15	40	45	1	8	6	2	0	0	0	0	130
6542	Cooyar Ck	0	0	1	0	0	1	1	0	0	0			14	28	15	19	0	0	15	25	0	0	1	0	121
6550	Walloon-P	1	2	1	0	1	1	0	0	1	0	0	0	2	1	0	0	3	2	0	0	1	1	4	22	43
6553	Rosentretters Br	0	1	33	29	0	2	0	0	0	0	9	1	0	0	1	0	8	0	1	19	4	1	0	0	109
6555	Atkinson Dam	1	1	6	1	1	0	2	0	0	0	0	0	2	0	0	0	1	2	0	9	34	22	8	30	120
6556	Glenore Grove	0	0	1	1	1	0	1			0	0	0	0	0	0	0	1	0	0	5	39	22	5	0	77
6559	Savages Crossing	0	3	1	1	1	5	0	0	1	0	0	0	2	1	0	1	0	2	0	1	16	32	85	93	245
6562	Kalbar Weir	11	8	12	1	0			0	0	2	0	0	1	2	2	0	11	4	0	0	0	0	3	8	67
6565	Tenthill																									
6568	O'Reillys Weir	0	1	4	0	(3)	0	0	0	0	0	0	1	1	0	0	0	1	0	0	4	20	37	41	36	149
6571	Harrisville	24	13	6	4	2	0	1	0	0	1	0	2	0	2	2	0	2	1	0	0	0	6	2	9	77
6574	Caboonbah	0	6			1	6	0	0	0	2	6	2	0	1	0	0	1	0	0	32	24	6	10	4	153
6577	Gatton	1	0	1	6	1	1	2	0	0	1	0	0	0	1	0	0	1	2	1	4	34	8	3	1	68
6580	Adams Br	15	0^{3}	6	9	2	0	2	1	0	2	0	2	0	4	1	0	4	0	1	0	3	1	18	16	94
6583	Showground Weir	0	2	1	1	6	2	1	3	0	1	0	0	6	4	1	0	0	4	1	1	4	43	21	3	105

ALERT ID	Station	1410	11	12	13	14	15	16		ourl	Rain	fall	m)	ndin	9am	11.	nua	02	03.	04	05	06	07	08	09	Daily Total mm
									17.	18	19	20	21.	22.	23.	00.	01.									
6590	Somerset Dam HW-B	1	9	25	2	4	0	0	0	0	2	6	0	0	1	1	0	0		0	37	40	4	3	0	136
6593	Somerset Dam HW-P																									
6596	Crows Nest	1	0	3	9	1	1	0	1	0	0	3	8	0	2	3		7	9	6	34	4	0	5	2	99
6598	Toowoomba	2	0	0	10	55	2	8	1	0	0	0	1	2	1	3	1	0	1	0	4	22	1	0	2	116
6600	Kilcoy	0	24	10	0	1	1	2	0	3	1	6	1	1			2	2	0	9	11	9	10	3	1	99
6601	Mt Binga	0	0	3	7	3	5	2	0	0	5	0	0	3	5	12	30	0	12	17.	12	1	0	0	3	120
6602	Top of Brisbane	0	0	0	0	0	0	0	0	0	0	0			8	23	13	0	0	0	6	0	0	0	0	69
6603	Blackbutt	0	0	8	0	2	3	1	0	0	1	0	0	8	3	28	14	0	5	17	15	0	0	0	3	108
6604	Toogoolawah	0	1	34	18	0	1	0	0	0	0	, 8	0	0	0	0	0	12	0	1	23	3	2	0	0	102
6605	Eskdale																									
6606	West Woodbine	0	0	1	0	7	9	2	0			0	0	0	12	6	0	0	0	1	5	7	29	6	0	88
6607	Lindfield	0	18	7	0	3	7	0	1	0	2	0	4	2	1	3	1	2	9	1	0	6	10	5	3	85
6608	Jimna	0	2	10	0	2	1	0	0	0	1	0	7	4	1	2	0	2	4	6	1	2	0	2	0	47
6609	Monsildale	0	0	0	0	10	3	0	0	1	1	1	14	33	58	10	0	0	0	29	2	0	0	1	0	163
6610	Kluvers Lkt	1	7	4	3	0			0	0	2	0	2	2	0	2	0	1	2	1	12	26	46	7	40	163
6611	Redbank Creek	0	0	36	75	6	6	3	0	0	0	1	4	1	0	2	0	0	0	0	19	15	2	2	0	172
6612	Mt Stanley	0	0	0	0	${ }^{2}$	0	1	0	0	0	0	2	12	68	21	0	0	0	29	24	0	0	1	0	160
6613	Hazeldean	2	1	3	4	5	8	28	0	0	1	7.	0	1	0	0	1	1	0	0	10	13	13	13	12	123
6614	Westvale																									
6615	Thomton	3	6	6	4	10	2	2	1	1	1	0	3	1	7	1	0	4	3	0	0	4	6	35	17	117
6617	Little Egypt	0			1	9	7	6	0	0	1	0	0	1	6	0	0	1	5	0	3	28	22	1	0	92
6619	Mt Castle	21	11	16	11	7	5	5	5	1	2	5	5	5	15	4	7	4	6	0	0	9	6	34	11	195
6621	Nukinenda	N	0	11	9	2	3	1	0	0	2	0	1	1	0	2	14	6	8	23	13	0	1	0	15	113

APPENDIX O - HOURLY RAINFALL TABLES

ALERT ID	Station	10	11	12	13	14	15	Hourly Rainfall (mm) ending 9am 11 January											03.	04	05	06	07	08	09	Daily Total mm
								16.	17.	18	19	20	21	22	23.	00	01.	02								
6623	Tarome	8	7	10	5	0	1	1	0	0	1	2	0	0	1	5	0	4	14	2	0	0	0	13	9	83
6624	Moogerah Dam	14	8	10	5	1	0	3	1	0	1	1	1	1	1	3	4			0	0	0	0	3	23	95
6630	Lyons $\mathrm{Br}-\mathrm{B}$	0	1	2	0	1	2	2	0	0	0	0	0	0	0	0	0	0	1	0	2	32	43	22	20	128
6633	Lyons Br-P	0	0	2	0	1	1	1	0	0	0	0	0	1	0	0		0	0	0	2	29	41	21	15	114
6636	Wivenhoe Dam HW-B	0	3	3	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1	0	3	20	32	35	38	136
6641	Wivenhoe Dam TW-B	0	3	4	1	0	0	0	0	0	1	0	1			0	1	0	1	0	2	22	33	39	46	157
6643	Wivenhoe Dam TW-P	1	2	4	1	0	1	0	0	0	0	1	0	4	0	1	0	0	1	0	3	22	33	39	46	159
6646	Lowood-B	0	1	2	2	1	3	0	0	0	0			1	0	0	0	0	1	2	3	16	43	53	55	183
6649	Lowood-P	1	1	1	0	0	0	0	0	0	0	4	0	0	2	0	0	0	0	1	4	16	37	45	53	165
6651	Amberley-P	14	2	0	0	0	2	0	0	0	0	1	0	1	0	0	1	1	1	0	0	2	2	1	6	34
6653	Amberley-B	13	2	0	0	1	1	1	0	0	0	0	0	1	1	0	0	1	1	0	0	2	2	1	4	31
6656	Bill Gunn Dam	1	2	1	2	7	4	1			0	0	1	4	3	1	0	0	2	1	2	6	46	14	1	100
6658	Lake Clarendon Dam	0	1	1	3	1	0	2	0	1	0	0	0	1	3	0	0	1	3	0	9	31	9	4	8	78
6680	Mt Glorious-P	1	20	1	3	3			1	0	3	1	3	9	1	1	0	1	3	9	14	27	28	57	71	262
6690	Mt Mee-P	0	8	5	2	5	1	0	0	1	1	5	3	1	2	1	0	0	4	9	14	24	29	9	15	139
6701	Mt Mee-B	0	8	5	2	5	1	0	0	1	1	5	3	1	2	1	0	0	4	9	14	24	29	9	15	139
6702	Woodford-B	1	19	2	1	1	2	0	0	0	7	3	3	2	1	0	1	0	0	7	21	12	1	1	1	86
6705	Woodford-P	1	19			1	2	0	0	0	7	3	3	2	1	0	1	0	0	7	21	12	1	1	1	86
6708	Devon Hills	0	2	19	0	3	1	1	0	0	0	0	0	6	0	4	4	0	5	6	9	0	3	0	4	67
6711	Baxters Ck	1	0^{2}	3	1	1	3	0	0	0	1	1	1	1	0	0	0	10	0	7	6	30	37	28	39	172
6714	Ferris Knob	5	13	1	1	1	1	0	0	2	1	0	8	2	2	0	2	0	1	12	8	10	1	5	0	76
6716	West Bellthorpe	2	21	8	2	4	4	0	1	1	3	0	7	2	1	7	0	7	5	8	26	8	7	3	5	132

APPENDIX O-HOURLY RAINFALL TABLES

(continued)

APPENDIX O-HOURLY RAINFALL TABLES

ALERT ID	Station	Hourly Rainfall (mm) ending 9am 12 January																								Daily Total mm
		10.	11	12	13	14	15	16	17.	18	19.	20	21	22	23	00	01	02	03	04	05	06	07	08	09	
6500	Mt Glorious-B																									
6680	Mt Glorious-P	0	0	6	1	0	2	3	2	1	1	0	1	0	0	0	0			0	0	0	0	0	0	17
6514	Gregor Ck-P	0	4	3	4	1	0	2	4	2	3	2	0	0	0	0	0	0	0	0	0	0	0	0	0	25
6517	Gregor Ck-B																									
6520	Boat Mountain	0	0	0	0	0	9	0	8	0	7	5	0	0	0	0	0	0	0	0	0	0	0	0	0	29
6523	Cressbrook Dam	0	1	3	1	2	0	1	3	0	0	1	0	0			1	0	0	0	0	0	0	0	0	13
6526	Helidon																									
6529	St Aubyns	0	0	0	2	2	0	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	6
6540	Yarraman	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	2
6542	Cooyar Ck	0	0	0	1	0	1	0	1	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	3
6550	Walloon-P	26	11	14	12	23	9	0	17	2	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	115
6553	Rosentretters Br	2	0	5	0	0	0	0	8	4	है	1	0	0	0	0	0	0	0	0	0	0	0	0	0	26
6555	Atkinson Dam	64	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	21	5	7.	97
6556	Glenore Grove	5	29	24	21	27	22	0	0		0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	130
6559	Savages Crossing	18	36	18	34	33	2	0	1	1	0	1	0	0	0	0	1	0	1	0	0	0	0	0	0	146
6562	Kalbar Weir	6	4	6	13	11	13	\%	0	1	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	57
6565	Tenthill																									
6568	O'Reillys Weir	31	39	25	45	49	8	0	1	1	0	7	1	0	0	0	0	0	0	0	0	0	0	0	0	207
6571	Harrisville	10	3	7	8	11	9	5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	53
6574	Caboonbah	0	2		¢ ${ }^{1}$	24	2	3	5	1	1	1	0	0	0	0	0	0	0	1	0	0	0	0	0	55
6577	Gatton	2	3	13	20	21	13	10	0	2	0	0	0	0	1	4	0	0	0	0	0	0	0	0	0	89
6580	Adams Br	17	4		11	9	15	25	3	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	92
6583	Showground Weir	4	19	13	17	22	25	8	2	2	0	3	0	0	0	2	0	1	1	0	0	0	0	0	0	119
6590	Somerset Dam HW-B		8	3	24	19	2	3	6	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	1	67

ALERTID	Station	1		12	13	14	15	16	Hourly Rainfall (mm) ending 9am 12 January										03	04	05	06	07	08	09	Daily Total mm
			11						17	18	19	20	21	22	23	00	01	02.								
6593	Somerset Dam HW-P																									
6596	Crows Nest	8	1	2	1	1	1	1	0	1	1	2	0	0	0	0	0	60	0	0	0	0	0	0	0	19
6598	Toowoomba	1	0	1	3	3	3	0	2	3	1	1	0	0	0	0	1	0	0	1	2	0	1	0	0	23
6600	Kilcoy	0	7	10	20	2	6	2	1	6	4	0	0	1	0	0	0	0	0	1	0	0	0	1	0	61
6601	Mt Binga	0	1	0	4	3	1	1	1	0	1	0	0	0	0	0	1	0	1	0	0	0	0	0	0	14
6602	Top of Brisbane	0	0	0	0.	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0
6603	Blackbutt	0	1	0	0	0	3	1	5	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	1	13
6604	Toogoolawah	0	3	5	2	3	0	1	6	1	6	1			0	0	0	0	0	0	0	0	0	0	1	29
6605	Eskdale																									
6606	West Woodbine	1	1	15	2	1	3	7	2	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	34
6607	Lindfield	12	8	11	1	2	2	5	0	11	10	4	1	0	0	0	0	0	0	0	0	0	0	1	0	68
6608	Jimna	0	2	1	0	3	9	7	0	08	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	23
6609	Monsiidale	0	1	0	0	0	1	1	0	0	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0	5
6610	Kluvers Lkt	36	50	33	33	20	7	1	(6)	1	3	0	1	0	0	1	0	0	1	0	0	0	0	0	0	193
6611	Redbank Creek	0	0	3	0	5	2	6	4	5	1	1	0	0	0	0	2	0	0	0	0	0	0	0	0	29
6612	Mt Stanley	1	0	0	0	0			1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	3
6613	Hazeldean	9	6	7	9	18	16	10	5	1	6	2	0	0	0	0	0	0	0	1	0	0	0	0	1	91
6614	Westvale					5																				
6615	Thornton	21	3	8	8	4	14	21	12	8	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	101
6617	Little Egypt	2	0			3	9	5	1	0	1	1	1	0	0	1	0	0	2	1	1	0	1	0	0	31
6619	Mit Castle	23	4	11.	7.	9	25	14	15	2	4	3	1	1	0	1	0	2	0	0	0	0	1	0	0	123
6621	Nukinenda		- 0	0	4	1	0	1	0	0	1	2	0	0	0	0	0	0	0	0	0	0	0	0	1	11
6623	Tarome	12	4	6	8	25	17	6	1	0	0	2	0	0	0	1	0	0	0	0	0	0	0	0	0	82
6624	Moogerah Dam	11	4	2	14	7	17	8	0	1	0	0	0	1	0	0	2	0	0	0	0	0	0	0	0	67

APPENDIX O-HOURLY RAINFALL TABLES

ALERT ID	Station		11	12	13	14	15	16	Hourly Rainfall (mm) ending 9am 12 January										03	04	05	06	07	08	09	Daily Total mm
									17.	18.	19	20.	21	22.	23.	00	01	02								
6733	Rosewood	39	9	20	23	26	18	0	6	11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	152
6736	Kuss Rd																									
6739	Washpool	3	4	11	5	6	5	1	1	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	38
6742	Walloon-B	26	11	15	11	23	10	1	15	2	1	0	0	0	0	0		0	0	0	0	0	0	0	0	115
6748	Brisbane City	0	15	1	10	4	7	2	1	0	1	1	0	0	1	0	0	0	0	0	0	0	0	0	0	43
6751	Mt Crosby	6	16	10	16	10	7	2	4	0	2	0	1	0			0	0	0	0	0	0	0	0	0	75
6754	Moggill-P	0	24	5	7	10	5	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	52
6759	North Pine Dam-B	22	2	18	14	6	2	0	1	0	1	0		0	1	0	0	0	1	0	0	0	0	0	0	68
6760	North Pine Dam	22	2	18	14	6	2	0	1	0	1	0	0	0	1	0	0	0	1	0	0	0	0	0	0	68
6763	Petrie	21	3	6	12	6	2	2	0	0	2		0	1	0	0	0	0	0	0	0	0	0	0	0	55
6766	Lake Kurwongbah	24	0	15	19	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	59
6769	Drapers Xing	25	9	14	17	7	5	1	0		O-	0	0	0	0	2	3	0	0	1	0	0	0	0	0	87
6774	Wilsons Peak-P																									
6775	Peachester																									
6778	Samford	19	19	22	17	7	3	3	0	3	1	1	0	0	0	0	3	1	0	0	0	0	0	0	0	99

