

MANUAL

OF

OPERATIONAL PROCEDURES

FOR FLOOD MITIGATION

FOR

WIVENHOE DAM

AND SOMERSET DAM

Revision No.	Date of Approval	Amendment Details		
0	27 October 1968	Original Issue		
1	6 October 1992	Complete revision and re-issue		
2	13 November 1997	Complete revision and re-issue		
3	24 August 1998	Change to page 23		
4	6 September 2002	Complete revision and re-issue		

Doc: FM QD 1.1

Revision No: 4

Date: 6/09/02

Page i

TABLE OF CONTENTS

1	INTRODUCTION		
	<u>1.5</u> Application and Effect		•••••
	1.7 Observance of Manual		••••••
	1.8 Provision for Variations t	o Manual	
	1.9 Distribution of Manual		
		ion	
2	DIRECTION OF OPERATIO	NS	
4			
	2.1 Designation of Son	ior Flood Operations Enginee	**
		od Operations Engineer	
		ience of Engineers	
		_	
		nents	
	2.6 Responsibilities of the Ser	nior Flood Operations Enginee	er
	2.7 Responsibilities of the Flo	od Operations Engineer	
	2.8 Reasonable Discretion		•••••
	2.9 Report		
3	FLOOD MITIGATION OBJE	CTIVES	1
	3.1 General		1
		s	
		5	
		ely Spaced Large Floods	
	3.4 Inundation of Urban Are	as	<u></u> 1
		as s	
	3.6 Provision of Pumping Poo	ol for Power Station	I
	3.7 Disruption to Navigation		<u></u> 1
4	FLOOD CLASSIFICATION		<u></u> 1
5	FLOOD MONITORING AND	WARNING SYSTEM	1
<u> </u>			
		1	
<u>6</u>	COMMUNICATIONS		
		Staff	
		tion	
	6.3 Nature of Information		<u></u> 1
D	FM QD 1.1 Revision No: 4	Date: 6/09/02	Page ii

	6.4 Release of Information to the Public	<u></u> 17
7	REVIEW	
	7.1 Introduction	
	7.2 Personnel Training	
	7.3 Monitoring and Warning System and Communication Networks	
	7.4 Operational Review	
	7.5 Five Yearly Review	
	WIVENHOE DAM	20
	8.1 Introduction	
	8.2 Initial Action	
	8.3 Regulator and Gate Operation Procedures	20
	8.4 Flood Control Procedures	
	8.5 Closing Procedures	<u></u> 24
	SOMERSET DAM	
	9.1 Introduction	
	9.2 Initial Action	
	9.3 Regulator and Gate Operation Procedures	25
	9.3 Regulator and Gate Operation Procedures9.4 Flood Control Procedure	25
0	EMERGENCY	
	10.1 Introduction	
	10.2 Overtopping of Dams	
	10.3 Communications Failure	
	10.4 Wivenhoe Dam Emergency Procedure	
	10.5 Somerset Dam Emergency Procedure	29
	10.5 Somerset Dam Emergency Procedure 10.6 Equipment Failure	<u> </u>

Deleted: 1 . INTRODUCTION
. 1¶ 1.1 . Preface .
1¶
1.2 . Meaning of Terms 2¶ 1.3 . Purpose of Manual 5¶
1.4 . Legal Authority 5¶
1.5 . Application and Effect 5¶ 1.6 . Date of Effect 5¶
1.7 . Observance of Manual 5¶
1.8 . Provision for Variations to Manual . 5¶
1.9 Distribution of Manual 6
1.10 . Authority to Use Discretion . 6¶
2 _ DIRECTION OF OPERATIONS _ 7¶
2.1 Statutory Operation 7
2.1.1 Designation of Senior
Flood Operations Engineer 7¶ 2.1.2 . Designation of Flood
Operations Engineer 7¶ 2.2 . Qualifications and
Experience of Engineers 7
2.2.1 . Qualifications 7¶ 2.2.2 . Experience 7¶
2.3 Schedule of Authorities 8
2.4 . Training . 8¶ 2.5 . Dam Operation
Arrangements _ 8¶
2.6 Responsibilities of the Senior Flood Operations
Engineer . 9¶
2.7 . Responsibilities of the Flood Operations Engineer 9¶
2.8 . Reasonable Discretion . 9¶
2.9 . Report 10¶
3 FLOOD MITIGATION
OBJECTIVES 11¶ 3.1 . General
11¶
3.2 Structural Safety of Dams 11
3.2.1 . Wivenhoe . 11¶
3.2.2 . Somerset Dam . 11¶ 3.3 . Extreme Floods and
Closely Spaced Large
Floods _ 11¶ 3.4 _ Inundation of Urban
Areas 12¶
3.5 . Disruption to Rural Areas . 12¶
3.6 Provision of Pumping Pool
for Power Station 12¶ 3.7 . Disruption to
Navigation . 13¶ 4 . FLOOD
CLASSIFICATION _ 14¶
5 . FLOOD MONITORING AND WARNING SYSTEM . 159
5.1 . General 15¶
5.2 Operation 15¶ 5.3 Storage of
Documentation _ 16¶
5.4 . Key Reference Gauges . 16¶ 5.5 . Reference Gauge
Values 16¶
6 COMMUNICATIONS 17¶ 6.1 . Communications between
Staff _ 17¶
6.2 Dissemination of Information 17¶
6.3 Nature of Information . 17¶
6.4 . Release of Information to the Public 18¶
7 _ REVIEW _ 19¶
7.1 . Introduction 19¶ 7.2 . Personnel Training 19¶
7.3 Monitoring and Wat [1]

Doc: FM QD 1.1

Revision No: 4

Date: 6/09/02

APPENDICES

APPENDIX A EXTRACT FROM ACT	<u></u> 30
APPENDIX B AGENCIES HOLDING DOCUMENTS	<u></u> 33
APPENDIX C SCHEDULE OF AUTHORITIES	
APPENDIX D GAUGES AND BRIDGES	
D.1. KEY REFERENCE GAUGES	.35
D.2. SUBMERGENCE FLOWS FOR BRIDGES	<mark></mark> 36
APPENDIX E WIVENHOE DAM TECHNICAL DATA	<u></u> 37
TABLE E1 STORAGE AND UNCONTROLLED DISCHARGES	
TABLE E2 CONTROLLED GATE DISCHARGES	<mark></mark> 36
APPENDIX F SOMERSET DAM TECHNICAL DATA	<u></u> 38
APPENDIX G WIVENHOE DAM GATE OPERATION CONSIDERATIONS	
G.1. SPILLWAY OPERATION PRINCIPLES	
G.2. RADIAL GATE OPERATING PRINCIPLE	
G.3. RADIAL GATES OPERATING LIMITATIONS	40
G.4. BULKHEAD GATE OPERATING LIMITATIONS	42
G.5. RADIAL GATE OPERATING PROCEDURES	43
G.6. EQUIPMENT MALFUNCTION	43
APPENDIX H SOMERSET DAM AUXILIARY EQUIPMENT	
H.1. DISCHARGE REGULATION	
H.2. EMERGENCY POWER SUPPLY	
H.3. FAILURE OF SPILLWAY GATES MACHINERY	
H.5. FAILURE OF SFILLWAY GATES MACHINERY H.4. FAILURE OF SLUICE GATE MACHINERY	
H.5. FAILURE OF REGULATOR MACHINERY	
APPENDIX I HYDROLOGIC INVESTIGATIONS	
I.1. INTRODUCTION	<u></u> 47
I.2. METHOD	
I.3. RAINFALL ANALYSIS RESULTS	48
I.4. RUNOFF ROUTING MODEL CALIBRATION	49
I.5. WIVENHOE DAM FLOODS	50
I.6. SOMERSET DAM FLOODS	
I.7 FLOOD CONTROL OPERATION MODEL	
APPENDIX J DRAWINGS	-
APPENDIX K BRISBANE RIVER CATCHMENT	<u></u> 54
τ	

Deleted: APPENDIX A EXTRACT FROM ACT _ 31¶ APPENDIX B. AGENCIES HOLDING DOCUMENTS. 33¶ APPENDIX C. SCHEDULE OF AUTHORITIES. 34¶ APPENDIX D . GAUGES AND BRIDGES . 35¶ D.1. .KEY REFERENCE GAUGES .35¶ D.2. .SUBMERGENCE FLOWS FOR BRIDGES _ 36¶ APPENDIX E . WIVENHOE DAM TECHNICAL DATA ... 37¶ TABLE E1 - STORAGE AND UNCONTROLLED DISCHARGES - 37¶ TABLE E2 - CONTROLLED GATE DISCHARGES . 36¶ GATE DISCHARGES ...09 APPENDIX F . SOMERSET DAM TECHNICAL DATA ...38 APPENDIX G . WIVENHOE DAM GATE OPERATION CONSIDERATIONS . 39¶ G.1. SPILLWAY OPERATION PRINCIPLES ... 39¶ G.2. .. RADIAL GATE OPERATING PRINCIPLE . 39¶ G.3. RADIAL GATES OPERATING LIMITATIONS . 40¶ G.4. _ BULKHEAD GATE OPERATING LIMITATIONS 42¶ G.5. RADIAL GATE OPERATING PROCEDURES . 43¶ G.6. EQUIPMENT MALFUNCTION 43¶ APPENDIX H SOMERSET DAM AUXILIARY EQUIPMENT . 46¶ H.1. _ DISCHARGE REGULATION _ 46¶ H.2. _ EMERGENCY POWER SUPPLY 46¶ H.3. FAILURE OF H.J., FAILURE OF SPILLWAY GATES MACHINERY 46¶ H.4. FAILURE OF SLUICE GATE MACHINERY 46¶ H.5. FAILURE OF REGULATOR MACHINERY . 46¶ APPENDIX I HYDROLOGIC INVESTIGATIONS 47¶ I.1. INTRODUCTION 47¶ I.2. _ METHOD _ 47¶ I.3. RAINFALL ANALYSIS RESULTS 48¶ I.4. RUNOFF ROUTING MODEL CALIBRATION 49¶ I.S. .. WIVENHOE DAM FLOODS .. 50¶ I.6. SOMERSET DAM FLOODS 51¶ I.7. FLOOD CONTROL **OPERATION MODEL 51**¶ I.8 . DOWNSTREAM FLOODING . 52¶ APPENDIX J DRAWINGS 53 APPENDIX K . BRISBANE RIVER CATCHMENT . 54¶

Doc: FM QD 1.1

Date: 6/09/02

1 INTRODUCTION

1.1 Preface

Given their size and location, it is imperative that Wivenhoe and Somerset Dams be operated during flood events in accordance with clearly defined procedures to minimise hazard to life and property.