APPENDIX O-HOURLY RAINFALL TABLES

(continued)

ALERT ID	Station	10	11	12	13	14	15	16		Hourly Rainfall (mm) ending 9am 13 Januar								02.	03	04	05	06	07	08	09	Daily Total mm
									17	18	19	20.	21	22	23.	00.	01									
6500	Mt Glorious-B																									
6680	Mt Glorious-P	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0
6514	Gregor Ck-P	0	0	1.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
6517	Gregor Ck-B																									
6520	Boat Mountain	1	0	1	0	0	0	0	0	0	0	0	0	0	0	1	1	1	0	0	0	0	0	0	0	5
6523	Cressbrook Dam	0	0	0	0	0	0	0	0	0	0	0	0	0			0	0	0	0	0	0	0	1	0	1
6526	Helidon																									
6529	St Aubyns	1	0	0	0	0	0	1	1	0	0	0			0	0	0	0	0	0	0	0	0	0	0	3
6540	Yarraman	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
6542	Cooyar Ck	0	0	0	1	0	0	0	0	0	0			0	0	0	0	0	0	0	0	0	0	0	0	1
6550	Walloon-P	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6553	Rosentretters Br	0	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3
6555	Atkinson Dam																									
6556	Glenore Grove	0	0	0	0	0	0	0			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6559	Savages Crossing	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6562	Kalbar Weir	0	0	0	0	0	0	人0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6565	Tenthill																									
6568	O'Reillys Weir	0	0	0	0) 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6571	Harrisville	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6574	Caboonbah	0	0	0	\%	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6577	Gatton	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6580	Adams Br	0			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
6583	Showground Weir	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6590	Somerset Dam HW-B	6)	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	2

APPENDIXO-HOURLY RAINFALL TABLES
(continued)

ALERT ID	Station	10.	11.	12	13	14	15	16	Hourly Rainfall (mm) ending 9am 13 January										03.	04	05	06.	07.	08	09.	Daily Total mm
									17	18	19	20.	21	22	23	00.	01.	02								
6593	Somerset Dam HW-P																									
6596	Crows Nest	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	60	0	0	0	0	0	0	0	1
6598	Toowoomba	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1
6600	Kilcoy	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	2
6601	Mt Binga	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	2
6602	Top of Brisbane	1	0	0	0	0	0	0	0	0	0	0	0	0	O ${ }^{3}$	0	0	0	0	0	0	0	0	0	0	1
6603	Blackbutt	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
6604	Toogoolawah	0	0	1	0	0	1	0	0	0	0	0	06	\%	0	0	0	0	0	0	0	0	0	0	0	2
6605	Eskdale																	\because					..			
6606	West Woodbine	0	0	0	0	0	0	0	0	0	0	∞	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6607	Lindfield	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	2
6608	Jimna	1	0	0	0	0	0	0	0	0 O	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
6609	Monsildale	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	2
6610	Kluvers Lkt	0	0	0	0	0	0	0	C^{+}	0	0	0	0	0	0	0	0	0	3	1	0	0	0	0	0	4
6611	Redbank Creek	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
6612	Mt Stanley	0	0	0	0	0			1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
6613	Hazeldean	2	0	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	5
6614	Westvale					0^{6}																				
6615	Thornton	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	1
6617	Little Egypt	0	0			0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1	0	0	2
6619	Mt Castle	0	0	0	0	0	0	0	2	1	9	1	0	0	0	0	0	7	1	0	1	0	0	0	0	22
6621	Nukinenda	0	x°	0	0	0	0	0	2	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	3
6623	Tarome	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6624	Moogerah Dam	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

APPENDIX O-HOURLYRAINFALL TABLES

(continued)

APPENDIXP - RAINFALL INTENSITY FREQUENCY DURATION

Site Summary

$\begin{aligned} & \text { ALERT } \\ & \text { ID } \end{aligned}$	Station	Location	
		Latitude	Longitude
6511	Mount Pechey	-27.3170	152.0820
6514	Brisbane River at Gregors Creek	-26.9800	152.4040
6520 :	Emu Creek at Boat Mountain	-26.9789	152.2847
6523	Cressbrook Dam	-27.2650	152.1950
6526	Helidon	-27.55	152.1
6529	Saint Aubyns	-27.0619	151.8944
6540	Yarraman	-26.8358	151.9692
6542	Cooyar Creek at Dam Site	-26.7417	152.1367
6550	Bremer River at Walloon	-27.6170	152.6680
6553	Cressbrook Creek at Rosentretters	-27.1383	152.3294
6556	Lockyer Creek at Glenore Grove	-27.5242	152.4081
6559	Savages Crossing	-27.4410	152.6680
6568	O'Reilly's Weir	-27.4167	152.5833
6571	Warrill Creek at Harrisville	-27.8150	152.6406
6574	Caboonbah	-27.1460	152.4900
6577	Lockyer Creek at Gatton	$-27.5564 \bigcirc 152.2731$	
6580	Bremer River at Adams Bridge	-27.8294	152.5108
6583	Laidley Creek at Showground Weir	-27:6386	152.3844
6596	Crows Nest	-27.2308	152.0311
6598	Toowoomba	-27.5114	151.9536
6600	Kilcoy	-26.9481	152.5836
6604	Toogoolawah	-27.0858	152.3722
6606	Woodbine West	-27.7847	152.1497
6608	Jimna $\sin ^{\text {a }}$	-26.6610	152.4510
6610	Kluvers Lookout	-27.2070	152.7030
6615	Thorten	-27.8211	152.3800
6617	Little Egypt	-27.7042	152.0650
6619	Mount Castle	-27.9636	152.3756
6621	Nukinenda	-27.0567	152.1072
86623	Tarome	-27.9867	152.5008
6630	Lyons Bridge	-27.47	152.53
6633	Lyons Bridge	-27.47	152.53
6636	Wivenhoe Dam	-27.3550	152.5960
6643	Wivenhoe Dam Tailwater	-27.4100	152.5960
6649	Brisbane River at Lowood	-27.4900	152.5930
6651	Warrill Creek at Amberley	-27.6780	152.6990
6680	Mount Glorious	-27.3220	152.7470

APPENDIX P - RAINFALL INTENSITY FREQUENCY DURATION
 (continued)

ALER ID	Station	Location	
		Latitude	Longitude
6705	Stanley River at Woodford	-26.9500	152.7600
6708	Brisbane River at Devon Hills	-26.9000	152.3210
6711	North Pine River at Baxters Creek	-27.1958	152.8000
6714	Ferris Knob	-26.8542	152.8167
6716	Bellthorpe West	-26.8230	152.6780
6730	Brisbane River at Jindalee	-27.5322	152,9239
6733	Bremer River at Rosewood	-27.6600	152.6030
6739	Purga Creek at Washpool	-27.8290	152.7550
6748	Brisbane River at City Gauge	-27.4730	153.0300
6751	Brisbane River at Mount Crosby	-27.5300	152.7980
6754	Brisbane River at Moggill	-27.5950	152.8630
6760	North Pine Dam	-27.2650	152.9300
6763	North Pine River at Petrie	-27.2700	152.9750
6766	Lake Kurwongbah	-27.2500	152.9500
6769	South Pine River at Drapers Crossing	-27.3500	152.9467
6778	South Pine River at Samford	-27.3610	152.8790

APPENDIX P - RAINFALL INTENSITY FREQUENCY DURATION (contruses)

Site Plots - Australian Rainfall and Runoff (1987)

APPENDIXP - RAINFALL INTENSITY FREQUENCY DURATION ${ }_{\text {(continuea) }}$

APPENDIX P - RAINFALL INTENSITY FREQUENCY DURATION ${ }_{\text {(continuea) }}$

6514 - Brisbane River Gregors

Creek

Duration	Recorded Intensity	End Time	AEP
	$\mathrm{mm} / \mathrm{hr}$		$1 \mathrm{in} Y$
15 M	70.0	$\begin{gathered} 15: 20 \\ 09 / 01 / 2011 \end{gathered}$	< 5
30 M	52.6	$\begin{gathered} 15: 35 \\ 09 / 01 / 2011 \end{gathered}$	< 5
1 H	42.2	$\begin{gathered} 16: 05 \\ 09 / 01 / 2011 \end{gathered}$	<5
3 H	30.4	$\begin{gathered} 18: 05 \\ 09 / 01 / 2011 \end{gathered}$	10-20
6 H	25.0	$\begin{gathered} 19: 05 \\ 09 / 01 / 2011 \end{gathered}$	50-100
12 H	16.0	$\begin{gathered} 22: 20 \\ 09 / 01 / 2011 \end{gathered}$	100-200
18 H	12.1	$\begin{gathered} 23: 35 \\ 09 / 01 / 2011 \end{gathered}$	100-200
24 H	10.0	$\begin{gathered} 12: 35 \\ 10 / 01 / 2011 \end{gathered}$	100-200
48 H	6.6	$\begin{gathered} 05: 05 \\ 11 / 01 / 2011 \end{gathered}$	100-200
72 H	4.8	$\begin{gathered} 20: 20 \\ 11 / 01 / 2011 \end{gathered}$	100-200

APPENDIXP - RAINFALL INTENSITY FREQUENCY DURATION

(continued)

6520 - Emu Creek Boat
Mountain

Duration	Recorded Intensity $\mathrm{mm} / \mathrm{hr}$	End Time	AEP $1 \mathrm{in} \gamma$
15 M	89.2	$\begin{gathered} 15: 25 \\ 09 / 01 / 2011 \end{gathered}$	<5
30 M	69.8	$\begin{gathered} 15: 40 \\ 09 / 01 / 2011 \end{gathered}$	< 5
1 H	39.9	$\begin{gathered} 16: 10 \\ 09 / 01 / 2011 \end{gathered}$	<5
3 H	25.1	$\begin{gathered} 18: 10 \\ 09 / 01 / 2011 \end{gathered}$	5-10
6 H	23.6	$\begin{gathered} 19: 25 \\ 09 / 01 / 2011 \end{gathered}$	50-100
12 H	15.8	$\begin{gathered} \text { 22:40 } \\ 09 / 01 / 2011 \end{gathered}$	50-100
18 H	12.1	$\begin{gathered} 00: 10 \\ 10 / 01 / 2011 \end{gathered}$	50-100
24 H	9.4	$\begin{gathered} 04: 25 \\ 10 / 01 / 2011 \end{gathered}$	50-100
48 H	6.2	$\begin{gathered} 05: 40 \\ 11 / 01 / 2011 \end{gathered}$	50-100
72 H	4.6	$\begin{gathered} 22: 25 \\ 11 / 01 / 2011 \end{gathered}$	50-100

APPENDIXP - RAINFALL INTENSITY FREQUENCY DURATION ${ }_{\text {(contrunues }}$

6523 - Cressbrook Dam

APPENDIX P-RAINFALL INTENSITY FREQUENCY DURATION (coninuea)

APPENDIXP-RAINFALL INTENSITY FREQUENCY DURATION (coninues) $^{\text {I }}$

6529 - Saint Aubyns

APPENDIX P - RAINFALL INTENSITY FREQUENCY DURATION

APPENDIXP - RAINFALL INTENSITY FREQUENCY DURATION

6542 - Cooyar Creek Dam Site.

Duration	Recorded Intensity	End Time	AEP
	$\mathrm{mm} / \mathrm{hr}$		1 in Y
15 M	60.4	$\begin{gathered} 23: 04 \\ 10 / 01 / 2011 \end{gathered}$	< 5
30 M	55.6	$\begin{gathered} 23: 19 \\ 10 / 01 / 2011 \end{gathered}$	< 5
1 H	38.2	$\begin{gathered} 23: 49 \\ 10 / 01 / 2011 \end{gathered}$	< 5
3 H	22.2	$\begin{gathered} 00: 49 \\ 11 / 01 / 2011 \end{gathered}$	<5
6 H	16.3	$\begin{gathered} 04: 49 \\ 11 / 01 / 2011 \end{gathered}$	10-20
12 H	9.8	$\begin{gathered} 05: 49 \\ 11 / 01 / 2011 \end{gathered}$	10-20
18 H	6.9	$\begin{gathered} 23: 49 \\ 09 / 01 / 2011 \end{gathered}$	5-10
24 H	5.4	$\begin{gathered} 02: 04 \\ 10 / 01 / 2011 \end{gathered}$	5-10
48 H	5.2	$\begin{gathered} 05: 49 \\ 11 / 01 / 2011 \end{gathered}$	20-50
72 H	3.6	$\begin{gathered} 14: 49 \\ 11 / 01 / 2011 \end{gathered}$	20-50

Rainfall Intensity
Recorded Maximum Rainfall Intensity ($21: 34$ 05/01/2011 to 17:34 12:01/2011) compared to Design Rainfall Estimates Cooyar Creek - Dam Site

APPENDIX P - RAINFALL INTENSITY FREQUENCY DURATION

6550 - Bremer River: Walloon

Duration	Recorded Intensity	End Time	AEP$1 \operatorname{In} Y$
	$\mathrm{mm} / \mathrm{hr}$		
15 M	86.4	$\begin{gathered} 09: 27 \\ 11 / 01 / 2011 \end{gathered}$	<5
30 M	66.8	$\begin{gathered} 09: 27 \\ 11 / 01 / 2011 \end{gathered}$	< 5
1 H	43.5	$\begin{gathered} 09: 42 \\ 11 / 01 / 2011 \end{gathered}$	< 5
3 H	22.1	$\begin{gathered} 11: 57 \\ 11 / 01 / 2011 \end{gathered}$	<5
6 H	18.7	$\begin{gathered} 14: 57 \\ 11 / 01 / 2011 \end{gathered}$	10-20
12 H	11.8	$\begin{gathered} 18: 27 \\ 11 / 01 / 2011 \end{gathered}$	10-20
18 H	8.2	$\begin{gathered} 18: 42 \\ 11 / 01 / 2011 \end{gathered}$	10-20
24 H	6.3	$\begin{gathered} 18: 42 \\ 11 / 01 / 2011 \end{gathered}$	5-10
48 H	4.2	$\begin{gathered} 18: 12 \\ 11 / 01 / 2011 \end{gathered}$	10-20
72 H	3.2	$\begin{gathered} 18: 42 \\ 11 / 01 / 2011 \end{gathered}$	10-20

Rainfall Intensity
Recorded Maximum Rainfall Intensity (22:26 05/01/2011 to 19:26 12:01/2011) compared to Design Rainfall Estimates
Bremer River - Walloon

APPENDIX P - RAINFALL INTENSITY FREQUENCY DURATION

(continued)

6553 - Cressbrook Dam -
Rosentretters

Duration	Recorded Intensity $\mathrm{mm} / \mathrm{hr}$	End Time	AEP $1 \text { in } Y$
15 M	58.0	$\begin{gathered} 12: 43 \\ 10 / 01 / 2011 \end{gathered}$	<5
30 M	47.2	$\begin{gathered} 12: 43 \\ 10 / 01 / 2011 \end{gathered}$	< 5
1 H	43.4	$\begin{gathered} 12: 43 \\ 10 / 01 / 2011 \end{gathered}$	< 5
3 H	20.9	$\begin{gathered} 14: 13 \\ 10 / 01 / 2011 \end{gathered}$	< 5
6 H	11.8	$\begin{gathered} 20: 13 \\ 09 / 01 / 2011 \end{gathered}$	< 5
12 H	8.9	$\begin{gathered} 21: 43 \\ 09 / 01 / 2011 \end{gathered}$	5-10
18 H	6.4	$\begin{gathered} 04: 43 \\ 10 / 01 / 2011 \end{gathered}$	< 5
24 H	6.8	$\begin{gathered} 13: 13 \\ 10 / 01 / 2011 \end{gathered}$	10-20
48 H	5.0	$\begin{gathered} 09: 43 \\ 11 / 01 / 2011 \end{gathered}$	20-50
72 H	3.7	$\begin{gathered} 19: 13 \\ 11 / 01 / 2011 \end{gathered}$	20-50