Recognising this, the South East Queensland Water Board Act required that the South East Queensland Water Corporation's Technical A dvisory Committee clause to be prepared a manual of operational procedures for the dam during floods. With changes to the controlling legislation, the manual became an approved flood mitigation manual under *Water Act 2000* (extract in Appendix A).

This Manual is the result of a review of the 1998 revision of the Manual. <u>The Corporation is</u> required to review, update the Manual if necessary, and submit it to the Chief Executive for approval prior to its expiry. Any amendments to the basic operating procedures need to be treated similarly.

An expanded flood monitoring a nd warning ra dio tel emetry network (ALERT) has been installed in the Brisbane River Catch ment. Additionally, a computerised flood operational model that allows for rainfall and river modelling in real time based on data from the ALERT system has been developed, im plemented a nd f ully commissioned. The a ccuracy and reliability of the system during a flood event has been proven.

The pr imary objectives have not varied from those defined in the previous m anual of ensuring safety of the dams, their ability to deal with extreme and closely spaced floods, and protection of urban areas. The basic operational procedures have also remained the same. Wivenhoe Dam and Somerset Dam are operated in conjunction so as to maximise the flood mitigation capabilities of the two dams. The procedures outlined in this Manual are based on the operation of the dams in tandem.

Changes from the previous revision (1998) have mostly arisen from the ref inement of gate opening and clo sing sequences based upon experience obtained during flood events whilst using the real time flood operations model. Other changes have been necessary to fit in with the new regulatory regime provided by the commencement of *Water Act 2000*.

Deleted: ¶

Recognising this, the Water Act 2000 (Extract in Appendix A) required that the South East Queensland Water Corporation's Technical Advisory Committee cause to be prepared a combined manual of operational procedures for Wivenhoe and Somerset Dams for the purpose of flood mitigation.¶

Deleted: The Corporation is required to submit the Manual to the Minister charged with administration of the Act for approval.

Revision No: 4

Date: 6/09/02

1.2 Meaning of Terms

In this Manual, save where a contrary definition appears -

"Act"

means the Water Act 2000;

"Agency"

includes a person, a local government and a department of state government within the meaning of the Acts Interpretation Act 1954;

"AHD"

means Australian Height Datum;

'Bureau of Meteorology"

means the Commonwealth Bureau of Meteorology;

"Chairperson"

means the Chairperson of the South East Queensland Water Corporation;

"Chief Executive"

means the Chief Executive or Director General of the Department of Natural Resources and Mines;

"Controlled Document"

means a document subject to managerial control over its contents, distribution and storage. It may have legal and contractual implications;

"Dams"

means dams to which this Manual applies, that is Wivenhoe Dam and Somerset Dam;

"Dam Supervisor"

means the senior on-site officer at Wivenhoe or Somerset Dam as the case may be;

"EL"

means elevation in metres from Australian Height Datum;

"Flood Operations Engineer"

means the person designated at the time to direct the operations of Wivenhoe Dam and Somerset Dam under the general direction of the Senior Flood Operations Engineer and in accordance with the procedures in this Manual;

"FSL"¹ or "FULL SUPPLY LEVEL"

means the level of the water surface when the reservoir is at maximum operating level, excluding periods of flood discharge;

"Gauge"

when referred to in (m) means river level referenced to AHD, and when referred to in (m^3/sec) means flow rate in cubic metres per second;

Revision No: 4

Date:

Date: 6/09/02

Page 2

Deleted: "AFC"¹ or¶ "Acceptable Flood Capacity (AFC)¶

means for a specific dam the overall flood capacity, including freeboard as relevant, which provides an appropriate level of safety against a flood initiated dam failure to protect the community and environment to acceptable risk levels, within the total context of overall dam safety from all causes.¶

Deleted: ¶

"South East Queensland Water Corporation"¶ means the body corporate constituted by that name pursuant to Part III of the South East Queensland Water Board Act 1979. The Board became a government owned corporation in 2000;¶

Deleted: "DCF"¹ or¶ "Dam Crest Flood"¶ means the flood event which,

means the Hood event which, when routed through the reservoir, results in a still water level in the reservoir, excluding wave effects which for an embankment is the lowset point of the embankment crest.¶

Deleted: -----Page Break------

Deleted: ≅

Deleted:

¶

"EDF"¹ or "Evaluation Design Flood"¶ means the flood used for the design of a Dam at the time of design as defined by the 1986 ANCOLD Guidelines on Design Floods for Dams;¶ "Headworks Operator"

for the purposes of this manual the Headworks Operator is the South-East Queensland Water Corporation:

"Manual" or "Manual of Operational Procedures for Flood Mitigation for Wivenhoe Dam and Somerset Dam"

means the current version of this Manual;

"Power Station"

means the Wivenhoe pumped storage hydro-electric power station associated with Wivenhoe Dam and Split-Yard Creek Dam;

"Senior Flood Operations Engineer"

means the senior person designated at the time pursuant to Section 2.1 of this Manual under whose general direction the procedures in this Manual <u>must</u> be carried out;

"South East Queensland Water Corporation"

means the body corporate constituted by that name pursuant to Part III of the South East Queensland Water Board Act 1979. The Board became a government owned corporation in 2000;

"Technical Advisory Committee"

means the Technical Advisory Committee e stablished pursuant to Section 21 of the South East Queensland Water Board Act 1979, as constituted at the material time.

Deleted: means the agency with which the Corporation has entered into a contract or arrangement with respect to the operation and maintenance of the dams, for the purpose of flood mitigation;

Deleted: "IFF"¹ or "Imminent Failure Flood"¶ means the flood which if exceeded would cause failure of a dam as defined in the 1986 ANCOLD Guidelines on Design Floods for Dams;¶

Manager Dam Safety " or " "Director Dam Safety" " means the suitably qualified and experienced person fulfilling the function of an advisory committee on referable dams pursuant to Part 6 of the *Water Act 2000*;"

Deleted: "Minister"

means the Minister of the Crown who at the material time is charged with the administration of the Act;¶

Deleted:

Deleted:

Deleted: -

Deleted: ¶

"RDF"¹ of¶ "Recommended Design Flood"¶ means the flood which a dam should be designed for in accordance with accepted practices as defined in the 1986 ANCOLD Guidelines on Design floods for Dams;¶

Deleted: shall

Revision No: 4

Date: 6/09/02

1.3 Purpose of Manual

The purpose of this Manual is to define procedures for the operation of Wivenhoe Dam and Somerset Dam to reduce, so far as practicable, the effects of flooding, by the proper control and regulation in time of headworks under the control of the Corporation, with due regard to the safety of the structures comprising those headworks.

For the purpose of this Manual, the Corporation adopts the policy that the community is to be protected to the maximum extent possible against flood hazards recognising the limitations on being able to:

- identify all potential flood hazards and their likelihood,
- remove or reduce community vulnerability to flood hazards,
- effectively respond to flooding, and
- provide resources in a cost effective manner.

1.4 Legal Authority

This manual has b een p repared <u>as a Flood Mit igation Manu al</u> in a ccordance with the provisions of Part 6 Division 2 of the Act.

1.5 Application and Effect

The procedures in this Manual apply to the operation of Wivenhoe Dam and Somerset Dam for the purpose of flood mitigation, and operation in accordance with the manual shall give the protection from liability provided by Section 500 of *Water Act 2000*,

1.6 Date of Effect

The procedures in this Manual shall have effect on and from the date on which the Manual is approved by gazette notice.

1.7 Observance of Manual

This Manual contains the operational procedures for Wivenhoe Dam and Somerset Dam for the purposes of flood mitigation, and <u>must</u> be applied by the Headworks Operator for the poperation of the dams.

1.8 Provision for Variations to Manual

If the Corporation is of the op inion that the procedures in this Manual should be amended, altered or vari ed, it must submit for ap proval as soon as practical a request, which is in accordance with the fl ood m itigation provisi ons of the *Water Act* 2000, to the Chief Executive setting out the circumstances and the exact nature of the amendment, alteration or variation sought. The C hief Executive may require the Corporation amend the Manual by written notice.

1.9 Distribution of Manual

Doc: FM QD 1.1

Revision No: 4

Date: 6/09/02

Page 4

Deleted: shall

Deleted:, and operation in accordance with the manual shall be deemed to meet the relevant dam safety requirements of the *Water Act 2000* for the purpose of flood mitigation.

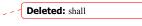
Deleted: approved by

Deleted: the Minister

Deleted: shall

Deleted: ¶

If any one of the Chief Executive, the Headworks Operator, or the South East Queensland Water Corporation (including its Technical Advisory Committee) is of the opinion that this Manual requires amendment, it shall make a submission to the South East Queensland Water Corporation setting forth those circumstances and the exact nature of the amendment, alteration or variation sought.¶


If the Corporation is of the opinion that the procedures in this Manual should be amended, altered or varied, it shall submit for approval as soon as practical a recommendation, which is in accordance with the dam safety provisions of the *Water Act 2000*, to the Minister setting out the circumstances and the exact nature of the amendment, alteration or variation sought.¶

The C orporation <u>must</u> regard the manual as a Con trolled Document and ensure that only controlled manuals are used in the direction of flood mitigation activities. Agencies having copies of Controlled Documents are listed in Appendix B. The Corporation must maintain a Register of Contact Persons for Controlled Documents and ensure that each issued document is updated whenever amendments or changes are approved.