APPENDIX P - RAINFALL INTENSITY FREQUENCY DURATION (continued)

6556 - Lockyer Creek: Glenore

Grove

Duration	Recorded Intensity $\mathrm{mm} / \mathrm{hr}$	End Time	AEP $1 \text { in } Y$
15 M	87.2	$\begin{gathered} 06: 18 \\ 11 / 01 / 2011 \end{gathered}$	<5
30 M	76.0	$\begin{gathered} 06: 18 \\ 11 / 01 / 2011 \end{gathered}$	<5
1 H	54.7	$\begin{gathered} 06: 48 \\ 11 / 01 / 2011 \end{gathered}$	5-10
3 H	26.0	$\begin{gathered} 13: 48 \\ 11 / 01 / 2011 \end{gathered}$	5-10
6 H	21.2	$\begin{gathered} 15: 18 \\ 11 / 01 / 2011 \end{gathered}$	20-50
12 H	16.6	$\begin{gathered} 15: 18 \\ 11 / 01 / 2011 \end{gathered}$	200-500
18 H	11.2	$\begin{gathered} \text { 19:33 } \\ 11 / 01 / 2011 \end{gathered}$	50-100
24 H	8.4	$\begin{gathered} 19: 48 \\ 11 / 01 / 2011 \end{gathered}$	50-100
48 H	5.7	$\begin{gathered} 15: 18 \\ 11 / 01 / 2011 \end{gathered}$	50-100
72 H	4.1	$\begin{gathered} 19: 48 \\ 11 / 01 / 2011 \end{gathered}$	50-100

APPENDIX P - RAINFALL INTENSITY FREQUENCY DURATION
 (continued)

6559 - Savages Crossing

Duration	Recorded Intensity $\mathrm{mm} / \mathrm{hr}$	End Time	AEP $1 \ln y$
15 M	120.4	$\begin{gathered} 08: 34 \\ 11 / 01 / 2011 \end{gathered}$	5-10
30 M	116.0	$\begin{gathered} 08: 49 \\ 11 / 01 / 2011 \end{gathered}$	20-50
1 H	104.4	$\begin{gathered} 09: 04 \\ 11 / 01 / 2011 \end{gathered}$	100-200
3 H	70.5	$\begin{gathered} 09: 34 \\ 11 / 01 / 2011 \end{gathered}$	$\begin{gathered} 1000- \\ 2000 \end{gathered}$
6 H	47.8	$\begin{gathered} 12: 49 \\ 11 / 01 / 2011 \end{gathered}$	> 2000
12 H	30.7	$\begin{gathered} 14: 34 \\ 11 / 01 / 2011 \end{gathered}$	>2000
18 H	20.7	$\begin{gathered} 14: 34 \\ 11 / 01 / 2011 \end{gathered}$	$\begin{gathered} 1000- \\ 2000 \end{gathered}$
24 H	15.8	$\begin{gathered} 14: 19 \\ 11 / 01 / 2011 \end{gathered}$	500-1000
48 H	10.1	$\begin{gathered} 14: 34 \\ 11 / 01 / 2011 \end{gathered}$	500-1000
72 H	7.0	$\begin{gathered} 02: 19 \\ 12 / 01 / 2011 \end{gathered}$	200-500

Rainfall Intensity
Recorded Maximum Rainfall Intensity (00:49 06/01/2011 to 18:48 12/01/2011) compared to Design Rainfall Estimates Savages Crossing

APPENDIX P - RAINFALL INTENSITY FREQUENCY DURATION ${ }_{\text {(conimeet })}$

Rainfall Intensity
Recorded Maximum Rainfall Intensity $\langle 10: 3522 / 12 / 2010$ to $20: 25$ 11/01/2011) compared to Design Rainfall Estimates 'Reilly's Weir

Duration in Hours or Minutes

APPENDIX P - RAINFALL INTENSITY FREQUENCY DURATION

6571 - Warrill Creek Harrisville

Duration	Recorded Intensity	End Time	AEP$1 \ln \mathrm{Y}$
	$\mathrm{mm} / \mathrm{hr}$		
15 M	50.4	$\begin{gathered} 09: 45 \\ 10 / 01 / 2011 \end{gathered}$	<5
30 M	39.0	$\begin{gathered} 09: 60 \\ 10 / 01 / 2011 \end{gathered}$	< 5
1 H	25.2	$\begin{gathered} 09: 60 \\ \text { 10/01/2011 } \end{gathered}$	<5
3 H	15.5	$\begin{gathered} 10: 45 \\ 10 / 01 / 2011 \end{gathered}$	< 5
6 H	10.4	$\begin{gathered} 12: 30 \\ 10 / 01 / 2011 \end{gathered}$	<5
12 H	6.1	$\begin{gathered} 13: 60 \\ 10 / 01 / 2011 \end{gathered}$	< 5
18 H	4.3	$\begin{gathered} 21: 45 \\ 10 / 01 / 2011 \end{gathered}$	<5
24 H	3.5	$\begin{gathered} 02: 60 \\ 11 / 01 / 2011 \end{gathered}$	<5
48 H	3.3	$\begin{gathered} 15: 45 \\ 11 / 01 / 2011 \end{gathered}$	5-10
72 H	2.2	$\begin{gathered} 15: 45 \\ 11 / 01 / 2011 \end{gathered}$	< 5

Rainfall Intensity
Recorded Maximum Rainfall Intensity (22:59 05/01/2011 to 19:59 12/01/2011) compared to Design Rainfall Estimates Warill Creek - Harrisville

APPENDIX P - RAINFALL INTENSITY FREQUENCY DURATION

6574-Caboonbah

Duration	Recorded Intensity	End Time	
	$\mathrm{mm} / \mathrm{hr}$		$1 \ln Y$
15 M	67.2	$\begin{gathered} 11: 46 \\ 10 / 01 / 2011 \end{gathered}$	<5
30 M	55.8	$\begin{gathered} 11: 46 \\ 10 / 01 / 2011 \end{gathered}$	<5
1 H	44.5	$\begin{gathered} 05: 31 \\ 11 / 01 / 2011 \end{gathered}$	< 5
3 H	20.9	$\begin{gathered} 07: 31 \\ 11 / 01 / 2011 \end{gathered}$	< 5
6 H	13.2	$\begin{gathered} 20: 31 \\ 09 / 01 / 2011 \end{gathered}$	<5
12 H	10.3	$\begin{gathered} 16: 31 \\ 11 / 01 / 2011 \end{gathered}$	10-20
18 H	7.3	$\begin{gathered} 19: 46 \\ 11 / 01 / 2011 \end{gathered}$	5-10
24 H	7.1	$\begin{gathered} 14: 31 \\ 10 / 01 / 2011 \end{gathered}$	10-20
48 H	6.3	$\begin{gathered} 14: 31 \\ 11 / 01 / 2011 \end{gathered}$	50-100
72 H	4.8	$\begin{gathered} 19: 46 \\ 11 / 01 / 2011 \end{gathered}$	50-100

Rainfall Intensity
Recorded Maximum Rainfall Intensity (21:31 05/01/2011 to 19:37 12:01/2011) compared to Design Rainfall Estimates Caboonbah

APPENDIXP - RAINFALL INTENSITY FREQUENCY DURATION ${ }_{\text {conimes) }}$

6577 - Lockyer Creek Gatton

Duration	Recorded Intensity $\mathrm{mm} / \mathrm{hr}$	End Time	AEP 1 in Y
15 M	67.2	$\begin{gathered} 06: 02 \\ 11 / 01 / 2011 \end{gathered}$	<5
30 M	54.0	$\begin{gathered} 06: 17 \\ 11 / 01 / 2011 \end{gathered}$	<5
1 H	34.5	$\begin{gathered} 06: 17 \\ 11 / 01 / 2011 \end{gathered}$	<5
3 H	18.7	$\begin{gathered} 14: 32 \\ 11 / 01 / 2011 \end{gathered}$	<5
6 H	13.3	$\begin{gathered} 16: 02 \\ 11 / 01 / 2011 \end{gathered}$	<5
12 H	11.0	$\begin{gathered} 16: 02 \\ 11 / 01 / 2011 \end{gathered}$	20-50
18 H	7.7	$\begin{gathered} 18: 17 \\ 11 / 01 / 2011 \end{gathered}$	10-20
24 H	6.0	$\begin{gathered} 23: 47 \\ 11 / 01 / 2011 \end{gathered}$	10-20
48 H	4.4	$\begin{gathered} 15: 47 \\ 11 / 01 / 2011 \end{gathered}$	20-50
72 H	3.4	$\begin{gathered} \text { 23:47 } \\ 11 / 01 / 2011 \end{gathered}$	20-50

Rainfall Intensity
Recorded Maximum Rainfall Intensity ($23: 31$ 05:012011 to 17:31 12012011) compared to Design Rainfall Estimates Lockyer Creek - Gatton

APPENDIX P - RAINFALL INTENSITY FREQUENCY DURATION
 (continued)

6580 - Bremer River: Adams
Bridge

Duration	Recorded Intensity	End Time	AEP
	$\mathrm{mm} / \mathrm{hr}$		$1 \mathrm{n} Y$
15 M	44.0	$\begin{gathered} 15: 29 \\ 11 / 01 / 2011 \end{gathered}$	< 5
30 M	37.0	$\begin{gathered} 15: 44 \\ 11 / 01 / 2011 \end{gathered}$	<5
1 H	31.3	$\begin{gathered} 15: 59 \\ 11 / 01 / 2011 \end{gathered}$	<5
3 H	17.6	$\begin{gathered} 15: 59 \\ 11 / 01 / 2011 \end{gathered}$	<5
6 H	11.8	$\begin{gathered} 13: 14 \\ 11 / 01 / 2011 \end{gathered}$	< 5
12 H	10.6	$\begin{gathered} 18: 14 \\ 11 / 01 / 2011 \end{gathered}$	10-20
18 H	7.5	$\begin{gathered} 18: 29 \\ 11 / 01 / 2011 \end{gathered}$	5-10
24 H	6.0	$\begin{gathered} 18: 14 \\ 11 / 01 / 2011 \end{gathered}$	5-10
48 H	4.4	$\begin{gathered} 18: 14 \\ 11 / 01 / 2011 \end{gathered}$	10-20
72 H	3.1	$\begin{gathered} 18: 29 \\ 11 / 01 / 2011 \end{gathered}$	10-20

APPENDIX P - RAINFALL INTENSITY FREQUENCY DURATION ${ }_{\text {(continuee) }}$

6583 - Laidley Creek -

Showground Weir

Duration	Recorded Intensity $\mathrm{mm} / \mathrm{hr}$	End Time	AEP $1 \ln Y$
15 M	74.0	$\begin{gathered} 07: 08 \\ 11 / 01 / 2011 \end{gathered}$	<5
30 M	66.2	$\begin{gathered} 07: 08 \\ 11 / 01 / 2011 \end{gathered}$	<5
1 H	44.5	$\begin{gathered} 07: 38 \\ 11 / 01 / 2011 \end{gathered}$	<5
3 H	23.1	$\begin{gathered} 08: 38 \\ 11 / 01 / 2011 \end{gathered}$	<5
6 H	17.4	$\begin{gathered} 16: 38 \\ 11 / 01 / 2011 \end{gathered}$	10-20
12 H	15.1	$\begin{gathered} 16: 38 \\ 11 / 01 / 2011 \end{gathered}$	100-200
18 H	10.6	$\begin{gathered} 20: 53 \\ 11 / 01 / 2011 \end{gathered}$	50-100
24 H	8.5	$\begin{gathered} 21: 08 \\ 11 / 01 / 2011 \end{gathered}$	50-100
48 H	5.4	$\begin{gathered} 15: 38 \\ 11 / 01 / 2011 \end{gathered}$	50-100
72 H	4.1	$\begin{gathered} 03: 23 \\ 12 / 01 / 2011 \end{gathered}$	50-100

APPENDIX P - RAINFALL INTENSITY FREQUENCY DURATION

6596 - Crows Nest

Rainfall Intensity
Recorded Maximum Rainfall Intensity (22:53 05/01/2011 to 19:53 12:01/2011) compared to Design Rainfall Estimates Crows Nest

APPENDIX P - RAINFALL INTENSITY FREQUENCY DURATION ${ }_{\text {(cominued) }}$

6598 - Toowoomba

Duration	Recorded Intensity	End Time,	AEP
	$\mathrm{mm} / \mathrm{hr}$		1 in Y
15 M	81.2	$\begin{gathered} 14: 04 \\ 10 / 01 / 2011 \end{gathered}$	< 5
30 M	72.8	$\begin{gathered} 14: 04 \\ 10 / 01 / 2011 \end{gathered}$	5-10
1 H	57.9	$\begin{gathered} 14: 04 \\ 10 / 01 / 2011 \end{gathered}$	20-50
3 H	22.6	$\begin{gathered} 15: 49 \\ 10 / 01 / 2011 \end{gathered}$	5-10
6 H	12.7	$\begin{gathered} 17: 19 \\ 10 / 01 / 2011 \end{gathered}$	<5
12 H	7.3	$\begin{gathered} 17: 19 \\ 10 / 01 / 2011 \end{gathered}$	<5
18 H	6.2	$\begin{gathered} 06: 19 \\ 11 / 01 / 2011 \end{gathered}$	5-10
24 H	5.6	$\begin{gathered} \text { 16:19 } \\ 10 / 01 / 2011 \end{gathered}$	5-10
48 H	4.1	$\begin{gathered} 11: 34 \\ 11 / 01 / 2011 \end{gathered}$	10-20
72 H	3.0	$\begin{gathered} 05: 34 \\ 12 / 01 / 2011 \end{gathered}$	10-20

APPENDIX P - RAINFALL INTENSITY FREQUENCY DURATION

APPENDIX P - RAINFALL INTENSITY FREQUENCY DURATION

6604 - Toogoolawah

APPENDIXP - RAINFALL INTENSITY FREQUENCY DURATION
 (continued)

6606 - Woodbine West

APPENDIX P - RAINFALL INTENSITY FREQUENCY DURATION ${ }_{\text {(contiues) }}$

APPENDIX P - RAINFALL INTENSITY FREQUENCY. DURATION ${ }_{\text {(continuec })}$

6615 - Thorton

Duration	Recorded Intensity $\mathrm{mm} / \mathrm{hr}$	End Time	AEP $1 \ln \mathrm{Y}$	Rainfall Intensity Recorded Maximum Rainfall Intensity (01:12 06/01/2011 to 19:13 12/01/2011) compared to Design Rainfall Estimates Thorton
15 M	82.0	$\begin{gathered} 07: 01 \\ 11 / 01 / 2011 \end{gathered}$	<5	
30 M	66.0	$\begin{gathered} 07: 01 \\ 11 / 01 / 2011 \end{gathered}$	<5	
1 H	51.3	$\begin{gathered} \text { 07:01 } \\ 11 / 01 / 2011 \end{gathered}$	<5	
3 H	43.9	$\begin{gathered} 11: 46 \\ 11 / 01 / 2011 \end{gathered}$	20-50	
6 H	36.5	$\begin{gathered} 12: 01 \\ 11 / 01 / 2011 \end{gathered}$	200-500	${ }^{20}$ 30 友
12 H	26.0	$\begin{gathered} 15: 01 \\ 11 / 01 / 2011 \end{gathered}$	200-500	20
18 H	18.0	$\begin{gathered} 20: 31 \\ 11 / 01 / 2011 \end{gathered}$	100-200	
24 H	13.8	$\begin{gathered} 19: 16 \\ 11 / 01 / 2011 \end{gathered}$	50-100	
48 H	9.0	$\begin{gathered} 14: 31 \\ 11 / 01 / 2011 \end{gathered}$	50-100	
72 H	6.8	$\begin{gathered} 20: 31 \\ 11 / 01 / 2011 \end{gathered}$	50-100	
Duration in Hours or Minutes				

APPENDIX P - RAINFALL INTENSITY FREQUENCY DURATION

(continued)