Before using this Manual for the direction of flood control, the Headworks Operator must ensure that it is the current version of the Controlled Document.

1.10 **Authority to Use Discretion**

Where it is reasonable to expect that the safety of either dam will not be reduced, temporary deviations from the procedures detailed in this manual may be made in ac cordance with Section 2.8.

Deleted: shall

Revision No: 4

Date: 6/09/02

2 DIRECTION OF OPERATIONS

2.1 **Statutory Operation**

Pursuant to the provisions of the Act, the Corporation is responsible for and has the duty for operation and maintenance of Wivenhoe Dam and Somerset Dam, and while it may enter into contracts for the purpose of discharging these responsibilities, for the purposes of this manual the Headworks Operator is the Corporation.

2.1.1 Designation of Senior Flood Operations Engineer

The Headworks Operator must ensure that the procedures set out in this Manual are carried out under the general direction of a suitably qualified and experienced person who shall be referred to hereafter as the Senior Flood Operations Engineer. Only a person authorised in the Schedule of Authorities can give the general direction for carrying out procedures set out in this Manual.

2.1.2 Designation of Flood Operations Engineer

The Headworks Operator must have available or on standby at all times a suitably qualified and experienced Flood Operations Engineer to direct the operation of the dams during floods in accordance with the general strategy determined by the Senior Flood Operations Engineer.

The Headworks Operator must ensure that flood control of the dams is under the direction of a Flo od O perations Engineer at all times. On ly a person authorised in the Schedule of Authorities can direct the flood operation of the dams.

The Headworks Operator **must** also employ an adequate number of suitably qualified and experienced per sons to assist the Flood Operations Engineer in the operation of the dams during floods.

2.2 **Qualifications and Experience of Engineers**

2.2.1 **Oualifications**

All engineers referred to in Section 2.1 must meet all applicable requirements of registration Deleted: shall or ce rtification u nder an y rel evant State Act, and <u>must</u> ho ld app ropriate engineering qualifications to the satisfaction of the Chief Executive.

2.2.2 Experience

All engineers referred to in Section 2.1 <u>must</u>, to the satisfaction of the Chief Executive, have: Deleted: shall

Deleted: and may enter into contracts for the purpose of discharging these responsibilities.

Deleted: ¶

All instruments of delegation and contract made in accordance with the Act shall be recorded in the Schedule of Authorities attached to the Manual as Appendix C. Changes to instruments of delegation and contract shall be made in accordance with the Act and incorporated in the Schedule as amendments to the Schedule.¶

Deleted: shall

Deleted: , as may be required under the provisions of the Water Act 2000.

Deleted: shall

Deleted: shall

Deleted: shall

Revision No: 4

Date: 6/09/02

- (1) Knowledge of design principles related to the structural, geotechnical and hydraulic design of large dams, and
- (2) At least a total of five years of suitable experience and demonstrated expertise in at least two of the following areas:
 - (a) Investigation, design or construction of major dams;
 - (b) Operation and maintenance of major dams;
 - (c) Hydrology with particular reference to flooding, estimation of extreme storms, water management or meteorology;
 - (d) Applied hyd rology with particular r eference t o f lood f orecasting a nd f lood warning systems.

2.3 Schedule of Authorities

For the purpose of directing operation of the dams during floods, a list of suitably qualified and experienced Senior Flood Operations Engineers and Flood Operations Engineers <u>must</u> be maintained in the Schedule of Authorities (Appendix C).

The Headworks Operator shal l, as the need arises, nom inate suitably qu alified an d experienced engineers for regi stration in the Schedule of Authorities as Sen ior Flood Operations Engineers and Flood Operations Engineers. Each new nomination <u>must</u> include a copy of any certificate required under Section 2.2 and a validated statement of qualifications and experience.

The H eadworks Op erator must obtain the approval for a ll no minations f rom the Chief Executive prior to their inclusion in the Schedule of Authorities.

If, in the event of unforseen and emergency situations, no Senior Flood Operations Engineer or n o Flood O perations Engineer is available fr om the Sc hedule of Authorities, the Headworks Operator <u>must</u> temporarily appoint a suitable person or persons and immediately seek ratification from the Chief Executive.

2.4 Training

The Headworks Operator <u>must</u> ensure that operational personnel required for flood control operations re ceive adequate training in the various activities involved in flood control operation.

2.5 Dam Operation Arrangements

For the purposes of operation of the dams during times of flood, the Headworks Operator <u>must</u> ensure that:

(a) the o peration be c arried o ut under the general d irection of the Senior Flood Operations Engineer, and

Doc: FM QD 1.1Revision No: 4Date: 6/09/02Page 7

Deleted: shall

Deleted: shall

Deleted: ¶ The Headworks Operator shall forward all nominations to the Chief Executive who shall review nominations and make recommendations to the Minister for approval for inclusion in the Schedule of Authorities.¶

Deleted: shall

Deleted: shall

(b) in the direction of o perations which may knowingly endanger life or property, the Senior Flood Operations Engineer <u>must</u> where practical liaise with the Chairperson of the Corporation and the Chief Executive or nominated delegate.

2.6 Responsibilities of the Senior Flood Operations Engineer

The Se nior Flood Operations Engineer is responsible for the overall direction of flood operations.

Except ins ofar as reasonable discretion is provided for in Section 2.8 of this Manual, the Senior Flood Operations Engineer <u>must</u> ensure that the operational procedures for the dam shall be in accordance with this Manual.

2.7 Responsibilities of the Flood Operations Engineer

The Flood O perations Engineer <u>must</u> apply the operational procedures in a ccordance with this manual and the direction set for flood operations. In so doing, account <u>must</u> be taken of prevailing weather conditions, the probability of follow up storms and the ability of the dam to discharge excess flood waters in the period between rainfall events or in the period from the time of detection of conditions associated with the development storm cells to the likely time of occurrence of the rainfall.

2.8 Reasonable Discretion

If in the opinion of the Senior Flood Operations Engineer, based on available information and professional experience, it is necessary to depart from the procedures set out in this manual, the Sen ior Flood O perations Engineer is a uthorised to adopt s uch ot her procedures a s considered n ecessary to meet the situation, provided t hat the Se nior Flood Operations Engineer observes the flood mitigation objectives set out in Section 3 of this Manual when exercising such reasonable discretion.

Before exercising discretion under this Section of the Manual with respect to flood mitigation operations, the Senior Flood Operations Engineer <u>must</u> consult with such of the following persons as are available at the time that the discretion has to be exercised:

the Chairperson of the Corporation, and

the Chief Executive or nominated delegate.

If not able to contact any of the above within a reasonable time, the Senior Flood Operations Engineer <u>may</u> proceed with s uch other procedures considered a s necessary t o meet the situation and report such action at the earliest opportunity to the above persons.

Revision No: 4

Page 8

Deleted: shall
Deleted: objectives

Deleted: shall

Deleted: shall

Deleted: shall

Deleted: shall

Deleted: shall

2.9 Report

I

The Senior Flood Operations Engineer <u>must</u> prepare a report to the Headworks Operator after	Deleted: shall
each event that requires flood operation of the dams and the report <u>must</u> contain details of the	Deleted: shall
procedures us ed, the r easons the refore a nd other pertinent in formation. The H eadworks	
Operator <u>must</u> forward the report to the <u>Chief Executive</u> together with any comments within	Deleted: shall
six weeks of the completion of the event referred to.	Deleted: Corporati

Revision No: 4

Date: 6/09/02

3 FLOOD MITIGATION OBJECTIVES

3.1 General

To meet the purpose of the flood operation al procedures in this Manu al, the following objectives, listed in descending order of importance, are as follows:

- (a) Ensure the structural safety of the dams;
- (b) Provide optimum protection of urbanised areas from inundation;
- (c) Minimise disruption to rural life in the valleys of the Brisbane and Stanley Rivers and their major tributaries;
- (d) Minimise disruption and impact upon Wivenhoe Power Station;
- (e) Minimise disruption to navigation in the Brisbane River.

3.2 Structural Safety of Dams

The structural safety of the dams must be the first consideration in the operation of the dams for the purpose of flood mitigation.

3.2.1 Wivenhoe

The structural safety of Wivenhoe Dam is of paramount importance. Structural failure of Wivenhoe Dam would have catastrophic consequences.

Wivenhoe Dam is predominantly a central core rockfill dam. Such dams are not resistant to overtopping and are susceptible to b reaching should such an event occur. Overtopping is considered the major threat to the security of Wivenhoe Dam.

3.2.2 Somerset Dam

The structural safety of Somerset Dam also is of paramount importance. Failure of Somerset Dam could have catastrophic consequences.

Whilst Wivenhoe Dam has the capacity to mitigate the flood effects of such a failure in the absence of any other flooding, if the failure were to occur during major flooding, Wivenhoe Dam could be overtopped and destroyed also.

Somerset D am is a mass concrete d am. Such dam s can withstand limited overtopping without damage. Failure of such stru ctures is ra re but when they do occur, they occur suddenly without warning, creating very severe and destructive flood waves.

3.3 Extreme Floods and Closely Spaced Large Floods

Techniques for estimating extreme floods indicate that floods are possible which would overtop both dams. In the case of Wivenhoe Dam such an overtopping would most likely

 Doc: FM QD 1.1
 Revision No: 4
 Date: 6/09/02
 Page 10

result in the destruct ion of the dam i tself. Such even ts however r equire several days of intense rainfall to produce the necessary runoff. Pre release or accelerated release of storage at damaging flood levels could reduce, but not eliminate the risk of overtopping. Su ch a measure should be t aken only after careful consideration of the reliability of precipi tation forecasts and of perceived antecedent conditions.

Historical records show that there is a significant probability of two or more flood producing storms occurring in the Brisbane River system within a short time of each other.

In order to be prepared to meet such a s ituation, the st ored flood-waters from one s torm should be discharged from the dams after a flood as quickly as would be consistent with the other major op erating principles. Typically the Flo od Operations Engineer should aim to empty st ored flood-waters within s even days a fter the flood peak has passed through the lower reaches of the Brisbane River. In a very large flood, this time frame may not be achievable because of downstream flood conditions and it m ay be necessary to extend the emptying period by several days.

The discharges should be r egulated so as to have little impact on the urban reaches of the Brisbane River taking into account inflows into the river downstream of the dams. However they may result in submergence of some low level bridges. The level of flooding as a result of emptying stored flood-waters after the peak has passed is to be less than the flood peak unless accelerated release is necessary to reduce the risk of overtopping.

3.4 Inundation of Urban Areas

The prime pur pose of incorporating flood mitigation m easures i nto Wivenhoe Dam and Somerset Dam is to reduce flooding in the urban areas on the flood plains below Wivenhoe Dam. The peak flows of floods emanating from the upper catchments of Brisbane and Stanley Rivers can be reduced by using the flood-gates to control releases from the dams, taking into account flooding derived from the lower Brisbane River catchments.

3.5 Disruption to Rural Areas

While the dams are being used for flood mitigation purposes, some low level bridges and areas upstream of the dams may be temporarily inundated. Downstream of the dam, bridges and lower river terraces will be submerged. The operation of the dams should not prolong this inundation unnecessarily.

3.6 Provision of Pumping Pool for Power Station

The power station is not affected by the reservoir level in Wivenhoe Dam during floods other than the impacts high tail water levels have on the efficiency of the power station. The power station does however require a p umping pool for operation. The loss of s torage b y dam failure would render the power station inoperative.

Revision No: 4

Date: 6/09/02

3.7 Disruption to Navigation

The disruption to navigation in the Brisbane River has been given the lower priority. The effect of flood flows upon navigation in the river varies widely.

Large ships can be manoeuvred in the river at considerable flood flows. On the other hand, barges and dredges are affected by low flows which lower salinity thus decreasing the density of the water which in turn causes craft to sit lower in the water, sometimes bottoming. The Moggill Ferry is also affected by low flood flows.

A short emptying period for the flood storage compartment of the dams is consistent with Objectives (c) and (e) of Section 3.1, which are closely related.

Revision No: 4

Date: 6/09/02

4 FLOOD CLASSIFICATION

For the reference purposes of this Manual, five magnitudes of flooding are classified as follows:

Fresh

This causes only very low-level bridges to be submerged.

Minor Flooding

This causes inconvenience such as closing minor roads and the submergence of low-level bridges. Some urban properties are affected.

Moderate Flooding

This causes inundation of low-lying areas and may require the evacuation of some houses and/or business premises. Traffic bridges may be closed.

Major Flooding

This causes flooding of a ppreciable ur ban Ares. P roperties may be come is olated. Majo r disruption oc curs to tr affic. E vacuation of m any ho uses and b usiness premises may be required.

Extreme Flooding

This causes flooding well in excess of floods in living memory and general evacuation of whole areas are likely to be required.

Usually a flood does not cause the same category of flooding along its entire length and the relevant agencies shall have regard to this when flooding is predicted.

(The classifications of m inor, moderate and m ajor flooding a re bas ed o n the Burea u o f Meteorology Standard Flood Classifications for Australia)

Revision No: 4

Date: 6/09/02

5 FLOOD MONITORING AND WARNING SYSTEM

5.1 General

A real time flood monitoring and warning system is established in the Brisbane Valley. This system is based upon an event reporting protocol. A radio telemetry system (ALERT) is used to collect, transmit and receive rainfall and streamflow information. The system consists of more than 50 field stations that automatically record rainfall and/or river heights at selected locations in the Stanley and Brisbane River catchments. Some of the field stations are owned by the Corporation with the remainder belonging to other agencies.

The rainfall and river height data is transmitted by radio telemetry, via repeater stations, to base stations at the head office of the Headworks Operator (and the Corporation). There the data is processed in r eal time by c omputer programs to assess what is occu rring in the catchments in terms of flood flows and what could occur if weather conditions continued, or changed.

Other agencies with their own base stations can, and do, receive data transmissions direct, and so collect and are able to process rainfall and streamflow information appropriate to their needs.

The real time flood model (RTFM) is a suite of hydrologic and hydraulic computer programs that utilise the real time ALERT data to assi st in the operation of the dams during flood events.

5.2 Operation

The Headworks Operator is responsible for operating the computer model provided by the Corporation for flood monitoring and forecasting during flood events to optimise flood gate operations and minimise the impacts of flooding.

It is the responsibility of the Corporation to maintain and keep calibrated its own equipment; and to enter into such arrangements with other agencies or to provide such further equipment as the C orporation deems necessary for the H eadworks Ope rator to properly ope rate the computer model for flood monitoring and forecasting.

A system such as this is expected to improve over time due to:

- improved operation and reliability with experience,
- improved calibration as further data becomes available,
- software upgrades, and
- the number, type and locations of sensors being varied.

A regular process of internal audit and management review <u>must</u> be maintained to achieve _____ **Deleted:** shall this.

A log of the performance of all field equipment necessary to properly operate the computer model <u>must</u> be kept by the Corporation. T he log is to a lso include a ll r evised field

Doc: FM QD 1.1

Revision No: 4

Date: 6/09/02

Page 14

calibrations and changes to the number, type and locations of gauges. Entries onto the log are to be notified to the Headworks Operator without delay in writing.

A log of the performance of the system (ALERT and RTFM) <u>must</u> be kept by the Senio r Flood Operations Engineer. Any faults to the computer hardware or software, and any faults to field equipment which the Corporation has not advised the Headworks Operator of, are to be notified to the Corporation without delay in writing. The Corporation must promptly attend to the matters under its control and refer other matters to the appropriate agencies.

Whenever the Senior Flood Operations Engineer considers that the performance and functionality of the system can be improved, by whatever means, a recommendation <u>must</u> be made to the Headworks Operator a ccordingly. The Headworks Operator must promptly consider, act on, or r efer such r ecommendations to the Corporation as it considers appropriate.

5.3 **Storage of Documentation**

The performance of any flood monitoring and warning system is reliant on accurate historical data over a long period of time. The Senior Flood Operations Engineer must ensure that all available data and other documentation is appropriately collected and catalogued as approved by the Corporation, for future use.

5.4 **Key Reference Gauges**

Key f ield s tation lo cations h ave been identified for reference purposes wh en flood information is exchanged between authorities or given to the public. Should it be deemed desirable to relocate field stations from these locations, or vary flood classification levels, agreement <u>must</u> first be obtained between the Corporation, Headworks Operator, Bureau of Meteorology and the Local Governments within whose boundaries the locations are situated. The locations and gauge readings at which the various classifications of flooding occur are contained in Appendix D.

Gauge boards that can be read manually <u>must</u> be maintained as part of the equipment of each key field station. The Corporation must have procedures to ensure such gauge boards are read in the event of failure of field stations to operate.

5.5 **Reference Gauge Values**

Other agencies such as the Bureau of Meteorology, Ipswich City Council and the Brisbane City Council have direct access to the information from field stations for flood assessment purposes. The consultation between agencies is a very important part of the assessment and prediction of flood flows and heights.

The Corporation **must** ensure that information relative to the calibration of the Corporation's field stations is shared with such agencies.

Doc: FM QD 1.1

Revision No: 4

Date: 6/09/02

Page 15

 Deleted: shall	
 Deleted: shall	

Deleted: shall

Deleted: shall

Deleted: shall

Deleted: shall

Deleted: shall

Deleted: shall

6 COMMUNICATIONS

6.1 Communications between Staff

The Corporation is responsible for providing and maintaining equipment to allow adequate channels of communication to exist at all times between the Flood Operations Engineer and site staff at Wivenhoe and Somerset Dams.

The Headworks Operator is responsible for ensuring that adequate communication exists at all times between the Flood Operations Engineer and site staff at Wivenhoe and Somerset Dams. Where equ ipment d efficiencies a red etected du ring normal operations, su ch deficiencies are to be reported within one we ek to the Corporation for timely corrective action.

6.2 Dissemination of Information

Adequate and timely information is to be supplied to agencies responsible for the operation of facilities affected by flooding and for providing warnings and information to the public. These agencies shall include agencies holding Controlled Documents (Appendix B), and the persons listed in the Schedule of Authorities (Appendix C). For this purpose, the Corporation must maintain a Register of Contact Persons for Information, their means of contact and the type of information to be supplied to each. The Corporation must ensure that each agency receives a c opy of the up dated Re gister of Contact Persons for Information whenever amendments are made, but at least every 6 months.

The Flood Operations Engineer <u>must</u> supply information (refer 6.3) to each of these contact persons during dam releases.

All enquiries of her than provided for in the Register of C ontact Persons for Information, either to the H eadworks Operator, the Se nior Fl ood Operations Engineer, the Flood d Operations Engineer or dam site staff <u>must</u> be referred to the Corporation. The Corporation <u>must</u> provide a mechanism to receive these enquiries from the time it is advised that releases from the dams are likely until flood release operations are completed.

Some agencies have responsibilities for formal flood predictions, the interpretation of flood information and advice to the public. The Corporation, Headworks Operator, Senior Flood Operations Engineer and Flo od O perations Engineer <u>must</u> liaise and consult with those agencies with a view to ensuring all information relative to the flood event is consistent, and used and disseminated in accordance with agreed responsibilities.