6617 - Little Egypt

Duration	Recorded Intensity $\mathrm{mm} / \mathrm{hr}$	End Time	AEP $1 \ln \mathrm{~V}$
15 M	73.2	$\begin{gathered} 06: 19 \\ 11 / 01 / 2011 \end{gathered}$	<5
30 M	63.2	$\begin{gathered} 06: 34 \\ 11 / 01 / 2011 \end{gathered}$	<5
1 H	47.6	$\begin{gathered} 06: 34 \\ 11 / 01 / 2011 \end{gathered}$	5-10
3 H	17.8	$\begin{gathered} 07: 19 \\ 11 / 01 / 2011 \end{gathered}$	< 5
6 H	9.9	$\begin{gathered} 07: 19 \\ 11 / 01 / 2011 \end{gathered}$	<5
12 H	6.3	$\begin{gathered} 16: 04 \\ 11 / 01 / 2011 \end{gathered}$	< 5
18 H	5.0	$\begin{gathered} \text { 07:19 } \\ 11 / 01 / 2011 \end{gathered}$	<5
24 H	4.0	$\begin{gathered} 13: 19 \\ 11 / 01 / 2011 \end{gathered}$	<5
48 H	2.7	$\begin{gathered} 16: 04 \\ 11 / 01 / 2011 \end{gathered}$	5-10
72 H	2.1	$\begin{gathered} 06: 49 \\ 12 / 01 / 2011 \end{gathered}$	5-10

APPENDIX P - RAINFALL INTENSITY FREQUENCY DURATION (continued)

6619 - Mount Castle

APPENDIX P - RAINFALL INTENSITY FREQUENCY DURATION ${ }_{\text {corimineoc }}$

6621 - Nukinenda

APPENDIX P - RAINFALL INTENSITY FREQUENCY DURATION ${ }_{\text {(cominueo })}$

Rainfall Intensity
Recorded Maximum Rainfall Intensity (21:08 05/01/2011 to 19:21 12/01/2011) compared to Design Rainfall Estimates Tarome

APPENDIXP - RAINFALL INTENSITY FREQUENCY DURATION

6630 - Lyons Bridge

Duration	Recorded Intensity	End Time	AEP
	$\mathrm{mm} / \mathrm{hr}$		$1 \mathrm{n} Y$
15 M	101.6	$\begin{gathered} 13: 42 \\ 11 / 01 / 2011 \end{gathered}$	<5
30 M	80.4	$\begin{gathered} 13: 57 \\ 11 / 01 / 2011 \end{gathered}$	<5
1 H	72.5	$\begin{gathered} 13: 42 \\ 11 / 01 / 2011 \end{gathered}$	10-20
3 H	49.6	$\begin{gathered} 13: 57 \\ 11 / 01 / 2011 \end{gathered}$	200-500
6 H	41.5	$\begin{gathered} 14: 42 \\ 11 / 01 / 2011 \end{gathered}$	> 2000
12 H	29.8	$\begin{gathered} 14: 57 \\ 11 / 01 / 2011 \end{gathered}$	> 2000
18 H	20.0	$\begin{gathered} 20: 57 \\ .11 / 01 / 2011 \end{gathered}$	> 2000
24 H	15.1	$\begin{gathered} 02: 57 \\ 12 / 01 / 2011 \end{gathered}$	> 2000
48 H	9.1	$\begin{gathered} 14: 57 \\ 11 / 01 / 2011 \end{gathered}$	$\begin{gathered} 1000- \\ 2000 \end{gathered}$
72 H	6.3	$\begin{gathered} 03: 27 \\ 12 / 01 / 2011 \end{gathered}$	500-1000

APPENDIXP - RAINFALL INTENSITY FREQUENCY DURATION

6633 - Lyons Bridge

Duration	Recorded Intensity $\mathrm{mm} / \mathrm{hr}$	End Time	AEP $1 \cap Y$
15 M	80.8	$\begin{gathered} 12: 57 \\ 11 / 01 / 2011 \end{gathered}$	<5
30 M	66.2	$\begin{gathered} 13: 57 \\ 11 / 01 / 2011 \end{gathered}$	<5
1 H	63.8	$\begin{gathered} 13: 42 \\ 11 / 01 / 2011 \end{gathered}$	5-10
3 H	43.6	$\begin{gathered} 13: 57 \\ 11 / 01 / 2011 \end{gathered}$	50-100
6 H	36.4	$\begin{gathered} 14: 42 \\ 11 / 01 / 2011 \end{gathered}$	500-1000
12 H	26.6	$\begin{gathered} 16: 12 \\ 11 / 01 / 2011 \end{gathered}$	> 2000
18 H	17.8	$\begin{gathered} \text { 18:27 } \\ 11 / 01 / 2011 \end{gathered}$	$\begin{aligned} & 1000- \\ & 2000 \end{aligned}$
24 H	13.4	$\begin{gathered} 18: 27 \\ 11 / 01 / 2011 \end{gathered}$	500-1000
48 H	8.0	$\begin{gathered} 14: 57 \\ 11 / 01 / 2011 \end{gathered}$	500-1000
72 H	5.6	$\begin{gathered} 01: 27 \\ 12 / 01 / 2011 \end{gathered}$	200-500

Rainfall Intensity
Recorded Maximum Rainfall Intensity (10:42 22:12/2010 to 08:56 19:01/2011) compared to Design Rainfall Estimates

APPENDIX P - RAINFALL INTENSITY FREQUENCY DURATION (cominuen)

APPENDIXP - RAINFALL INTENSITY FREQUENCY DURATION ${ }_{\text {continueo }}$

APPENDIX P - RAINFALL INTENSITY FREQUENCY DURATION (conetuea)

6649 - Brisbane River: Lowood

Duration	Recorded Intensity	End Time	$A E P$
	$\mathrm{mm} / \mathrm{hr}$		1 inY
15 M	90.4	$\begin{gathered} 13: 34 \\ 11 / 01 / 2011 \end{gathered}$	< 5
30 M	83.0	$\begin{gathered} 13: 34 \\ 11 / 01 / 2011 \end{gathered}$	<5
1 H	66.3	$\begin{gathered} 13: 49 \\ 11 / 01 / 2011 \end{gathered}$	10-20
3 H	45.4	$\begin{gathered} 09: 34 \\ 11 / 01 / 2011 \end{gathered}$	50-100
6 H	40.0	$\begin{gathered} 14: 04 \\ 11 / 01 / 2011 \end{gathered}$	1000-2000
12 H	29.0	$\begin{gathered} 14: 49 \\ 11 / 01 / 2011 \end{gathered}$	>2000
18 H	19.6	$\begin{gathered} 19: 34 \\ 11 / 01 / 2011 \end{gathered}$	>2000
24 H	14.8	$\begin{gathered} 19: 19 \\ 11 / 01 / 2011 \end{gathered}$	1000-2000
48 H	9.0	$\begin{gathered} 14: 49 \\ 11 / 01 / 2011 \end{gathered}$	500-1000
72 H	6.4	$\begin{gathered} 01: 19 \\ 12 / 01 / 2011 \end{gathered}$	500-1000

6651 - Warrill Creek - Amberley

Duration	Recorded Intensity $\mathrm{mm} / \mathrm{hr}$	End Time	AEP $1 \mathrm{in} \mathrm{Y}$
15 M	42.8	$\begin{gathered} 11: 29 \\ 11 / 01 / 2011 \end{gathered}$	<5
30 M	33.6	$\begin{gathered} 11: 29 \\ 11 / 01 / 2011 \end{gathered}$	<5
1 H	22.0	$\begin{gathered} 11: 44 \\ 09 / 01 / 2011 \end{gathered}$	<5
3 H	16.1	$\begin{gathered} 11: 59 \\ 11 / 01 / 2011 \end{gathered}$	< 5
6 H	14.5	$\begin{gathered} 14: 59 \\ 11 / 01 / 2011 \end{gathered}$	< 5
12 H	8.0	$\begin{gathered} 17: 14 \\ 11 / 01 / 2011 \end{gathered}$	< 5
18 H	5.6	$\begin{gathered} 18: 44 \\ 11 / 01 / 2011 \end{gathered}$	<5
24 H	4.3	$\begin{gathered} 18: 44 \\ 11 / 01 / 2011 \end{gathered}$	<5
48 H	3.2	$\begin{gathered} 16: 44 \\ 11 / 01 / 2011 \end{gathered}$	< 5
. 72 H	2.6	$\begin{gathered} 18: 44 \\ 11 / 01 / 2011 \end{gathered}$	5-10

Rainfall Intensity
Recorded Maximum Rainfall Intensity (21:28 05/01/2011 to 18:28 12/01/2011) Compared to Design Rainfall Estimates Warill Creek - Amberley

Duration in Hours or Minutes

APPENDIX P - RAINFALL INTENSITY FREQUENCY DURATION ${ }_{\text {(continuec) }}$

6680 - Mount Glorious

APPENDIXP - RAINFALL INTENSITY FREQUENCY DURATION ${ }_{\text {continued }}$

6705 - Stanley River: Woodford

Duration	Recorded Intensity	End Time	$A E P$
	$\mathrm{mm} / \mathrm{hr}$		1 inY
15 M	116.8	$\begin{gathered} 10: 58 \\ 11 / 01 / 2011 \end{gathered}$	<5
30 M	87.4	$\begin{gathered} 11: 13 \\ 11 / 01 / 2011 \end{gathered}$	5-10
1 H	69.0	$\begin{gathered} 11: 43 \\ 11 / 01 / 2011 \end{gathered}$	10-20
3 H	48.6	$\begin{gathered} 13: 28 \\ 11 / 01 / 2011 \end{gathered}$	50-100
6 H	27.5	$\begin{gathered} 15: 13 \\ 11 / 01 / 2011 \end{gathered}$	20-50
12 H	17.4	$\begin{gathered} 15: 58 \\ 11 / 01 / 2011 \end{gathered}$	10-20
18 H	13.1	$\begin{gathered} 18: 28 \\ 11 / 01 / 2011 \end{gathered}$	10-20
24 H	10.5	$\begin{gathered} 18: 28 \\ 11 / 01 / 2011 \end{gathered}$	10-20
48 H	8.4	$\begin{gathered} 13: 28 \\ 11 / 01 / 2011 \end{gathered}$	20-50
72 H	6.8	$\begin{gathered} 18: 28 \\ 11 / 01 / 2011 \end{gathered}$	20-50

Rainfall Intensity
Recorded Maximum Rainfall intensity (21:12 05/01/2011 to 19:40 12/01/2011) compared to Design Rainfall Estimates Stanley River-Woodford

APPENDIX P - RAINFALL INTENSITY FREQUENCY DURATION

6708 - Brisbane River: Devon

Hills

Duration	Recorded Intensity $\mathrm{mm} / \mathrm{hr}$	End Time	AEP $1 \mathrm{In} Y$
15 M	51.2	$\begin{gathered} 14: 28 \\ 09 / 01 / 2011 \end{gathered}$	<5
30 M	43.4	$\begin{gathered} 14: 43 \\ 09 / 01 / 2011 \end{gathered}$	<5
1 H	34.5	$\begin{gathered} 14: 58 \\ 09 / 01 / 2011 \end{gathered}$	< 5
3 H	20.1	$\begin{gathered} 15: 13 \\ 09 / 01 / 2011 \end{gathered}$	<5
6 H	16.7	$\begin{gathered} 18: 58 \\ 09 / 01 / 2011 \end{gathered}$	10-20
12 H	11.8	$\begin{gathered} 00: 13 \\ 10 / 01 / 2011 \end{gathered}$	20-50
18 H	10.5	$\begin{gathered} 23: 58 \\ 09 / 01 / 2011 \end{gathered}$	20-50
24 H	8.3	$\begin{gathered} 02: 43 \\ 10 / 01 / 2011 \end{gathered}$	20-50
48 H	5.5	$\begin{gathered} 04: 58 \\ 11 / 01 / 2011 \end{gathered}$	20-50
72 H	4.2	$\begin{gathered} 18: 43 \\ 11 / 01 / 2011 \end{gathered}$	20-50

APPENDIX P - RAINFALL INTENSITY FREQUENCY DURATION

6711 - North Pine River: Baxters
Creek

Duration	Recorded Intensity	End Time	AEP
	$\mathrm{mm} / \mathrm{hr}$		$1 \mathrm{n} Y$
15 M	96.8	$\begin{gathered} 09: 48 \\ 11 / 01 / 2011 \end{gathered}$	< 5
30 M	85.4	$\begin{gathered} 09: 48 \\ 11 / 01 / 2011 \end{gathered}$	< 5
1 H	76.5	$\begin{gathered} 10: 03 \\ 11 / 01 / 2011 \end{gathered}$	10-20
3 H	53.2	$\begin{gathered} 11: 48 \\ 11 / 01 / 2011 \end{gathered}$	100-200
6 H	41.2	$\begin{gathered} 11: 18 \\ 11 / 01 / 2011 \end{gathered}$	200-500
12 H	28.3	$\begin{gathered} 15: 03 \\ 11 / 01 / 2011 \end{gathered}$	200-500
18 H	19.5	$\begin{gathered} 18: 48 \\ 11 / 01 / 2011 \end{gathered}$	100-200
24 H	14.8	$\begin{gathered} 17: 48 \\ 11 / 01 / 2011 \end{gathered}$	50-100
48 H	9.7	$\begin{gathered} 14: 18 \\ 11 / 01 / 2011 \end{gathered}$	50-100
72 H	7.0	$\begin{gathered} 15: 03 \\ 11 / 01 / 2011 \end{gathered}$	20-50

APPENDIX P - RAINFALL INTENSITY FREQUENCY DURATION

APPENDIXP - RAINFALL INTENSITY FREQUENCY DURATION

6716 - Bellthorpe West

Duration	Recorded Intensity	End Time	AEP$1 \mathrm{in} Y$
	$\mathrm{mm} / \mathrm{hr}$		
15 M	73.2	$\begin{gathered} 13: 49 \\ 09 / 01 / 2011 \end{gathered}$	< 5
30 M	59.8	$\begin{gathered} 13: 49 \\ 09 / 01 / 2011 \end{gathered}$	<5
1 H	49.9	$\begin{gathered} 14: 04 \\ 09 / 01 / 2011 \end{gathered}$	<5
3 H	30.4	$\begin{gathered} 16: 04 \\ 09 / 01 / 2011 \end{gathered}$	5-10.
6 H	30.1	$\begin{gathered} 19: 04 \\ 09 / 01 / 2011 \end{gathered}$	50-100
12 H	20.4	$\begin{gathered} 22: 19 \\ 09 / 01 / 2011 \end{gathered}$	100-200
18 H	18.0	$\begin{gathered} 23: 04 \\ 09 / 01 / 2011 \end{gathered}$	100-200
24 H	14.6	$\begin{gathered} 04: 34 \\ 10 / 01 / 2011 \end{gathered}$	100-200
48 H	10.0	$\begin{gathered} 05: 04 \\ 11 / 01 / 2011 \end{gathered}$	50-100
72 H	8.4	$\begin{gathered} 01: 34 \\ 12 / 01 / 2011 \end{gathered}$	100-200

Rainfall Intensity

$$
\begin{aligned}
& \text { 1/2011 to } 20: 59 \text { 12/ } \\
& \text { Bellhorpe West }
\end{aligned}
$$

APPENDIX P - RAINFALL INTENSITY FREQUENCY DURATION

6730-Brisbane River: Jindalee

APPENDIX P - RAINFALL INTENSITY FREQUENCY DURATION

6733 - Bremer River: Rosewood

Duration	Recorded Intensity	End Time	AEP
	$\mathrm{mm} / \mathrm{hr}$		$1 \mathrm{in} Y$
15 M	78.8	$\begin{gathered} 09: 27 \\ 11 / 01 / 2011 \end{gathered}$	<5
30 M	72.0	$\begin{gathered} 09: 42 \\ 11 / 01 / 2011 \end{gathered}$	<5
1 H	48.5	$\begin{gathered} 09: 57 \\ 11 / 01 / 2011 \end{gathered}$	<5
3 H	26.5	$\begin{gathered} 10: 12 \\ 11 / 01 / 2011 \end{gathered}$	5-10
6 H	23.9	$\begin{gathered} 14: 12 \\ 11 / 01 / 2011 \end{gathered}$	50-100
12 H	16.1	$\begin{gathered} 17: 57 \\ 11 / 01 / 2011 \end{gathered}$	100-200
18 H	11.0	$\begin{gathered} 18: 12 \\ 11 / 01 / 2011 \end{gathered}$	50-100
24 H	8.4	$\begin{gathered} 18: 12 \\ 11 / 01 / 2011 \end{gathered}$	20-50
48 H	5.1	$\begin{gathered} 18: 12 \\ 11 / 01 / 2011 \end{gathered}$	20-50
72 H	3.8	$\begin{gathered} 18: 12 \\ 11 / 01 / 2011 \end{gathered}$	20-50

Rainfall Intensity
Recorded Maximum Rainfall Intensity (23:27 05/01/2011 to 20:26 12/01/2011) compared to Design Rainfall Estimates Bremer River-Rosewood

APPENDIXP - RAINFALL INTENSITY FREQUENCY DURATION

6739 - Purga Creek: Washpool

Duration	Recorded Intensity $\mathrm{mm} / \mathrm{hr}$	End Time,	AEP $1 \operatorname{in} \mathrm{Y}$
15 M	40.8	$\begin{gathered} 09: 55 \\ 10 / 01 / 2011 \end{gathered}$	< 5
30 M	32.6	$\begin{gathered} 10: 10 \\ 10 / 01 / 2011 \end{gathered}$	<5
1 H	26.3	$\begin{gathered} 10: 25 \\ 10 / 01 / 2011 \end{gathered}$	<5
3 H	12.5	$\begin{gathered} 12: 10 \\ 10 / 01 / 2011 \end{gathered}$	<5
6 H	7.6	$\begin{gathered} 12: 10 \\ 10 / 01 / 2011 \end{gathered}$	<5
12 H	4.9	$\begin{gathered} 15: 10 \\ 10 / 01 / 2011 \end{gathered}$	< 5
18 H	3.4	$\begin{gathered} 20: 55 \\ 10 / 01 / 2011 \end{gathered}$	<5
24 H	2.8	$\begin{gathered} 02: 25 \\ 11 / 01 / 2011 \end{gathered}$	< 5
48 H	2.4	$\begin{gathered} 17: 25 \\ 11 / 01 / 2011 \end{gathered}$	<5
72 H	1.7	$\begin{gathered} 00: 10 \\ 12 / 01 / 2011 \end{gathered}$	<5

Rainfall Intensity
Recorded Maximum Rainfall Intensity (22:55 05/01/2011 to 19:54 12/01/2011) compared to Design Rainfall Estimates
Purga Creek- Washpool

APPENDIX P - RAINFALL INTENSITY FREQUENCY DURATION ${ }_{\text {(continued) }}$

6748 - Brisbane River: City

Gauge

Duration	Recorded Intensity	End Time	$A E P$
	$\mathrm{mm} / \mathrm{hr}$		1 inY
15 M	51.2	$\begin{gathered} 15: 47 \\ 09 / 01 / 2011 \end{gathered}$	< 5
30 M	44.2	$\begin{gathered} 16: 02 \\ 09 / 01 / 2011 \end{gathered}$	< 5
1 H	29.9	$\begin{gathered} 16: 02 \\ 09 / 01 / 2011 \end{gathered}$	< 5
3 H	10.9	$\begin{gathered} 17: 47 \\ 09 / 01 / 2011 \end{gathered}$	<5
6 H	8.6	$\begin{gathered} 21: 17 \\ 09 / 01 / 2011 \end{gathered}$	<5
12 H	5.9	$\begin{gathered} 21: 17 \\ 09 / 01 / 2011 \end{gathered}$	<5
18 H	4.9	$\begin{gathered} 01: 17 \\ 10 / 01 / 2011 \end{gathered}$	< 5
24 H	4.4	$\begin{gathered} 09: 32 \\ 10 / 01 / 2011 \end{gathered}$	< 5
48 H	3.0	$\begin{gathered} 15: 17 \\ 11 / 01 / 2011 \end{gathered}$	< 5
72 H	2.5	$\begin{gathered} \text { 18:17 } \\ 11 / 01 / 2011 \end{gathered}$	< 5

APPENDIX P - RAINFALL INTENSITY FREQUENCY DURATION

(continued)

6751 - Brisbane River: Mount
Crosby

Duration	Recorded Intensity	End Time:	$\begin{gathered} \text { AEP } \\ 1 \mathrm{in} \mathrm{Y} \end{gathered}$
	$\mathrm{mm} / \mathrm{hr}$		
15 M	30.8	$\begin{gathered} 08: 01 \\ 10 / 01 / 2011 \end{gathered}$	<5
30 M	27.6	$\begin{gathered} 12: 31 \\ 11 / 01 / 2011 \end{gathered}$	<5
1 H	18.8	$\begin{gathered} 12: 31 \\ 11 / 01 / 2011 \end{gathered}$	<5
3 H	15.0	$\begin{gathered} 13: 31 \\ 11 / 01 / 2011 \end{gathered}$	<5
6 H	11.1	$\begin{gathered} 14: 46 \\ 11 / 01 / 2011 \end{gathered}$	<5
12 H	6.6	$\begin{gathered} 16: 46 \\ 11 / 01 / 2011 \end{gathered}$	<5
18 H	4.6	$\begin{gathered} 20: 31 \\ 11 / 01 / 2011 \end{gathered}$	<5
24 H	3.7	$\begin{gathered} 18: 46 \\ 11 / 01 / 2011 \end{gathered}$	<5
48 H	3.3	$\begin{gathered} 15: 16 \\ 11 / 01 / 2011 \end{gathered}$	<5
. 72 H	2.5	$\begin{gathered} 21: 31 \\ 11 / 01 / 2011 \end{gathered}$	<5

APPENDIX P - RAINFALL INTENSITY FREQUENCY DURATION (coninuea)

APPENDIX P - RAINFALL INTENSITY FREQUENCY DURATION (sorinuee)

6760 - North Pine Dam

Duration	Recorded Intensity	End Time	
	$\mathrm{mm} / \mathrm{hr}$		1 in Y
15 M	54.8	$\begin{gathered} 10: 28 \\ 10 / 01 / 2011 \end{gathered}$	<5
30 M	48.2	$\begin{gathered} 10: 43 \\ 10 / 01 / 2011 \end{gathered}$	<5
1 H	27.6	$\begin{gathered} \text { 10:43 } \\ \text { 10/01/2011 } \end{gathered}$	< 5
3 H	14.5	$\begin{gathered} 12: 43 \\ 11 / 01 / 2011 \end{gathered}$	< 5
6 H	11.7	$\begin{gathered} 14: 13 \\ 11 / 01 / 2011 \end{gathered}$	<5
12 H	6.7	$\begin{gathered} 16: 13 \\ 11 / 01 / 2011 \end{gathered}$	< 5
18 H	4.8	$\begin{gathered} 18: 43 \\ 11 / 01 / 2011 \end{gathered}$	<5
24 H	4.5	$\begin{gathered} 10: 43 \\ 10 / 01 / 2011 \end{gathered}$	<5
48 H	4.0	$\begin{gathered} 14: 13 \\ 11 / 01 / 2011 \end{gathered}$	< 5
72 H	2.9	$\begin{gathered} 02: 43 \\ 12 / 01 / 2011 \end{gathered}$	<5

APPENDIX P - RAINFALL INTENSITY FREQUENCY DURATION

6763 - North Pine River: Petrie

Duration	Recorded Intensity	End Time	
	$\mathrm{mm} / \mathrm{hr}$		1 ln Y
15 M	82.8	$\begin{gathered} 10: 16 \\ 10 / 01 / 2011 \end{gathered}$	<5
30 M	52.0	$\begin{gathered} 10: 31 \\ 10 / 01 / 2011 \end{gathered}$	< 5
1 H	30.3	$\begin{gathered} 10: 31 \\ 10 / 01 / 2011 \end{gathered}$	<5
3 H	17.5	$\begin{gathered} 10: 16 \\ 10 / 01 / 2011 \end{gathered}$	<5
6 H	12.5	$\begin{gathered} 10: 31 \\ 10 / 01 / 2011 \end{gathered}$	< 5
12 H	8.5	$\begin{gathered} 10: 31 \\ 10 / 01 / 2011 \end{gathered}$	< 5
18 H	6.7	$\begin{gathered} 10: 31 \\ 10 / 01 / 2011 \end{gathered}$	< 5
24 H	6.2	$\begin{gathered} 10: 31 \\ 10 / 01 / 2011 \end{gathered}$	<5
48 H	4.6	$\begin{gathered} 14: 16 \\ 11 / 01 / 2011 \end{gathered}$	<5
72 H	3.4	$\begin{gathered} 21: 46 \\ 11 / 01 / 2011 \end{gathered}$	<5

APPENDIX P - RAINFALL INTENSITY FREQUENCY DURATION

6766 - Lake Kurwongbah

Duration	Recorded Intensity	End Time.	AEP.
	$\mathrm{mm} / \mathrm{hr}$		1 in Y
15 M	50.4	$\begin{gathered} 10: 00 \\ 11 / 01 / 2011 \end{gathered}$	<5
30 M	35.2	$\begin{gathered} 10: 15 \\ 11 / 01 / 2011 \end{gathered}$	<5
1 H	22.8	$\begin{gathered} 10: 30 \\ 11 / 01 / 2011 \end{gathered}$	<5
3 H	15.4	$\begin{gathered} 12: 30 \\ 11 / 01 / 2011 \end{gathered}$	<5
6 H	12.5	$\begin{gathered} 14: 00 \\ 11 / 01 / 2011 \end{gathered}$	<5
12 H	7.9	$\begin{gathered} 18: 15 \\ 11 / 01 / 2011 \end{gathered}$	< 5
18 H	6.0	$\begin{gathered} 12: 30 \\ 10 / 01 / 2011 \end{gathered}$	<5
24 H	6.0	$\begin{gathered} 12: 45 \\ 10 / 01 / 2011 \end{gathered}$	<5
48 H	4.9	$\begin{gathered} 14: 15 \\ 11 / 01 / 2011 \end{gathered}$	<5
72 H	3.7	$\begin{gathered} 01: 15 \\ 12 / 01 / 2011 \end{gathered}$	<5

APPENDIX P - RAINFALL INTENSITY FREQUENCY DURATION

6769 - South Pine River: Drapers

Crossing

Duration	Recorded Intensity	End Time	
	$\mathrm{mm} / \mathrm{hr}$		1 n Y
15 M	84.4	$\begin{gathered} 10: 15 \\ 11 / 01 / 2011 \end{gathered}$	<5
30 M	53.0	$\begin{gathered} 10: 30 \\ 11 / 01 / 2011 \end{gathered}$	< 5
1 H	29.9	$\begin{gathered} 10: 30 \\ 11 / 01 / 2011 \end{gathered}$	< 5
3 H	18.5	$\begin{gathered} 12: 45 \\ 11 / 01 / 2011 \end{gathered}$	<5
6 H	13.3	$\begin{gathered} 14: 15 \\ 11 / 01 / 2011 \end{gathered}$	<5
12 H	8.1	$\begin{gathered} 15: 45 \\ 11 / 01 / 2011 \end{gathered}$	<5
18 H	5.9	$\begin{gathered} 18: 15 \\ 11 / 01 / 2011 \end{gathered}$	<5
24 H	5.2	$\begin{gathered} 10: 15 \\ 10 / 01 / 2011 \end{gathered}$	< 5
48 H	4.6	$\begin{gathered} 14: 45 \\ 11 / 01 / 2011 \end{gathered}$	< 5
72 H	3.6	$\begin{gathered} 01: 00 \\ 12 / 01 / 2011 \end{gathered}$	<5

APPENDIX P - RAINFALL INTENSITY FREQUENCY DURATION ${ }_{\text {(continued })}$

6788 - South Pine River:
Samford

Duration	Recorded Intensity $\mathrm{mm} / \mathrm{hr}$	End Time	$\begin{aligned} & \mathrm{AEP} \\ & 1 \ln \mathrm{Y} \end{aligned}$
15 M	89.6	$\begin{gathered} 10: 20 \\ 11 / 01 / 2011 \end{gathered}$	<5
30 M	53.4	$\begin{gathered} 10: 20 \\ 11 / 01 / 2011 \end{gathered}$	<5
1 H	31.8	$\begin{gathered} 10: 50 \\ 11 / 01 / 2011 \end{gathered}$	< 5
3 H	22.7	$\begin{gathered} 12: 50 \\ 11 / 01 / 2011 \end{gathered}$	<5
6 H	15.4	$\begin{gathered} 14: 20 \\ 11 / 01 / 2011 \end{gathered}$	< 5
12 H	9.6	$\begin{gathered} 14: 35 \\ 11 / 01 / 2011 \end{gathered}$	<5
18 H	6.8	$\begin{gathered} 18: 05 \\ 11 / 01 / 2011 \end{gathered}$	< 5
24 H	5.5	$\begin{gathered} 09: 50 \\ 10 / 01 / 2011 \end{gathered}$	<5
48 H	5.2	$\begin{gathered} 14: 35 \\ 11 / 01 / 2011 \end{gathered}$	5-10
72 H	4.0	$\begin{gathered} 02: 05 \\ 12 / 01 / 2011 \end{gathered}$	5-10

APPENDIX Q - RECORDED HEIGHT HYDROGRAPHS

Stanley River to Somerset Dam

APPENDIXQ-RECORDED HEIGHT HYDROGRAPHS

APPENDIX Q - RECORDED HEIGHT HYDROGRAPHS

APPENDIX Q - RECORDED HEIGHT HYDROGRAPHS

APPENDIX Q - RECORDED HEIGHT HYDROGRAPHS (sontivee)

Upper Brisbane River to Wivenhoe Dam

APPENDIX Q - RECORDED HEIGHT HYDROGRAPHS

APPENDIX Q - RECORDED HEIGHT HYDROGRAPHS

APPENDIX Q - RECORDED HEIGHT HYDROGRAPHS

(continued)

APPENDIX Q - RECORDED HEIGHT HYDROGRAPHS

APPENDIX Q - RECORDED HEIGHT HYDROGRAPHS

APPENDIX Q - RECORDED HEIGHT HYDROGRAPHS

APPENDIX Q - RECORDED HEIGHT HYDROGRAPHS

APPENDIX Q - RECORDED HEIGHT HYDROGRAPHS

APPENDIX Q - RECORDED HEIGHT HYDROGRAPHS

APPENDIX Q - RECORDED HEIGHT HYDROGRAPHS

APPENDIX Q - RECORDED HEIGHT HYDROGRAPHS

APPENDIX Q - RECORDED HEIGHT HYDROGRAPHS

APPENDIX Q - RECORDED HEIGHT HYDROGRAPHS cominues)

Bremer River to Ipswich

APPENDIX Q - RECORDED HEIGHT HYDROGRAPHS

APPENDIX Q - RECORDED HEIGHT HYDROGRAPHS

Lower Brisbane River

APPENDIX Q - RECORDED HEIGHT HYDROGRAPHS

APPENDIX Q - RECORDED HEIGHT HYDROGRAPHS

APPENDIXR-RATINGS

Stream Height Station Ratings

Calibration of the runoff routing model is performed by comparing modelled flows with estimated recorded flows. In turn, these estimated recorded flows are derived from recorded height through the appropriate stream rating curve. Thus rating curves are critical to the modelling process and it is important that there is an appreciation of the reliability of the reliability of the height to flow relationship at each site. One method of appreciating this reliability is by comparing the highest gauged (or measured) flow with the highest estimated recorded flow at each gauging station, sometimes termed the 'rating ratio'.