6.3 Nature of Information

When, in the opinion of the Flood Operations Engineer, a flood situation is imminent and gate operations are likely, and is of a magnitude that it is likely to cause flows to exceed 2,000 m³/sec at Lo wood, the Flood Operations Engineer <u>must</u> advise those listed in the Register of Contact Persons for Information of :

Revision No: 4

Date: 6/09/02

Page 16

- {	Deleted:	and agencies
{	Deleted:	shall
{	Deleted:	shall

Deleted: shall

Deleted: shall
Deleted: shall

Deleted: shall

- (a) the current and proposed releases from the dams, and
- (b) the estimated flow rates and water heights at the key reference gauges listed in Appendix D.

This information is to be updat ed at intervals as better and more accurate i nformation becomes available.

6.4 Release of Information to the Public

The Corporation is responsible for the issue of information regarding storage conditions and current and proposed releases from the dams to the public and the media.

The Bureau of Meteorology has responsibility for issuing flood warnings.

The Emergency Serv ices Res ponse Au thorities, under t he Stat e Co unter Disaster Organisation Act 1975, have responsibility for the preparation of a local counter disaster plan hence the int erpretation of flood forecast information f or i nclusion i n t heir l ocal flood warnings prepared under the flood sub plan of the counter disaster plan.

Revision No: 4

Date: 6/09/02

7 **REVIEW**

7.1 Introduction

This review of the Manual has addressed the mechanisms of delegation and control of the dams in periods of operation of the dams for flood mitigation. It is known overtopping of the dams can result should floods occur which are derived from lesser rainfall than the probable maximum pr ecipitation s torm or from the c ombination of two lesser storms in close proximity. The dams may also overtop in the eventuality that the flood-gate control systems fail to operate or partially malfunction during the passage of a major flood or combination of floods.

Procedures and systems have been developed since the last revision that should enable lower risk operation of the dams for flood mitigation purposes. This techno logy is intended to provide longer warning times and the capability of examining options to optimise the safety of the dams and minimise the hazard potential and risk to the community.

With the passa ge of time neither the technical assumptions nor the physical conditions on which this Manual is based may remain unchanged. It is also recognised that the relevance of the Manual may change with changing circumstances.

It is important, therefore, that the Manual contain operational procedures which in themselves cause the Manual's procedures, and the as sumptions and conditions upon which they are based, to be checked and reviewed regularly.

The checking and reviewing process must involve the Headworks Operator and all associated operations pe rsonnel i n order that c hanges o f personnel d o not result in a diminished understanding of the basic principles upon which the operational procedures are based.

Variations to the Manual may be made in accordance with provisions in Section 1.8.

7.2 Personnel Training

The Headworks Operator <u>must</u> report to the Corporation by 30th September each year on the training and state of preparedness of operations personnel. A co py of this report must be forwarded to the Chief Executive of the Department of Natural Resources and Mines.

7.3 Monitoring and Warning System and Communication Networks

The Headworks Operator <u>must</u> provide a report to the Corporation by the 1st May and 1st November of each year; and after each flood event. The report <u>must</u> as sess in terms of hardware, software and personnel, the :

- adequacy of the communication and data gathering facilities,
- reliability of the system over the previous period,
- reliability of the system under prolonged flood conditions,
- accuracy of forecasting flood flows and heights, and

Doc: FM QD 1.1 Revision No: 4

Date: 6/09/02

Page 18

Deleted: shall

Deleted: shall

Deleted: shall

Formatted: Bullets and Numbering

• the overall state of preparedness of the system.

The Corporation must rev iew the report, and taking into account its o wn log of the performance of the fi eld equipment, take any action considered nec essary for the proper functioning and improvement of the system. A copy of this report must be forwarded to the Chief Executive of the Department of Natural Resources and Mines.

7.4 **Operational Review**

After each significant flood event, the Cor poration <u>must</u> r eview the effectiveness of the operational procedures contained in this manual. The Headworks Operator is required to prepare a report for submission to the Corporation within six weeks of any flood event that requires mobilisation of the Flood Control Centre.

7.5 Five Yearly Review

The Corporation, at intervals of no greater than five years <u>must</u> review the Manual pursuant to Section 6 Di vision 2 of the A ct. The review is to take into ac count the c ontinued suitability of the communication network, and the flood monitoring and warning system as well as hy drological and hy draulic engineering assessments of the operational procedures. The hydrologic in vestigations performed for the purpose of this manual are discussed in Appendix I. Deleted: The Headworks Operator by the 1st November of each year, after every event that results in flood operation of the dams and at other times as appropriate, shall review the adequacy of the communication and data gathering facilities and make recommendations to the Corporation regarding improving reliability.¶

Deleted: shall

Deleted: shall

Revision No: 4

Date: 6/09/02

8 WIVENHOE DAM

8.1 Introduction

Wivenhoe Dam is capable of being operated in a number of ways to reduce flooding in the Brisbane River downstream of the dam, depending on the part of the catchment in which the flood originates and depending also on the magnitude of the flood.

A general plan and cross-section of Wivenhoe Dam, and relevant elevations are included in Appendix J.

Storage and discharge data are included in Appendix E.

The reservoir volume above FSL of EL 67.0 is available as temporary flood storage. How much of the av ailable flood st orage com partment is utilised, will de pend on the init ial reservoir level be low FSL, the magnitude of the flood being regulated and the procedures adopted.

Spiltyard Creek D am is part of the overall Wivenhoe Area Project and it fo rms the upper pumped storage of the peak power generation scheme. Sp lityard Creek Dam i mpounds a volume of 28 700 ML at its normal full supply level (El 166.5). The contents of Splityard Creek Dam can be emptied into Lake Wivenhoe within 12 hours by releasing water through the power station conduits. This volume of water can affect the level in Wivenhoe Dam by up to 300mm when Wivenhoe Dam is close to FSL. The operational level of Splityard Creek Dam should be considered when assessing the various trigger levels of Wivenhoe Dam.

The Corporation has acquired land above FSL to a level of EL 75.0 to provide temporary flood storage. Reasonable care <u>must</u> be exercised to confine the flood rises to below this level. This requirement should be ignore d in the case of extreme floods that threaten the safety of the dams.

8.2 Initial Action

When indications are received of an imminent flood, the flood control operation of the dam <u>must</u> commence with the storing of all inflow of the Brisbane River in Wivenhoe Dam, whilst_ an assessment is made of the origin and magnitude of the flood. The spillway gates are not to be opened for flood control purposes prior to the reservoir level exceeding EL 67.25.

8.3 Regulator and Gate Operation Procedures

Rapid opening of outlets (spillway gates and regulators) can cause hydraulic surges and other effects in the Brisbane River that can endanger life and property and may sometimes have other adverse effects. Under normal gate operations, the gates and regulators are therefore to be operated one at a time at intervals that will minimise adverse impacts on the river system.

Rapid closure of the gates can affect river-bank stability. R apid closure of more than one gate at a time should only be used when time is critical and there is a requirement to correct a malfunction to preserve st orage or t o reduce d ownstream f looding ra pidly. For flood

 Doc: FM QD 1.1
 Revision No: 4
 Date: 6/09/02
 Page 20

Deleted: shall

operations where time is not critical, longer closure intervals should be used. The minimum closure intervals specified below are based on experience from the 1974 flood.

During the initial opening or final closure sequences of ga te operations it is permissible to replace the discharge through a gate by the immediate opening of a regulator valve (or the reverse operation). T his allows for greater c ontrol of low flows and e nables a sm ooth transition and closure as slow as possible to prevent the stranding of fish downstream of Wivenhoe Dam.

Except as provided for in procedure 4 of Section 8.4 and as indicated above, the gate opening and c losing intervals as tabled below are t he most rapid permitted for flood m itigation purposes.

T 11 0 1

Table 8.1 WIVENHOE DAM					
MINIMUM INTERVALS for Norr	nal Operation				
500 mm Incremental gate openings 10 minutes					
500 mm Incremental gate closures	20 minutes				
Full regulator opening or closures	30 minutes				

Gates are numbered 1 to 5 from the left bank looking downstream.

Under nor mal operation, on ly one gate is to be opened at any one time and the following procedures are to be adopted:

Approximate Discharge Range	Gate opening sequence	Comments			
(a) U p to $330 \text{ m}^3/\text{sec}$	1. Open Gate 3 up to 3.5 metres	• Gates 1, 2, 4 & 5 remain closed			
(b) 33 0 m ³ /sec to 575 m ³ /sec	 Gate 3 at 3.5 metres Open Gates 2 & 4 alternately to 0.5 metre Open Gate 3 to 4.0 metre Open Gates 2 & 4 alternately to 1.0 metre 	• Gates 1 & 5 remain closed unless discharge from Gates 2 & 4 impinges on side wall of plunge pool proceed to (c)			
(c) 57 5 m ³ /sec to 1160 m ³ /sec	 6. Gate 3 kept at 4.0 metres 7. Open Gates 1 & 5 alternately one increment followed by Gates 2 & 4 alternately one increment 8. Repeat Step 7 until at the end of the sequence Gates 1 & 5 are open 1.5 metres and Gates 2 & 4 are open 2.5 metres 	 Flow in spillway to be as symmetrical as possible Gates 2 & 4 are to have openings not more than 1.0 metre more than Gates 1 & 5 			

Revision No: 4

Date: 6/09/02

(d) 1 160 m ³ /sec to 1385 m ³ /sec	 9. Open Gate 3 to 4.0 metres 10. Open Gates 1 & 5 alternately to 2.0 metres followed by opening Gates 2 & 4 alternately to 3.0 metres 	 Flow in spillway to be as symmetrical as possible Gates 2 & 4 are to have openings not more than 1.0 metre more than Gates 1 & 5
(e) 1 385 m ³ /sec to 2290 m ³ /sec	11. Open ALL gates to 5.0 metre openings	 Flow in spillway to be as symmetrical as possible Gates 2 & 4 are to have openings not less than Gates 1 & 5 or not more than 1.0 metre more than Gates 1 & 5 Gate 3 is to have an opening not less than Gates 2 & 4 or not more than 1.0 metre more than 2 & 4.
(f) Grea ter than 2290 m ³ /sec	12. Open ALL gates to incrementally in the sequence 3, 2, 4, 1, 5	 Flow in spillway to be as symmetrical as possible Gate 3 to have the largest opening Gates 2 & 4 are to have openings greater than Gates 1 & 5

Gate operating procedures in the event of equipment failure are contained in Appendix G. If one or more gates are inoperable during the course of the flood event, the gate openings of the remaining gates are to be adjusted to compensate. These adjustments should ensure that:

- The flow in the spillway is as symmetrical as practicable.
- The impact of the flow on the sidewalls of the plunge pool should be minimised.