The rating reliability for the gauging stations is shown in the Table below:-

ALERTID	Stream	Location	Rating Ratio (\%)
6543	Cooyar Creek	Damsite	18
6718	Brisbane River	Linville	34
6521	Emu Creek	Boat Mountain	15
6515	Brisbane River	Gregors Creek	30
6554	Cressbrook Creek	Rosentretters	12
6527	Lockyer Creek	Helidon	23
6566	Tenthill Creek	Tenthill	21
6584	Laidley Creek	Showground Weir	21
6634	Lockyer Creek	Lyons Bridge	26
6631	Lockyer Creek	Rifle Range Road	40
6560	Brisbane River	Savages Crossing	60
6752	Brisbane River	Mt Crosby Weir	25
6581	Bremer River	Adams Bridge	45
6551	Bremer River	Walloon	?
6563	Warrill Creek	Kalbar	39
6652	Warrill Creek	Amberley	19

RTFM Stream Height Stations - Maximum Estimated Recorded Values

APPENDIXR-RATINGS

RTFM Stream Height Stations - Maximum Rated (Measured) Values

ALERT ID	Stream	Location	Gauge Height (m)	Gauged Flow $\left(\mathrm{m}^{3} / \mathrm{s}\right)$	Date
6543	Cooyar Creek	Damsite	4.72	208	13/02/1988
6718	Brisbane River	Linville	7.15	1,487	18/02/1971
6521	Emu Creek	Boat Mountain	3.56	161	13/02/1988
6515	Brisbane River	Gregors Creek	$\begin{aligned} & 7.33 \\ & 8.76 \end{aligned}$	$\begin{aligned} & 1,149 \\ & 2,198 \end{aligned}$	$\begin{aligned} & 26 / 04 / 1989 \\ & 11 / 01 / 2011 \end{aligned}$
6554	Cressbrook Creek	Rosentretters	3.06	43	$\begin{array}{r} 10 / 02 / 1999 \\ \text { व12/04/1988 } \end{array}$
6527	Lockyer Creek	Helidon	3.40	108	
6566	Tenthill Creek	Tenthill	4.56	247	6/05/1996
6584	Laidley Creek	Showground Weir	6.00	64,0	6/07/1988
6634	Lockyer Creek	Lyons Bridge	14.08	595	12/06/1967
6631	Lockyer Creek	Rifle Range Road	14.04	< ${ }^{5557}$	6/04/1988
6560	Brisbane River	Savages Crossing	15.95	3,361	14/01/1968
6752	Brisbane River	Mt Crosby Weir	11.73	1,671	14/02/1999
6581	Bremer River	Adams Bridge	4.17	173	11/02/1976
6551	Bremer River	Walloon	$<{ }^{7.23}$	388	5/06/1988
6563	Warrill Creek	Kalbar	8.80	195	10/02/1971
6652	Warrill Creek	Amberley	7.67	409	04/04/1988

APPENDIXR-RATINGS

Table of ratings

ALERT ID	Watercourse	Station	Updated
6776	Stanley River	Peachester	19/03/3010
6703	Stanley River	Woodford	1/02/2006
6706			
6543	Cooyar Creek	Dam Site	1/12/2010
6718	Brisbane River	Linville	19/03/2010
6709	Brisbane River	Devon Hills	30/04/1995
6521	Emu Creek	Boat Mountain	19/03/2010
6515	Brisbane River	Gregors Creek	19/03/2010
6514			
6524	Cressbrook Creek	Cressbrook Dam	1/01/1984
6554	Cressbrook Creek	Rosentretters Crossing	19/03/2010
6527	Lockyer Creek	Helidon	10/11/1987
6566	Tenthill Creek	Tenthill	1/03/2010
6578	Lockyer Creek	Gatton	30/03/1995
6584	Laidley Creek	Showground Weir	13/10/4989
6557	Lockyer Creek	Glenore Grove	1/12/2010
6631	Lockyer Creek	Lyons Bridge	80/03/1995
6634			
6569	Lockyer Creek	O'Reilly's Weir	19/03/2010
6647	Brisbane River	Lowood Pump Station	30/03/1995
6560	Brisbane River	Savages Cróssing	7/04/2000
6756	Brisbane River	Burtons Bridge	1/01/1995
6757	Brisbane River	Kholo Bridge	na
6752	Brisbane River	Mt Crosby Weir	1/01/1995
6758			
6581	Bremer River	Adams Bridge	17/03/2010
6737	Westor Greek	Kuss Road	na
6734	Bremer River	Rosewood	na
6551	Bremer River	Walloon	1/01/1996
6743			
6663	Warrill Creek	Kalbar Weir	30/03/1995
6572	Warrill Creek	Harrisville	na
6652	Warrill Creek	Amberley	1/12/2010
6654			
2168	Bremer River	Ipswich	na
6755	Brisbane River	Moggill	na
6731	Brisbane River	Jindalee	na
6749	Brisbane River	City Gauge	na

Key locations shown highlighted

6776 - Stanley River at Peachester

Rating Curve 2 - Sensor 6776

40.58, 6.42

Gauge height m	Flow $\mathrm{m}^{3} / \mathrm{s}$
0.2	0.007
0.3	0.116
0.6	1.63
2.0	16.5
3.9	45.8
7.15	161
8.3	328
¢ ${ }^{\text {a }} 9.8$	722

APPENDIXR-RATINGS

6703 - Stanley River at Woodford

APPENDIXR-RATINGS

6543 - Cooyar Creek at Dam Site

Rating Curve 2 - Sensor 6543

7644.22, 5.00

Gauge height	
m	$\mathrm{m}^{3 / \mathrm{s}}$
0.7	0.001
1	0.44
1.5	5.92
2	18.
2.5	47.1
3 N	89.3
3.5	150
$\sim^{8} 4$	205
4.5	268
5	338
5.5	417
6	503
6.5	598
7.	700

APPENDIXR-RATINGS

6718 - Brisbane River at Linville

APPENDIXR-RATINGS

6709 - Brisbane River at Devon Hills

Rating Curve 1 - Sensor 6709

424.95, 5.89

APPENDIXR-RATINGS

6521 - Emu Creek at Boat Mountain

Rating Curve 2 - Sensor 6521

$72,30,4,48$

APPENDIXR-RATINGS
 (contimued)

6514, 6515-Brisbane River at Gregors Creek

APPENDIXR-RATINGS

6524-Cressbrook Creek at Cressbrook Dam

Rating Curve 1 - Sensor 6524

$52.20,771.45$

Gauge height	Flow
m	$\mathrm{m}^{3} / \mathrm{s}$
280	0.001
280.5	8
281	30
282	100
283	200
284 ${ }^{\text {a }}$	317
285	458
a)286	620
287	800
288	990
289	1200
290	1400

APPENDIXR-RATINGS

6554-Cressbrook Creek at Rosentretters

Gauge height	Flow
m	$\mathrm{m}^{3} / \mathrm{s}$
1.09	0.001
1.4	0.142
1.6	0.818
1.8	${ }^{28}$
2.3	11.6
2.7 R	25.4
3.3	60
$)^{1} \times 5.3$	192
6.7	366
9.4	971

APPENDIXR-RATINGS

6527 - Lockyer Creek at Helidon

APPENDIXR-RATINGS

6566 - Tenthill Creek at Tenthill

APPENDIXR-RATINGS

6578 - Lockyer Creek at Gatton

Rating Curve 1-Sensor 6578

6584 - Laidley Creek at Showground Weir

APPENDIXR-RATINGS

6557 - Lockyer Creek at Glenore Grove

Rating Curve 2-Sensor 6557

Gauge height	Flow
m	$\mathrm{m}^{3} / \mathrm{s}$
9	290
10	390
11	520
12	670
13	950
14	1700
15.7	4000

APPENDIXR-RATINGS

6634-Lockyer Creek at Lyons Bridge

Rating Curve 1 - Sensor 6634

Gauge height	Flow
m	$\mathrm{m}^{3 / \mathrm{s}}$
0	0.001
0.15	0.02
0.337	0.110
0.616	-0, 0°
0.772	0.8
1.114	1.9
2.794	11.5
0.54 .038	22.6
5.282	40
9.636	170
13.680	500
17.403	1200

APPENDIXR-RATINGS

6569 - Lockyer Creek at O'Reilly's Weir

Note: This station is affected by backwater during Wivenhoe Dam releases.

Rating Curve 4 - Sensor 6569

Gauge height	Flow
m	$\mathrm{m}^{3 / \mathrm{s}}$.
7.6	0.062
7.7	1348
8.1	20.9
$4.4+$	38.8
10	246
< ${ }^{1}$	512
13	1122
17.5	2177
22	2984
27	10116

APPENDIXR-RATINGS

6647 - Brisbane River at Lowood Pump Station

APPENDIXR-RATINGS

6560-Erisbane River at Savages Crossing

APPENDIXR-RATINGS

6556 - Brisbane River at Burtons Bridge

APPENDIXR-RATINGS

6758 - Brisbane River at Mt Crosby Weir

Rating Curve 1 - Sensor 6758

APPENDIX R - RATINGS

6581 - Bremer River at Adams Bridge

Rating Curve 90 - Sensor 6581

APPENDIXR-RATINGS

6651 - Bremer River at Walloon

APPENDIXR-RATINGS

6563 - Warrill Creek at Kalbar Weir

Rating Curve 75 - Sensor 6563

APPENDIXR-RATINGS

6652, 6654 - Warrill Creek at Amberley

Rating Curve 3-Sensor 6652

Gauge height	Flow
m	$\mathrm{m}^{3 / \mathrm{s}}$
0.1	0.001
0.5	0.4
1.4	6.4
2.4	${ }^{1 *}$
3.3	33
$4.3 \leqslant$	74
5.2	164
P6.2	322
7.1	500
8.1	730
9	1050
10	1400
10.9	1800

APPENDIX S - MODEL CALIBRATION RUNS

The calibration of the model parameters used are described in detail in the Brisbane River and Pine River Flood Study Report Series, (DNR, 1994), Brisbane River Flood Hydrology Report Volume I Report on Runoff Routing Model Calibration, September 1992.

APPENDIX S - MODEL CALIBRATION RUNS

(continued)

Run 2

Date: Thursday 6 January 2011
Time: 08:00

Stream gauge	Recorded		Modelled		Difference	
	Peak flow $\left(\mathrm{m}^{3} / \mathrm{s}\right)$	Flood volume (ML)	Peak flow $\left(\mathrm{m}^{3} / \mathrm{s}\right)$	Flood volume (ML)	Peak flow $\left(\mathrm{m}^{3} / \mathrm{s}\right)$	Flood volume (ML)
Gregors Creek	117	13,381	357	15,847	240	2,466\%
Woodford	4	1,998	8	125	3	-1,874
Lyons Bridge	44	12,257	95	4,860	52	-1.7.397
Walloon	38	480	116	6,426	77	5,946
Amberley	26	6,084	203	5,471	17 K	-612
Estimate to date and time of run						
Somerset			387	21,292		
Wivenhoe			303	9,015		
Total Event Estimate			5^{5}			
Somerset			387	30,827		
Wivenhoe			$303 \text { 49,176 }$			

APPENDIX S - MODEL CALÍBRATION RUNS

Brisbane River at Gregors Creek 08:00 on 6 January 2011

Stanley River at Woodford 08:00 on 6 January 2011

APPENDIX S - MODEL CALIBRATION RUNS

Lockyer Creek at Lyons Bridge 08:00 on 6 January 2011

APPENDIX S - MODEL CALIBRATION RUNS

Somerset Dam Estimated Inflow 08:00 on 6 January 2011

APPENDIX S - MODEL CALIBRATION RUNS

(continued)

Wivenhoe Dam Estimated Inflow (Excluding Somerset Dam Release) 08:00 on 6 January 2011

APPENDIX S - MODEL CALIBRATION RUNS

Run 5

Date: Friday 7 Jamuary 2011
Time: 02:00

Stream Gauge	Recorded		Modelled		Difference	
	Peak Flow $\left(\mathrm{m}^{3} / \mathrm{s}\right)$	Flood Volume (ML)	Peak Flow $\left(\mathrm{m}^{3} / \mathrm{s}\right)$	Flood Volume (ML)	Peak Flow $\left(\mathrm{m}^{3} / \mathrm{s}\right)$	Flood Volume (ML)
Gregors Creek	986	40,737	1,302	67,830	316	27,093\%
Woodford	14	2,227	44	797	30	-1,430
Lyons Bridge	412	22,230	315	14,327	-97	7,903
Walloon	336	7,429	88	6,291	-248	-1,138
Amberley	73	8,125	124	4,893	51	-3,232
Estimate to date and time of run						
Somerset			387	35,884		
Wivenhoe			861	36,148		
Total Event Estimate						
Somerset			387	49,516		
Wivenhoe			1,110	128,992		

Brisbane Riverat Gregors Creek 02:00 on 7 January 2011

APPENDIX S - MODEL CALIBRATION RUNS

Stanley River at Woodford
02:00 on 7 January 2011

Page 12

Bremer River at Walloon
 02:00 on 7 January 2011

Page 14

APPENDIX S - MODEL CALIBRATION RUNS

Warrill Creek at Amberley
02:00 on 7 January 2011

Somerset Dam Estimated Inflow
02:00 on 7 January 2011

APPENDIX S - MODEL CALIBRATION RUNS

Wivenhoe Dam Estimated Inflow (Excluding Somerset Dam Release) 02:00 on 7 January 2011

APPENDIX S - MODEL CALIBRATION RUNS

Run 7

Date: Friday 7 January 2011
Time: 09:00

Stream gauge	Recorded		Modelled		Difference	
	Peak flow $\left(\mathrm{m}^{3} / \mathrm{s}\right)$	Flood volume (ML)	Peak flow $\left(\mathrm{m}^{3 / \mathrm{s}}\right.$)	Flood volume (ML)	Peak flow $\left(\mathrm{m}^{3} / \mathrm{s}\right)$	Flood volume (ML)
Gregors Creek	986	59,062	1,302	84,378	316	25,346\%
Woodford	14	2,394	63	1,446	49	-948
Lyons Bridge	422	32,566	447	24,429	25	+1-8,137
Walloon	412	16,791	89	8,449	-323	-8,342
Amberley	117	10,629	124	6,938	7	-3,691
Estimate to date and time of run						
Somerset			387	41,850		
Wivenhoe			1,201	63,196		
Total Event Estimate			$\frac{n^{y}}{}$			
Somerset			387	62,255		
Wivenhoe			1,201	143,573		

Brisbane River at Gregors Creek 09:00 on 7 January 2011

APPENDIX S - MODEL CALIBRATION RUNS

Stanley River at Woodford
09:00 on 7 January 2011

APPENDIX S - MODEL CALIBRATION RUNS

Bremer River at Walloon
09:00 on 7 January 2011

Somerset Dam Estimated Inflow 09:00 on 7 January 2011

APPENDIX S - MODEL CALIBRATION RUNS

Wivenhoe Dam Estimated Inflow (Excluding Somerset Dam Release) 09:00 on 7 January 2011

APPENDIX S - MODEL CALIBRATION RUNS

Run 8

Date: Friday, 7 January 2011
Time: 14:00 PM

Stream gauge	Recorded		Modelled		Difference	
	Peak flow $\left(\mathrm{m}^{3} / \mathrm{s}\right)$	Flood volume (ML)	Peak flow $\left(\mathrm{m}^{3} / \mathrm{s}\right)$	Flood volume (ML)	Peak flow $\left(\mathrm{m}^{3} / \mathrm{s}\right)$	Flood volume (ML)
Gregors Creek	986	69,618	1,302	93,636	316	24,048
Woodford	43	2,792	124	2,939	81.	148
Lyons Bridge	422	39,179	484	32,904	61	- 1 6,275
Walloon	412	20,384	126	10,418	-286	-9,965
Amberley	137	12,941	130	8,730	-6	-4,212
Estimate to date and time of run						
Somerset			1,034	56,348		
Wivenhoe			1,738	90,137		
Total Event Estimate			Δ^{4}			
Somerset			1,034	95,688		
Wivenhoe			$1,738 \text { 201,889 }$			

APPENDIX S - MODEL CALIBRATION RUNS

Brisbane River at Gregors Creek 14:00 on 7 January 2011

APPENDIX S - MODEL CALIBRATION RUNS

Stanley River at Woodford
14:00 on 7 January 2011

APPENDIX S - MODEL CALIBRATION RUNS

Lockyer Creek at Lyons Bridge
 14:00 on 7 January 2011

APPENDIX S - MODEL CALIBRATION RUNS

Somerset Dam Estimated Inflow 14:00 on 7 January 2011

APPENDIX S - MODEL CALIBRATION RUNS

(continued)