In general, gate closing is to occur in the reverse order. The final gate closure should occur when the lake level has returned to Full Supply Level.

8.4 Flood Control Procedures

When the preliminary estimation of the degree of e xpected flooding has been made, the operating procedures set out hereunder shall be used at Wivenhoe Dam.

As the magnitude of the expected flood increases, the procedures to be adopted commence with Procedure 1 and extend to Procedure 4 as set out in the following table in response to current and predicted inflows both into the dams, and into the Brisbane River from tributaries downstream of the dam s. T his tabl e provides i ndicative l imits of application for each procedure for the initial filling of Wivenhoe Dam. Once Wivenhoe Dam has peaked and the drainage phase has commenced the indicative limits will not apply.

Provision is made for the releases to be regulated so as to lessen the impact when peak flows from Lockyer Creek, Bremer River and other tributaries enter the Brisbane River. This may result in the releases being decreased for a time even though lake levels are rising.

Provision is als o made for the releases from Wivenhoe Dam to be regulated in the early procedures so as not to unduly submerge bridges. The relevant bridges and their estimated submergence flows are included in Appendix D.

 Doc: FM QD 1.1
 Revision No: 4
 Date: 6/09/02
 Page 22

				Q _{Mogglil} < 4000 m ³ /sec				Gates are <u>NOT</u> to be overtopped	
		Q _{Colleges Crossing} < 175 m ³ /sec with care taken not to submerge Twin Bridges prematurely	Q _{Burtons/Noogporah} < 430 m ³ /sec with care taken not to submerge Colleges Crossing brematurely	Q _{kholo} < 550 m ³ /sec with care taken not to submerge Burtons/Noogoorah prematurely	Q _{MtCrosby} < 1900m ³ /sec with care taken not to submerge Kholo prematurely	Q _{MtCrosby} < 1900m ³ /sec with care taken not to submerge Kholo prematurely	Q _{Lowood} < peak of Lockyer <u>and</u> Q _{Lowood} < peak of Bremer	$Q_{Moggill} < 4000 \text{ m}^3/\text{sec}$	Gate opening interval restrictions NO LONGER apply
Applicable Limits	Q _{Wivenhoe} = 0 m ³ /sec i.e No Releases	Q _{Wivenhoe} < 110 m ³ /sec	Q _{Wivenhoe} < 380 m ³ /sec	Q _{Wivenhoe} < 500 m ³ /sec	Q _{Wivenhoe} < 900 m ³ /sec	Q _{Wivenhoe} < 1500 m ³ /sec	Q _{Lowood} < 3500 m ³ /sec	Q _{Lowood} < 3500 m ³ /sec	Gates are to be opened until reservoir level begins to fall
Current Reservoir Level	EL ≤ 67.25	67.25 < EL ≤ 67.50	67.50 < EL ≤ 67.75	67.75 < EL ≤ 68.00	68.00 < EL ≤ 68.25	68.25 < EL ≤ 68.50	68.50 < EL < 74.00	68.50 < EL < 74.00	EL ≥ 74.00 or dam safety may be compromised
Procedure	0	1A	1B	10	1D	1	2	3	4

Wivenhoe Dam - Normal Gate Operating Procedures: Initial Filling Phase

The gate opening sequences specified are to be overridden when the gates will be overtopped during normal operation.

Doc: FM QD 1.1

Г

Т

Revision No: 4

Date: 6/09/02

Page 23

٦

In procedure 2, if there is little or no flow in Lockyer Creek, the release from Wivenhoe Dam should be limited to between 1900 m³/sec and 2000 m³/sec with care taken not to submerge Mt Crosby Weir Bridge or Fernvale Bridge prematurely. If the flood storage compartments of Wivenhoe Dam and Somerset Dam cannot be emptied within the prescribed time of seven days, the release from Wivenhoe Dam should be limited to between 1900 m³/sec and 3500 m³/sec. In such circumstances, the release from the dam should be less than the peak inflow into the lake.

8.5 Closing Procedures

If at the time the lake level in Wivenhoe Dam begins to fall, the combined flow at Lowood is in excess of 3500 m^3 /sec, then the combined flow at Lowood is to be reduced to 3500 m^3 /sec as quickly as practicable having regard to Section 3.3, and is to remain at this rate until final gate closure procedures can commence.

Gate closing procedures should be initiated having regard to the following requirements:

- (a) Early release of st ored water to regain flood-mitigating ability for any subsequent flood inflows as described in Section 3.3.
- (b) Gate operation procedures as described in Section 8.3.
- (c) Downstream impact of the discharges. To pre vent the stranding of f ish downstream of the dam, closures below flows of 275 m³/sec should be undertaken as slow as practicable and if possible such closures should occ ur during daylight hours on a weekday so that personnel are available for fish rescue.
- (d) Establishment of storage at FSL at completion of flood events.

Revision No: 4

Date: 6/09/02

9 SOMERSET DAM

9.1 Introduction

Somerset Dam is capable of being operated in a number of ways to regulate Stanley River floods and optimise the flood mitigation capacity of Wivenhoe Dam.

A general plan and cross-section of Somerset Dam, and r elevant dam operating levels are included in Appendix J.

The discharge capacities for various storage levels of Somerset Dam are listed in Appendix F.

9.2 Initial Action

Upon indications being received of a significant inflow, the flood control operation of the dam shall commence with the raising of any closed gates and the closure of all low level regulators and sluices, whilst an assessment is made of the origin and magnitude of the flood.

9.3 Regulator and Gate Operation Procedures

Table 9.1

SOMERSET DAM MINIMUM INTERNALS FOR NORMAL OPERATIONS				
	OPENING	CLOSING		
Regulators	30 minutes	60 minutes		
Sluice Gates	120 minutes	180 minutes		
Crest Gates	Gates are normally open			

During the initial opening or final closure sequences of gate operations it is permissible to replace the discharge through a sluice gate by the immediate opening of one or more regulator valves (or the reverse operation). This allows for greater control of low flows and enables a smooth transition on opening and closing sequences.

9.4 Flood Control Procedure

It is essential that the operating p rocedures ado pted should not endanger the sa fety of Wivenhoe Dam. Within this constraint, the Senior Flood Operations Engineer <u>must</u> adopt a procedure for the operation of Somerset Dam such that:

(a) the structural safety of Somerset Dam is not endangered;

Doc: FM QD 1.1

Revision No: 4

Date: 6/09/02

Page 25

Deleted: shall

(b) the Upper Brisbane River fl ood f low plus Somerset Da m releases does not cause Wivenhoe Dam to be overtopped.

The normal operating procedure to be used for Somerset Dam is as follows.

The crest gates a re raised to enable uncontrolled discharge. The l ow level regulators and sluices are to be kept closed until either:

- (i) the lake level in Wivenhoe Dam begins to drop or
- (ii) the level in Somerset Dam exceeds EL 102.25.

In the case of (i) above the opening of the regulators and sluices is not to increase the inflow to Wivenhoe Dam above the peak inflow from the Brisbane River just passed or, if possible, not to cause the Wivenhoe Dam lake level to exceed EL 74.

In the case of (ii) above, the Senior Flood Operations Engineer <u>must</u> direct the operation of the low-level regulators and sluices to ensure the safety of Somerset Dam. It should also be recognised that the D' Aguilar H ighway at Mar y Sm okes Creek b ecomes inun dated when Lake Somerset exceeds EL 102.2.

If the flood event emanates from the Stanley River catchment only, without significant runoff in the Upper Brisbane River catchment, the operation of Somerset Dam will proceed on the basis that Wivenhoe Dam has peaked as per (i) above.

Deleted: shall

Revision No: 4

Date: 6/09/02

10 EMERGENCY

10.1 Introduction

While every care has been exercised in the design and construction of the dams, there still remains a low risk that the dams may develop an emergency condition either through flood events or other causes. Experience elsewhere in the world suggests that vigilance is required to recognise emergency flood conditions such as:

- Occurrence of a much larger flood than the discharge capacity of the dam;
- Occurrence of a series of large storms in a short period;
- Failure of one or more gates during a flood.
- Development of a piping failure through the embankment of Wivenhoe Dam;
- Damage to the dams by earthquake;
- Damage to the dams as an act of war or terrorism;
- Other uncommon mechanisms.

Responses to these and other conditions are included in separate Emergency Action Plans.

10.2 Overtopping of Dams

Whatever the circu mstances, every endeavour must be m ade to p revent ov ertopping of Wivenhoe Dam by the progressive opening of operative spillway gates.

In the event that the probability of overtopping of Wivenhoe Dam is unacceptably high, then as an ab solute last r esort the saddl e d ams may be br eached. Su ch act ions <u>must</u> only be initiated with the approval of the Chief Executive.

Somerset Dam should, if possible, not be overtopped by flood water but, if Wivenhoe Dam is threatened by overtopping, the release of wa ter from Somerset Dam is to be re duced, for example by the use of its spi llway gates, even at the risk of ov ertopping Somerset Dam in order to prevent, if possible, the overtopping of Wivenhoe Dam.