Wivenhoe Dam Estimated Inflow (Excluding Somerset Dam Release) 14:00 on 7 January 2011

APPENDIX S - MODEL CALIBRATION RUNS

Run 10

Date: Saturday 8 January 2011
Time: 14:00

Stream gauge	Recorded		Modelled		Difference	
	Peak flow $\left(\mathrm{m}^{3} / \mathrm{s}\right)$	Flood volume (ML)	Peak flow $\left(\mathrm{m}^{3} / \mathrm{s}\right)$	Flood volume (ML)	Peak flow $\left(\mathrm{m}^{3} / \mathrm{s}\right)$	Flood volume (ML)
Gregors Creek	1,387	150,518	1,767	209,354	381	$58,837 \mathrm{~F}$
Woodford	79	8,356	134	7,628	55	-728
Lyons Bridge	422	67,238	485	65,809	62	- 1.429
Walloon	412	30,148	181	24,936	-231	-5,212
Amberley	164	25,976	210	24,026	460	-1,950
Estimate to date and time of run						
Somerset			1,120	84,130		
Wivenhoe			2,010	217,815		
Total Event Estimate			N^{5}			
Somerset			1,120	97,880		
Wivenhoe			2,010	289,112		

APPENDIX S - MODEL CALIBRATION RUNS

Brisbane Riverat Gregors Creek 14:00 on 8 January 2011

APPENDIX S - MODEL CALIBRATION RUNS

APPENDIX S - MODEL CALIBRATION RUNS

Lockyer Creek at Lyons Bridge 14:00 on 8 January 2011

APPENDIX S - MODEL CALIBRATION RUNS

Bremer River at Walloon
14:00 on 8 January 2011

APPENDIX S - MODEL CALIBRATION RUNS

(continued)

Somerset Dam Estimated Inflow
14:00 on 8 January 2011

APPENDIX S - MODEL CALIBRATION RUNS

Wivenhoe Dam Estimated Inflow (Excluding Somerset Dam Release) 14:00 on 8 January 2011

APPENDIX S - MODEL CALIBRATION RUNS

Run 12

Date: Sunday 9 January 2011
Time: 01:00

Stream gauge.	Recorded		Modelled		Difference	
	$\begin{aligned} & \text { Peak flow } \\ & \left(m^{3} / \mathrm{s}\right) \text {, } \end{aligned}$	Flood volume (ML)	$\begin{aligned} & \text { Peak } \\ & \text { flow } \\ & \left(\mathrm{m}^{3} / \mathrm{s}\right) \end{aligned}$	Flood volume (ML)	Peak flow $\left(\mathrm{m}^{3} / \mathrm{s}\right)$	Flood volume (ML)
Gregors Creek	1,387	168,163	1,767	224,123	381	55,966
Woodford	79	9,905	134	9,993	55	88
Lyons Bridge	422	76,656	485	74,942	62	C
Walloon	412	32,134	251	29,399	-161	-2,734
Amberley	164	30,702	210	26,004	$46 \times$	-4,697
Estimate to date and time of run						
Somerset			1,120	94,622		
Wivenhoe			2,010	253,094		
Total Event Estimate						
Somerset						
Wivenhoe			2,010	311,202		

APPENDIX S - MODEL CALIBRATION RUNS

Brisbane River at Gregors Creek 01:00 on 9 January 2011

APPENDIX S - MODEL CALIBRATION RUNS

APPENDIX S - MODEL CALIBRATION RUNS

Somerset Dam Estimated Inflow
01:00 on 9 January 2011

APPENDIX S - MODEL CALIBRATION RUNS

Wivenhoe Dam Estimated Inflow (Excluding Somerset Dam Release) 01:00 on 9 January 2011

APPENDIX S - MODEL CALIBRATION RUNS

Run 14

Date: Sunday 9 January 2011
Time: 08:00

Stream gauge	Recorded		Modelled		Difference	
	Peak flow $\left(\mathrm{m}^{3} / \mathrm{s}\right)$	Flood volume (ML)	Peak flow $\left(\mathrm{m}^{3} / \mathrm{s}\right)$	Flood volume (ML)	Peak flow $\left(\mathrm{m}^{3} / \mathrm{s}\right)$	Flood volume (ML)
Gregors Creek	1,387	175,953	1,767	235,715	381	59,764
Woodford	79	10,863	229	13,359	150	2,496
Lyons Bridge	422	80,713	485	79,538	62	-17,175
Walloon	412	32,737	412	38,411	0	5,674
Amberley	164	32,719	210	27,172	46 (-5,547
Estimate to date and time of run						
Somerset			1,120	104,259		
Wivenhoe			2,010	266,100		
Total Event Estimate			$\frac{5}{4}$			
Somerset			1,120	157,198		
Wivenhoe			2,010	363,595		

APPENDIX S - MODEL CALIBRATION RUNS

Brisbane River at Gregors Creek 08:00 on 9 January 2011

APPENDIX S - MODEL CALIBRATION RUNS

Stanley River at Woodford
 08:00 on 9 January 2011

APPENDIX S - MODEL CALIBRATION RUNS

Lockyer Creek at Lyons Bridge 08:00 on 9 January 2011

APPENDIX S - MODEL CALIBRATION RUNS

APPENDIX S - MODEL CALIBRATION RUNS

Somerset Dam Estimated Inflow 08:00 on 9 January 2011

APPENDIX S - MODEL CALIBRATION RUNS
 (continued)

Wivenhoe Dam Estimated Inflow (Excluding Somerset Dam Release)

08:00 on 9 January 2011

APPENDIX S - MODEL CALIBRATION RUNS

Run 17

Date: Sunday 9 January 2011
Time: 14:00

Stream gauge	Recorded		Modelled		Difference	
	Peak flow $\left(\mathrm{m}^{3} / \mathrm{s}\right)$	Flood volume (ML)	$\begin{aligned} & \text { Peak } \\ & \text { flow } \\ & \left(\mathrm{m}^{3} / \mathrm{s}\right) \end{aligned}$	Flood volume (ML)	Peak flow $\left(\mathrm{m}^{3} / \mathrm{s}\right)$	Flood volume (ML)
Gregors Creek	1,387	190,752	1,767	265,570	381	74,818
Woodford	79	12,165	313	19,195	233	7,030
Lyons Bridge	422	83,681	485	82,959	62	$4<422$
Walloon	412	33,088	551	48,994	139	15,906
Amberley	164	34,158	210	29,641	464	-4,517
Estimate to date and time of run						
Somerset			1,717	130,273		
Wivenhoe			2,010	282,820		
Total Event Estimate			A^{4}			
Somerset			1,717	223,706		
Wivenhoe			2,651	517,010		

Brisbane River at Gregors Creek 14:00 on 9 January 2011

APPENDIX S - MODEL CALIBRATION RUNS

APPENDIX S - MODEL CALIBRATION RUNS

Lockyer Creek at Lyons Bridge 14:00 on 9 January 2011

APPENDIX S - MODEL CALIBRATION RUNS

APPENDIX S - MODEL CALIBRATION RUNS

Somerset Dam Estimated Inflow
14:00 on 9 January 2011

APPENDIX S - MODEL CALIBRATION RUNS

Wivenhoe Dam Estimated Inflow (Excluding Somerset Dam Release) 14:00 on 9 January 2011

APPENDIX S - MODEL CALIBRATION RUNS

Run 21

Date: Sunday 9 January 2011
Time: 19:00

Stream gauge	Recorded		Modelled		Difference	
	Peak flow $\left(\mathrm{m}^{3} / \mathrm{s}\right)$	Flood volume (ML)	$\begin{aligned} & \text { Peak } \\ & \text { flow } \\ & \left(\mathrm{m}^{3} / \mathrm{s}\right) \end{aligned}$	Flood volume (ML)	Peak flow $\left(\mathrm{m}^{3} / \mathrm{s}\right)$	Flood volume (ML)
Gregors Creek	5,156	243,878	6,877	350,681	1,720	106,80\}
Woodford	333	15,543	682	30,089	349	14,547
Lyons Bridge	422	86,218	485	86,639	62	- 420
Walloon	412	33,624	551	58,159	139	24,535
Amberley	164	35,441	210	31,218	46	-4,223
Estimate to date and time of run						
Somerset			3,856	191,392		
Wivenhoe			2,796	324,314		
Total Event Estimate			s^{5}			
Somerset			3,856	360,989		
Wivenhoe			6,610 - ${ }^{\text {c }}$ 809,262			

$-$ \qquad
\qquad

Brisbane Riverat Gregors Creek 19:00 on 9 January 2011

APPENDIX S - MODEL CALIBRATION RUNS

APPENDIX S - MODEL CALIBRATION RUNS

Lockyer Creek at Lyons Bridge 19:00 on 9 January 2011

APPENDIX S - MODEL CALIBRATION RUNS

Bremer River at Walloon 19:00 on 9 January 2011

APPENDIX S - MODEL CALIBRATION RUNS

APPENDIX S - MODEL CALIBRATION RUNS

Somerset Dam Estimated Inflow
19:00 on 9 January 2011.

Wivenhoe Dam Estimated Inflow (Excluding Somerset Dam Release) 19:00 on 9 January 2011

APPENDIX S - MODEL CALIBRATION RUNS

Run 23

Date: Monday 10 January 2011
Time: 01:00

Stream gauge	Recorded		Modelled		Difference	
	$\begin{aligned} & \text { Peak flow } \\ & \left(\mathrm{m}^{3} / \mathrm{s}\right) \text {) } \end{aligned}$	Flood volume (ML)	$\begin{aligned} & \text { Peak } \\ & \text { flow } \\ & \left(\mathrm{m}^{3} / \mathrm{s}\right) \end{aligned}$	Flood volume (ML)	Peak flow $\left(\mathrm{m}^{3} / \mathrm{s}\right)$	Flood volume (ML)
Gregors Creek	7,351	392,566	7,594	504,062	243	111,486\%
Woodford	430	27,101	685	43,826	255	16,725
Lyons Bridge	422	90,773	485	94,213	62	-
Walloon	412	36,585	570	70,093	158	33,508
Amberley	164	37,275	210	33,052	46 (-4,223
Estimate to date and time of run						
Somerset			3,856	265,286		
Wivenhoe			6,294	424,140		
Total Event Estimate			x^{5}			
Somerset			3,856	407,145		
Wivenhoe			$7,414$	$902,406$		

Brisbane River at Gregors Creek 01:00 on 10 January 2011

APPENDIX S - MODEL CALIBRATION RUNS

Lockyer Creek at Lyons Bridge 01:00 on 10 January 2011

APPENDIX S - MODEL CALIBRATION RUNS

Somerset Dam Estimated Inflow 01:00 on 10 January 2011

APPENDIX S - MODEL CALIBRATION RUNS

Wivenhoe Dam Estimated Inflow (Excluding Somerset Dam Release) 01:00 on 10 January 2011

APPENDIX S - MODEL CALIBRATION RUNS

Run 26

Date: Monday 10 January 2011
Time: 0:900

Stream gauge.	Recorded		Modelled		Difference	
	Peak flow $\left(\mathrm{m}^{3} / \mathrm{s}\right)$	Flood volume (ML)	Peak flow ($\mathrm{m}^{3} / \mathrm{s}$)	Flood volume (ML)	Peak flow $\left(\mathrm{m}^{3} / \mathrm{s}\right)$	Flood volume (ML)
Gregors Creek	7,351	543,591	7,594	631,209	243	87,618)
Woodford	820	48,307	685	58,068	-135	9,762
Lyons Bridge	548	103,946	485	106,479	-63	-12,533
Walloon	412	45,320	635	86,481	223	41,160
Amberley	164	39,540	218	35,975	54.3	-3,566
Estimate to date and time of run						
Somerset			3,856	$339,965$		
Wivenhoe			7,540	630,551		
Total Event Estimate			$\frac{5}{5}$			
Somerset			3,856	441,517		
Wivenhoe			7,540	$925,562$		

Brisbane Riverat Gregors Creek 09:00 on 10 January 2011

Page 84

APPENDIX S - MODEL CALIBRATION RUNS

Lockyer Creek at Lyons Bridge 09:00 on 10 January 2011

APPENDIX S - MODEL CALIBRATION RUNS

Bremer River at Walloon 09:00 on 10 January 2011

APPENDIX S - MODEL CALIBRATION RUNS

APPENDIX S - MODEL CALIBRATION RUNS

Somerset Dam Estimated Inflow 09:00 on 10 January 2011

APPENDIX S - MODEL CALIBRATION RUNS

Wivenhoe Dam Estimated Inflow (Excluding Somerset Dam Release) 09:00 on 10 January 2011

APPENDIX S - MODEL CALIBRATION RUNS

Run 28
Date: Monday 10 January 2011
Time: 15:00

Stream gauge	Recorded		Modelled		Difference	
	Peak flow $\left(\mathrm{m}^{3} / \mathrm{s}\right)$	Flood volume (ML)	$\begin{aligned} & \text { Peak } \\ & \text { flow } \\ & \left(\mathrm{m}^{3} / \mathrm{s}\right) \end{aligned}$	Flood volume (ML)	Peak flow $\left(\mathrm{m}^{3} / \mathrm{s}\right)$	Flood volume (ML)
Gregors Creek	7,351	594,300	7,594	687,321	243	93,025
Woodford	820	60,211	685	66,084	-135	5,873
Lyons Bridge	661	117,298	485	116,464	-176	18833
Walloon	412	51,673	652	99,571	239	47,897
Amberley	164	42,069	590	47,022	426	4,953
Estimate to date and time of run						
Somerset			3,856	$394,884$		
Wivenhoe			7,540	630,551		
Total Event Estimate			5^{7}			
Somerset			3,856	482,970		
Wivenhoe			$7,540 \leq 1,044,504$			

Brisbane River at Gregors Creek
15:00 on 10 January 2011

Lockyer Creek at Lyons Bridge 15:00 on 10 January 2011

Warrill Creek at Amberley 15:00 on 10 January 2011

APPENDIX S - MODEL CALIBRATION RUNS

Somerset Dam Estimated Inflow 15:00 on 10 January 2011

Wivenhoe Dam Estimated Inflow (Excluding SomersetDam Release) 15:00 on 10 January 2011

APPENDIX S - MODEL CALIBRATION RUNS

Run 31

Date: Monday 10 January 2011
Time: 20:00

Stream gauge	Recorded		Modelled		Difference	
	Peak flow $\left(\mathrm{m}^{3} / \mathrm{s}\right)$	Flood volume (ML)	Peak flow $\left(\mathrm{m}^{3} / \mathrm{s}\right)$	Flood volume (ML)	Peak flow $\left(\mathrm{m}^{3} / \mathrm{s}\right)$	Flood volume (ML)
Gregors Creek	7,351	624,406	7,594	725,005	243	100,5989
Woodford	820	60,211	685	70,357	-135	10,146
Lyons Bridge	701	129,738	485	124,839	-216	ct, 4,898
Walloon	412	56,377	664	110,975	252	54,598
Amberley	277	46,268	590	55,414	313	9,146
Estimate to date and time of run						
Somerset			3,856	$424,965$		
Wivenhoe			7,540	834,029		
Total Event Estimate			Δ^{5}			
Somerset			3,856	490,939		
Wivenhoe			$7,540$	1,052,572		

Brisbane River at Gregors Creek 20:00 on 10 January 2011

APPENDIX S - MODEL CALIBRATION RUNS

APPENDIX S - MODEL CALIBRATION RUNS

Lockyer Creek at Lyons Bridge 20:00 on 10 January 2011

APPENDIX S - MODEL CALIBRATION RUNS

APPENDIX S - MODEL CALIBRATION RUNS ${ }_{\text {(contivee) }}$

Somerset Dam Estimated Inflow
 20:00 on 10 January 2011

APPENDIX S - MODEL CALIBRATION RUNS

Wivenhoe Dam Estimated Inflow (Excluding Somerset Dam Release) 20:00 on 10 January 2011