10.3 Communications Failure

In the event of normal communications being lost between the F lood Operations Engineer and either Wivenhoe Dam or S omerset Dam, the dam supervisor at that dam is to maintain contact with the dam supervisor at the o ther d am, to receive instructions through the remaining communications link.

In the event of normal communications being lost between the F lood Operations Engineer and both Wivenhoe Dam and Somerset Dam, the dam supervisors at each dam are to adopt the procedures set out below during flood events, and are to maintain contact with each other, where possible.

If all communications are lost between the Engineer, Wivenhoe Dam and Somerset Dam, the officers in charge at each dam are to adopt the procedures set out below.

Doc: FM QD 1.1

Revision No: 4

Date: 6/09/02

Page 27

10.4 Wivenhoe Dam Emergency Procedure

In the event of total communication failure, the minimum gate openings related to lake level set out in the table below are to be maintained for both opening and closing operations.

Lake Level m AHD	Gate 3 Opening (m)	Gates 2 & 4 Opening (m)	Gates 1 & 5 Opening (m)	Discharge m ³ /sec
67.0		-	-	0
67.5	0.5	-	-	50
68.0	1.5	-	-	155
68.5	2.5	-	-	260
69.0	3.5	0.5	-	470
69.5	4.0	1.0	-	640
70.0	4.0	1.5	0.5	875
70.5	4.0	2.0	1.0	1115
71.0	4.0	2.5	1.5	1365
71.5	4.5	2.5	2.0	1560
72.0	4.5	3.0	2.5	1820
72.5	5.0	4.0	3.0	2250
73.0	5.0	5.0	5.0	2960
73.5	6.5	6.5	6.5	3850
74.0	8.0	8.0	8.0	4750
74.5	10.0	10.0	10.0	6030
75.0	12.5	12.5	12.5	7830
75.5	14.0	14.0	14.0	9150
76.0	Fully Open	Fully Open	Fully Open	10790
76.5	Fully Open	Fully Open	Fully Open	11250
77.0	Fully Open	Fully Open	Fully Open	11720

Table 10.4 Minimum Gate Openings Wivenhoe Dam

If one or more gates become inoperable, then by reference to Table E-2 the gate openings of operable gates are to be increased in order that the discharges for the lake levels shown in Table 10.4 are achieved.

If, because of compliance with the provisions of Section 8.3 and the h igh inflow rate, the minimum gate openings cannot be maintained, the t ime i ntervals between s uccessive openings shown in Table 8.1 are to be halved.

If the actual gate openings fall more than three settings below the cum ulative number of minimum settings of Table 10.4, then successive gate operations are to be carried out as rapidly as possible until the minimum settings are achieved. Under these circumstances, it may be necessary to operate more than one gate at any one time.

Doc: FM QD 1.1

Revision No: 4

Date: 6/09/02

10.5 Somerset Dam Emergency Procedure

In the event of total communication failure, the spillway gates are to be kept raised to allow uncontrolled discharge. The regulators and sluices are to be kept closed until either:

- (i) the level in Wivenhoe Dam begins to drop or
- (ii) the level in Somerset Dam exceeds EL 102.25.

The level in Wivenhoe Dam can be determined locally by the Dam Supervisor at So merset Dam from the tailwater gauge located just downstream of Somerset Dam.

In the case of (i) above, the opening of the regulators and sluices is not to increase the level in Wivenhoe Dam above the peak level already attained. Section 9.3 on regulator and gate operation interval is to be observed.

In the case of (ii) above, the regulators and sluices are to be operated such that the free-board between the flood level in Wivenhoe Dam and EL 77 is the same as the free-board between the flood level in So merset Dam and the non-spillway cre st level in So merset D am (E L 107.46). The low level out lets in So merset Dam are not to be opened if the water level in Wivenhoe Dam exceeds the level set out below for given water levels in Somerset Dam.

Somerset Lake Level m AHD	Wivenhoe Lake Level m AHD
102.5	72
103.5	73
104.5	74
105.5	75
106.5	76
107.46	77

The constraints applicable to case (i) operation above do not apply to case (ii) operation.

10.6 Equipment Failure

In the event of equipment failure the action to be taken is indicated in Appendix G f or Wivenhoe Dam and Appendix H for Somerset Dam.

Revision No: 4

Date: 6/09/02

APPENDIX A EXTRACT FROM ACT

EXTRACT FROM WATER ACT 2000

Division 2 – Flood Mitigation

Owners of certain dams must prepare flood mitigation manual

- 496.(1) A r egulation may nominate an owner of a d am as an owner who must prepare a manual (a "flood mitigation manual") of operational procedures for flood mitigation for the dam.
- (2) The regulation must nominate the time by which the owner must comply with section 497(1).

Approving flood mitigation manual

497.(1) The owner must give the chief executive a c opy of the flood mitigation manual for the chief executive's approval.

(2) The chief executive may, by gazette notice, approve the manual.

(3) The approval may be for a period of not more than 5 years.

(4) The c hief e xecutive may get a dvice from an a dvisory co uncil before approving the manual.

Amending flood mitigation manual

498.(1) The chief executive may require the owner, by notice, to amend the flood mitigation manual.

(2) The owner must comply with the chief executive's request under subsection (1).

- (3) The chief executive must, by gazette notice, approve the manual as amended.
- (4) The approval of the manual as amended must be for-

(a) the balance of the period of the approval for the manual before amendment; or

(b) a period of not more than 5 years from the day the manual as amended was approved.

(5) The chief executive may get advice from an advisory council before approving the manual as amended.

Regular reviews of flood mitigation manual

Doc: FM QD 1.1

Revision No: 4

Date: 6/09/02

499. Before the approval for the flood mitigation manual expires, the owner must-

- (a) review, and if necessary, update the manual; and
- (b) give a copy of it to the chief executive under section 497.

Protection from liability for complying with flood mitigation manual

500.(1) The chief executive or a member of the council does not incur civil liability for an act done, or omission made, honestly and without negligence under this division.

(2) An owner who observes the operational procedures in a flood mitigation manual approved by the chief executive does not incur civil liability for an act done, or omission made, honestly and without negligence in observing the procedures.

(3) If subsection (1) or (2) prevents civil liability attaching to a person, the liability attaches instead to the State.

(4) In this section-

"owner" includes-

- (a) a director of the owner or operator of the dam; or
- (b) an employee of the owner or operator of the dam; or
- (c) an agent of the owner or operator of the dam

Revision No: 4

Date: 6/09/02

APPENDIX B AGENCIES HOLDING DOCUMENTS

AGENCIES HOLDING CONTROLLED DOCUMENTS OF MANUAL OF OPERATIONAL PROCEDURES FOR FLOOD MITIGATION FOR WIVENHOE DAM AND SOMERSET DAM

Dam Owner	South East Queensland Water Corporation
Emergency Services	Department of Emergency Services, Disaster Management Service
	Brisbane City Counter Disaster Committee
	Esk Shire Counter Disaster Committee
	Ipswich City Counter Disaster Committee
	Kilcoy Shire Counter Disaster Committee
Severe Weather Warning Authority	Bureau of Meteorology
Primary Response Authorities	Brisbane City Council
	Esk Shire Council
	Ipswich City Council
	Kilcoy Shire Council
Regulator of Dam Safety	Department of Natural Resources and Mines
Schedule of Authorities, Appendix C	Agencies and persons listed in Appendix C

The Corporation <u>must</u> keep a register of contact persons of holders of controlled documents (Section 1.9 refers).

Deleted: shall

Doc: FM QD 1.1

Date: 17/04/02

AUTHORITY	AGENC Y/PERSON	APPROVED BY	APPROVAL DATE	REFERENCE
Senior Flood Operations Engineer	Robert Arnold Ayre SunWater	Chief Executive of this manual	Date of approval of this manual	
	John Lawrence Ruffini Department of Natural Resources and Mines	Chief Executive	Chief Executive Date of approval of this manual	
Flood Operations Engineer Peter Hugh Allen Department of Na and Mines	Peter Hugh Allen Department of Natural Resources and Mines	Chief Executive of this manual	Date of approval of this manual	
	Robert Arnold Ayre SunWater	Chief Executive of this manual	Date of approval of this manual	
	John Lawrence Ruffini Department of Natural Resources and Mines	Chief Executive of this manual	Date of approval of this manual	
	Toby Leonard McGrath SunWater	Chief Executive of this manual	Date of approval of this manual	
	Donald James Cock Department of Natural Resources and Mines	Chief Executive	Chief Executive Date of approval of this manual	

APPENDIX C SCHEDULE OF AUTHORITIES

Doc: FM QD 1.1

APPENDIX D GAUGES AND BRIDGES

D.1. KEY REFERENCE GAUGES

	BRISBANE CITY													
	FL	FL OOD CLASSIFICATION												
Gauge		Minor	Moderate	Major	1974 Flood									
Moggill	10.	0	13.0	15.5	19. 9									
Jindalee	6.	0	8.0	10.0	14. 1									
Brisbane City Gauge (B.C.G)	1.	7	2.6	3.5	5. 5									

(Reference: Brisbane City Disaster Management Plan, Flood Management Special Plan 30 July, 1996)

	IPSWICH	I CITY		
	FL OOD	CLASSIFICATI	ON	
Gauge	Minor	Moderate	Major	1974 Flood
David Trumpy Bridge	7.0	9.0	11.7	20.7
Mt Crosby Weir	11.0	13.0	21.0	26.7
Moggill	10.0	13.0	15.5	19.9

ESK SHIRE

	FL	OOD CLASSIFICATIO	DN
Gauge	Minor	Moderate	Major
Lowood Alert Station	8.6	15.9	21.2

KILCOY SHIRE

	FL	LOOD CLASSIFICATIO	DN
Gauge	Minor	Moderate	Major
C I D			
Somerset Dam Reservoir Level	103.0	105.0	106.0

Values are in metres AHD

ĥ

F

APPENDIX D

D.2. SUBMERGENCE FLOWS FOR BRIDGES

AMTD	Bridge Name	Estimated Submergence Flow m ³ /sec
140	Twin Bridges	50
132	Savage's Crossing	130
87	College's Crossing	175-200*
120	Burton's Bridge	430
100	Kholo Bridge	550
91	Mt.Crosby Weir Bridge	1900
136	Fernvale Bridge	2000

* Affected by tides.