APPENDIX S - MODEL CALIBRATION RUNS

Run 35

Date: Tuesday 11 January 2011
Time: 04:00

Stream gauge	Recorded		Modelled		Difference	
	Peak flow $\left(\mathrm{m}^{3} / \mathrm{s}\right)$	Flood volume (ML)	Peak flow ($\mathrm{m}^{3} / \mathrm{s}$)	Flood volume (ML)	Peak flow $\left(\mathrm{m}^{3} / \mathrm{s}\right)$	Flood volume (ML)
Gregors Creek	7,351	655,136	7,594	767,802	243	112,666̧\%
Woodford	820	73,389	685	75,235	-135	1,846
Lyons Bridge	808	151,461	591	139,841	-217	-1,620
Walloon	575	69,710	707	131,038	132	61,327
Amberley	280	53,921	590	63,642	316	9,720
Estimate to date and time of run						
Somerset			3,856	458,735		
Wivenhoe			7,540	921,550		
Total Event Estimate			x^{4}			
Somerset			3,856	514,735		
Wivenhoe			7,540	$1,321,635$		

Brisbane River at Gregors Creek 04:00 on 11 January 2011

APPENDIX S - MODEL CALIBRATION RUNS

Page 108

APPENDIX S - MODEL CALIBRATION RUNS

Lockyer Creek at Lyons Bridge 04:00 on 11 January 2011

APPENDIX S - MODEL CALIBRATION RUNS

APPENDIX S - MODEL CALIBRATION RUNS

Somerset Dam Estimated Inflow 04:00 on 11 January 2011

APPENDIX S - MODEL CALIBRATION RUNS

Wivenhoe Dam Estimated Inflow (Excluding Somerset Dam Release) 04:00 on 11 January 2011

APPENDIX S - MODEL CALIBRATION RUNS

(continued)

Run 37
Date: Tuesday 11 January 2011
Time: 08:00

Stream gauge	Recorded		Modelled		Difference	
	Peak flow $\left(\mathrm{m}^{3 / \mathrm{s}}\right)$	Flood volume (ML)	Peak flow ($\mathrm{m}^{3} / \mathrm{s}$)	Flood volume (ML)	Peak flow ($\mathrm{m}^{3 / \mathrm{s}}$)	Flood volume (ML)
Gregors Creek	7,351	702,824	7,594	832,903	243	130,079
Woodford	820	76,158	685	78,289	-135	2,131
Lyons Bridge	944	164,264	1,096	174,591	152 人) 10,327	
Walloon	575	77,138	707	140,897	132	63,759
Amberley	288	57,916	590	67,321	- 803	9,405

Estimate to date and time of run

Somerset		3,856	494,49		
Wivenhoe		7,540	975,024		
Total Event Estimate					
Somerset	3,856	573,708			
Wivenhoe	7,540	$1,444,058$			

Brisbane River at Gregors Creek
08:00 on 11 January 2011

APPENDIX S - MODEL CALIBRATION RUNS

Page 116

APPENDIX S - MODEL CALIBRATION RUNS

Lockyer Creek at Lyons Bridge 08:00 on 11 January 2011

APPENDIX S - MODEL CALIBRATION RUNS

APPENDIX S - MODEL CALIBRATION RUNS

APPENDIX S - MODEL CALIBRATION RUNS

APPENDIX S - MODEL CALIBRATION RUNS

Wivenhoe Dam Estimated Inflow (Excluding Somerset Dam Release) 08:00 on 11 January 2011

APPENDIX S - MODEL CALIBRATION RUNS

Run 39

Date: Tuesday 11 January 2011
Time: 13:00

Stream gauge	Recorded		Modelled		Difference	
	Peak flow $\left(\mathrm{m}^{3} / \mathrm{s}\right)$	Flood volume (ML)	$\begin{aligned} & \text { Peak } \\ & \text { flow } \\ & \left(\mathrm{m}^{3} / \mathrm{s}\right) \end{aligned}$	Flood volume (ML)	Peak flow $\left(\mathrm{m}^{3} / \mathrm{s}\right)$	Flood volume (ML)
Gregors Creek	7,351	801,607	7,594	951,452	243	149,845
Woodford	820	82,317	844	87,121	24	4,805
Lyons Bridge	1,128	183,678	1,861	202,421	733	-18,743
Walloon	1,210	90,488	903	66,984	-307	-23,504
Amberley	394	63,991	968	80,639	574	16,648
Estimate to date and time of run						
Somerset			3,856	530,568		
Wivenhoe			7,540	921,551		
Total Event Estimate			S^{5}			
Somerset			3,856	685,015		
Wivenhoe			7,540	1,528,771		

Brisbane River at Gregors Creek
13:00 on 11 January 2011

Stanley River at Woodford
13:00 on 11 January 2011

APPENDIX S - MODEL CALIBRATION RUNS

Bremer River at Walloon
13:00 on 11 January 2011

APPENDIX S - MODEL CALIBRATION RUNS

Wivenhoe Dam Estimated Inflow (Excluding Somerset Dam Release) 13:00 on 11 January 2011

APPENDIX S - MODEL CALIBRATION RUNS

(continued)

Run 41

Date: Tuesday 11 January 2011
Time: 19:00

Stream gauge	Recorded		Modelled		Difference	
	Peak flow $\left(\mathrm{m}^{3} / \mathrm{s}\right)$	Flood volume (ML)	$\begin{aligned} & \text { Peak } \\ & \text { flow } \\ & \left(\mathrm{m}^{3} / \mathrm{s}\right) \end{aligned}$	Flood volume (ML)	$\begin{aligned} & \text { Peak flow } \\ & \left(\mathrm{m}^{3} / \mathrm{s}\right) \end{aligned}$	Flood volume (ML)
Gregors Creek	7,351	871,338	7,594	1,035,877	243	164,536.
Woodford	1,341	108,327	844	103,130	-496	-5,198
Lyons Bridge	1,162	208,518	3,733	268,192	2,571	-159,675
Walloon	1,210	116,624	1,408	94,997	198	-21,628
Amberley	622	75,667	1,138	104,382	516	28,715
Estimate to date and time of run						
Somerset			3,856	598,170		
Wivenhoe			8,098	1,240,935		-
Total Event Estimate			\hat{S}^{4}			
Somerset			3,856	734,067		
Wivenhoe			8,098	1,569,465		

Brisbane River at Gregors Creek
19:00 on 11 January 2011

APPENDIX S - MODEL CALIBRATION RUNS

Bremer River at Walloon 19:00 on 11 January 2011

APPENDIX S - MODEL CALIBRATION RUNS

Somerset Dam Estimated Inflow
19:00 on 11 January 2011

Wivenhoe Dam Estimated Inflow (Excluding Somerset Dam Release) 19:00 on 11 January 2011

APPENDIX S - MODEL CALIBRATION RUNS

(continued)

Run 43
Date: Wednesday 12 January 2011
Time: 08:00

Stream gauge	Recorded		Modelled		Difference	
	Peak flow $\left(\mathrm{m}^{3} / \mathrm{s}\right)$	Flood volume (ML)	Peak flow $\left(\mathrm{m}^{3} / \mathrm{s}\right)$	Flood volume (ML)	Peak flow $\left(\mathrm{m}^{3} / \mathrm{s}\right)$	Flood volume (ML)
Gregors Creek	7,351	923,781	7,594	1,112,372	243	188,59 ¢
Woodford	1,341	147,688	844	123,271	-496	-24,417
Lyons Bridge	1,162	257,121	4,013	435,463	2,851	-1476,342
Walloon	1,210	172,307	1,408	139,207	198	-33,100
Amberley	730	107,495	1,138	133,975	408	26,479
Estimate to date and time of run						
Somerset			3,856	$684,814$		
Wivenhoe			8,098	1,450,936		
Total Event Estimate			N^{4}			
Somerset			3,856	735,314		
Wivenhoe			$8,098 \sim 1,571,839$			

Brisbane River at Gregors Creek 08:00 on 12 January 2011

APPENDIX S - MODEL CALIBRATION RUNS

APPENDIX S - MODEL CALIBRATION RUNS

Lockyer Creek at Lyons Bridge 08:00 on 12 January 2011

APPENDIX S - MODEL CALIBRATION RUNS

Wivenhoe Dam Estimated Inflow (Excluding Somerset Dam Release) 08:00 on 12 January 2011

APPENDIX S - MODEL CALIBRATION RUNS

Run 45

Date: Wednesday 19 January 2011
Time: 12:00

Stream gauge	Recorded		Modelled		Difference	
	Peak flow $\left(\mathrm{m}^{3} / \mathrm{s}\right)$	Flood volume (ML)	Peak flow $\left(\mathrm{m}^{3} / \mathrm{s}\right)$	Flood volume (ML)	Peak flow $\left(\mathrm{m}^{3} / \mathrm{s}\right)$	Flood volume (ML)
Gregors Creek	7,351	1,000,750	8,098	1,150,594	746	149,84f
Woodford	1,341	169,736	844	132,950	-496	-36,786
Lyons Bridge	1,162	384,482	2,904	518,567	1,742	L 1184,085
Walloon	1,210	198,434	1,408	158,052	198	-40,383
Amberley	736	193,908	1,138	175,781	402	-18,127
Estimate to date and time of run						
Somerset			3,856	740,896		
Wivenhoe			7,965	1,559,363		
Total Event Estimate		S^{9}				
Somerset			3,856	742,561		
Wivenhoe			$7,965<y_{1,602,001}$			

Brisbane River at Gregors Creek
12:00 on 19 January 2011

APPENDIX S - MODEL CALIBRATION RUNS

Stanley River at Woodford 12:00 on 19 January 2011

APPENDIX S - MODEL CALIBRATION RUNS

Lockyer Creek at Lyons Bridge
12:00 on 19 January 2011

APPENDIX S - MODEL CALIBRATION RUNS

Bremer River at Walloon

 12:00 on 19 January 2011

Warrill Creek at Amberley
12:00 on 19 January 2011

Somerset Dam Estimated Inflow
 12:00 on 19 January 2011

Wivenhoe Dam Estimated Inflow (Excluding Somerset Dam Release) 12:00 on 19 January 2011

APPENDIX T-RAINFALL STATION TEMPORAL PATTERNS

Temporal patterns for selected stations in the table below are located in the sub-catchment of those shown in the map and are plotted below to demonstrate the difference between sub-catchment and station intensities and patterns.

ALERTID	Station	Latitude	Longitude
6514	Gregors Creek-P	-26.9800	152.4040
6542	Cooyar Creek	-26.7417	152.1367
6556	Glenore Grove	-27.5242	152.4081
6598	Toowoomba	-27.5114	151.9536
6649	Lowood-P	-27.4900	152.5930
6680	Mt Glorious P	-27.3220	152.7470
6716	West Bellthorpe	-26.8230	. 152.6780

APPENDIX T - RAINFALL STATION TEMPORAL PATTERNS

APPENDIX U - WIVENHOE DAM HYDROLOGY REPORTS

The reports contained in the following listing can be used to show that a flood event similar in magnitude and circumstances to the January 2011 Flood Event would be expected to result in urban damage below Moggill if both Wivenhoe Dam and Somerset Dam are operated under their current full supply levels.

When examining these reports it is important to understand that the January 2011 Flood Event is defined by its peak flow of $12000 \mathrm{~m}^{3} / \mathrm{s}$ and its volume of $2,650,000$ megalitres. The AEP of the event cannot be generally be reconciled across all of the listed reports for the following three reasons:

- The accepted techniques for estimating design rainfall and flood AEP information have been changed on five occasions since 1977. Modelling techniques have also changed and this also impacts on AEP estimations.
- Across the listed reports the implied AEP for the January 2011 Flood Event ranges between 1 in 200 nad 1 in 2000.
- The January 2011 Flood Event is represented by two individual floods, with peak inflows fromela flood greater than $10000 \mathrm{~m} 3 / \mathrm{s}$, separated by 30 hours. The probability of two such flood peakspcclirring within 36 hours of each other is considered to be appreciably uncommon and would impact on AEP of the event.
- An event with a hydrograph similar to the January 2011 Flood Event has not beefamodeled in any report listed. This is because reports consider idealised storms and historical eventsand an event similar in nature to the January 2011 Flood Event has never been recorded.

Co-ordinators General Department (1971), Future Brisbane Water Suppyy n Proposed Dam on the Brisbane River at Middle Creek or alternativelyay Wivenhoe and Flood Mitigation for Brisbane and Ipswich, Queensland Co-ordinator Generals Departpleth, June 1971.

SMEC (1975), Brisbane River Flood Investigations Final Reprit, Snowy Mountains Engineering Corporation for the Cities Commission, November 1975.

Co-ordinators General Department (1977), A Comprelaersive Evaluation of the Proposed Wivenhoe Dam on the Brisbane River, Queensland Co-ordinators Geperal Department, June 1977.

IWSC (1977), Wivenhoe Dam Assessment of (rields and Flood Magnitudes, Irrigation and Water Supply Commission, Surface Water Branch Hydrovgy Report 143005.PR, September 1977.

QWRC (1983), Wivenhoe Dam Design_Flood Study, Queensland Water Resources Commission, Water Resources Division, Hydrology Reprit 143005.PR/3, May 1983.

BCC and QWRC (1985), Hyd Wivenhoe Dam and Somelset Dam. Brisbane City Council and Queensland Water Resources Commission, January 1985.

DNR (1993a), Brifbane River Flood Hydrology Report - Design Flood Estimation. Department of Natural Resources, Report Number 8a, 8b, 8c and 8d, March 1993.

DNR (193) , Brisbane River Flood Hydrology Report - Downstream Flooding. Report Number 13, August 1993.

Vater Commercial (1995), Wivenhoe Dam Design Report, Queensland Department of Primary mbustries, Water Commercial, September 1995.

Gutteridge Haskins and Davey Pty Ltd (1997), Wivenhoe Dam Report on the Safety Review (Draft), April 1997.

Sinclair Knight Merz and Hydro Consulting Hydro Electric Corporation (2000), Preliminary Risk Assessment Wivenhoe, Somerset and North Pine Dams, March 2000.

AGSO - Geoscience Australia in conjunction with the Bureau of Meteorology (2001), Natural Hazards and the risks they pose to South East Queensland.

APPENDIX U - WIVENHOE DAM HYDROLOGY REPORTS

SKM (2003) Report, Further Investigations of Hydrology and Hydraulics Incorporating Dam Operations and CRC Forge Rainfall Estimated (Draft), August 2003.

Independent Review Panel (2003), Review of Brisbane River Flood Study. Report to Brisbane City Council, Independent Review Panel, September 2003.

Wivenhoe Alliance (2004), Design Discharges and Downstream Impacts of Wivenhoe Dam Upgrade, Wivenhoe Alliance Report Number Q1091, February 2004, Brisbane.

SunWater (2006), Assessment of the Flood Impacts of Raising the Full Supply Level in Wivenhoe Dam.
SunWater Report G-70001-04-01, March 2006
SunWater (2007), Assessment of Wivenhoe Dam Flood Impacts, SunWater Report December 2007.
Seqwater (2009), Somerset-Wivenhoe Interaction Study, October 2009.

[^0]: January 2011 Flood Event - Period 19 of 20

[^1]: January 2011 Flood Event - Period 20 of 20

[^2]: adace.3.20-Significent houny fainfall lotals

[^3]: Wednesday 24 February 2011

[^4]: Only includes first flood and largest flood peak.

[^5]: Table fo.4.t--Somesel Damtevetsas frecking against the Wiventroe / Somerset Operating Target Line for the Januay zot Ftood Event

[^6]: Engineer 2
 Duty Engineer
 Flood Operations Centre

[^7]: Dam Operations Manager
 Water Delivery
 Queensland Bulk Water Supply Authority trading as Seqwater

[^8]: 音

[^9]: 6598 - Toowoomba

[^10]: Dam Operations Manager
 Water Delivery
 Queensland Bulk Water Supply Authority trading as Seqwater

[^11]: Dam Operations Manager
 Water Delivery
 Queensland Bulk Water Supply Authority trading as Seqwater

[^12]: Engineer 1
 Duty Engineer