Twin Bridges, Wivenhoe Pocket Road, Fernvale Savage's Crossing, Banks Creek Road, Fernvale College's Crossing, Mt Crosby Rd, Karana Downs Burton's Bridge, E Summerville Rd, Borallon Kholo Bridge, Kholo Rd, Ipswich Mt Crosby Weir Bridge, Allawah Rd, Mt Crosby Fernvale Bridge, Brisbane Valley Highway, north of Fernvale

APPENDIX EWIVENHOE DAM TECHNICAL DATATABLE E1STORAGE AND UNCONTROLLED DISCHARGES

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		510			ULLED DISCH	indeb				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			***	**	*	*				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$										
rm^3/sec rm^3/sec rm^3/sec rm^3/sec 57.0414-11.1024.905057.5453-12.0425.246958.0466-12.9725.41512858.5494-13.9025.73221159.0523-15.7726.27743960.0584-16.7126.410557960.5616-17.6426.613673561.0649-18.5826.917090561.5683-19.5127.120710.9062.5756-21.3827.5288149563.0795-22.3227.8333172063.5835-23.2528.0379195064.4877-25.1228.44792.45065.5965-26.0628.75322.72065.51012-27.9229.16453.28066.01061-27.9229.16453.28066.5133417132.6030.19594.86069.013932303.5330.31.0285.0069.013932303.54030.71.715.51070.0151735035.4030.71.7198.66071.517	m AHD			per 1mm rise	per Regulator	per Spillway	Available			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		10^{6} m^{3}	10^{6} m^{3}	per hour	m ³ /sec		Discharge			
57.5 453 - 12.04 25.2 4 69 58.0 466 - 12.97 25.4 15 128 58.5 494 - 13.90 25.7 32 211 59.0 523 - 14.84 25.9 53 316 59.5 553 - 16.71 26.2 77 439 60.0 584 - 16.71 26.4 105 579 60.5 616 - 17.64 26.6 136 735 61.0 649 - 18.58 26.9 170 905 61.5 683 - 19.51 27.1 207 1090 62.0 719 - 20.45 27.3 246 1290 62.5 756 - 21.38 27.5 288 1495 63.0 795 - 22.32 27.8 333 1720 64.0 877 - 24.19 28.2 428 2195 64.5 920 - 25.12 28.4 479 2450 65.5 1012 - 26.99 28.9 587 2995 66.0 1061 - 27.92 29.1 645 3280 67.0 1165 0 29.79 29.5 765 3885 67.5 1220 56 30.73 29.7 828 4200 68.5 1334 171 32.60 30.7 1706				m ³ /sec		m ³ /sec	m ³ /sec			
57.5 453 - 12.04 25.2 469 58.0 466 - 12.97 25.4 15 128 58.5 494 - 13.90 25.7 32 211 59.0 523 - 14.84 25.9 53 316 59.5 553 - 16.71 26.2 77 439 60.0 584 - 16.71 26.4 105 579 60.5 616 - 17.64 26.6 136 735 61.0 649 - 18.58 26.9 170 905 61.5 683 - 19.51 27.1 207 1090 62.5 756 - 21.38 27.5 288 1495 63.0 795 - 22.32 27.8 333 1720 63.5 835 - 22.325 28.0 379 1950 64.0 877 - 24.19 28.2 428 2195 64.5 920 - 25.12 28.4 479 2450 65.5 1012 - 27.92 29.1 645 3280 67.0 1165 0 29.79 29.5 765 3885 67.5 1220 56 30.73 29.7 828 4200 68.5 1334 171 32.60 30.1 959 4860 69.5 1454 290 34.47 30.5 1098	57.0	414	-	11.10	24.9	0	50			
58.0 466 - 12.97 25.4 15 128 58.5 494 - 13.90 25.7 32 211 59.0 523 - 14.84 25.9 53 316 59.5 553 - 15.77 26.2 77 439 60.0 584 - 16.71 26.4 105 779 61.0 649 - 18.58 26.9 170 905 61.5 683 - 19.51 27.1 207 1090 62.0 719 - 20.45 27.3 246 1290 62.5 756 - 21.38 27.5 288 1495 63.0 795 - 22.32 27.8 333 1720 63.5 835 - 23.25 28.0 379 1950 64.6 877 - 24.19 28.2 428 2195 65.0 965 - 25.12 28.4 479 2450 65.5 1012 - 26.96 28.7 532 2720 65.5 1012 - 28.96 29.7 565 3885 67.0 1165 0 29.79 29.5 765 3885 67.5 1220 56 30.73 29.7 828 4200 68.5 1334 171 32.60 30.1 999 4860 69.0 1393 230 33.53 30.3 1028			-							
88.5 494 - 13.90 25.7 32 211 59.0 523 - 14.84 25.9 53 316 59.5 553 - 15.77 26.2 77 439 60.0 584 - 16.71 26.4 105 579 60.5 616 - 17.64 26.6 136 735 61.0 649 - 18.88 26.9 170 905 61.5 683 - 19.51 27.1 207 1090 62.0 719 - 20.45 27.3 246 1290 62.5 756 - 21.38 27.5 288 1495 63.0 795 - 22.32 27.8 333 1720 64.0 877 - 24.19 28.2 428 2195 64.5 920 - 25.12 28.4 479 2450 65.5 1012 - 26.06 28.7 532 270 65.5 1012 - 28.99 28.7 532 270 66.5 1112 - 28.99 28.9 587 2995 66.0 1061 - 27.92 29.1 645 3280 67.5 1220 56 30.73 29.7 828 4200 68.0 1276 112 31.66 29.9 893 4525 67.5 1334 171 32.60 30.1 959 <td></td> <td>466</td> <td>-</td> <td></td> <td></td> <td></td> <td></td>		466	-							
59.0 523 $ 14.84$ 25.9 53 316 59.5 553 $ 15.77$ 26.2 77 439 60.0 584 $ 16.71$ 26.4 105 579 60.5 616 $ 17.64$ 26.6 136 735 61.0 649 $ 18.58$ 26.9 170 905 62.0 719 $ 20.45$ 27.3 246 1290 62.5 756 $ 21.38$ 27.5 288 1495 63.0 795 $ 22.32$ 27.8 333 1720 63.5 835 $ 23.25$ 28.0 379 1950 64.0 877 $ 24.19$ 28.2 428 2195 64.5 920 $ 25.12$ 28.4 479 2450 65.5 1012 $ 26.99$ 28.9 587 2995 66.0 1061 $ 27.92$ 29.1 645 3280 67.5 1220 56 30.73 29.7 828 4200 68.0 1276 112 31.66 29.9 893 4525 68.5 1334 171 32.60 30.1 989 4525 69.0 1393 230 33.53 30.3 1028 5200 69.5 1454 290 34.47 30.5 1098 550 70.0 1581 418 <td></td> <td>494</td> <td>-</td> <td></td> <td></td> <td></td> <td></td>		494	-							
59.5 553 - 15.77 26.2 77 439 60.0 584 - 16.71 26.4 105 579 61.0 649 - 17.64 26.6 136 735 61.0 649 - 18.58 26.9 170 905 61.5 683 - 19.51 27.1 207 1090 62.0 719 - 20.45 27.3 246 1290 62.5 756 - 21.38 27.5 288 1495 63.0 795 - 22.32 27.8 333 1720 64.5 920 - 25.12 28.4 479 2450 64.5 920 - 25.12 28.4 479 2450 65.5 1012 - 26.99 28.9 587 2.995 66.0 1061 - 27.92 29.1 645 3280 67.0 1165 0 29.79 29.5 765 3885 67.5 1220 56 30.73 29.7 828 4200 68.0 1276 112 31.66 29.9 893 4525 68.5 1334 171 32.60 30.1 959 4860 69.0 1393 230 35.33 30.3 1028 5200 69.5 1454 290 34.47 30.7 1170 5910 70.5 1581 418 37.27 <t< td=""><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td></t<>			-							
60.0 584 - 16.71 26.4 105 579 60.5 616 - 17.64 26.6 136 735 61.0 649 - 18.58 26.9 170 905 61.5 683 - 19.51 27.1 207 1090 62.0 719 - 20.45 27.3 246 1290 62.5 756 - 21.38 27.5 288 1495 63.0 795 - 22.32 27.8 333 1720 63.5 835 - 22.32 27.8 333 1720 64.5 920 - 25.12 28.4 479 2450 65.5 902 - 25.12 28.4 479 2450 65.5 1012 - 26.99 28.9 587 2.995 66.0 1061 - 27.92 29.1 645 3280 66.5 1112 - 28.86 29.3 704 3580 67.5 1220 56 30.73 29.7 828 4200 68.5 1334 171 32.60 30.1 959 4525 68.5 1334 171 32.60 30.1 959 4525 68.5 1334 171 32.60 30.1 959 4525 68.5 1334 171 32.60 30.7 1098 5500 70.0 1517 35.40 30.7 <t< td=""><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td></t<>			-							
60.5 61.6 $ 17.64$ 26.6 13.6 73.5 61.0 64.9 $ 18.58$ 26.9 170 90.5 61.5 68.3 $ 19.51$ 27.1 20.7 1090 62.0 719 $ 20.45$ 27.3 24.6 12.90 62.5 75.6 $ 21.38$ 27.5 28.8 14.95 63.0 795 $ 22.32$ 27.8 33.3 1720 63.5 83.5 $ 23.25$ 28.0 37.9 1.950 64.0 87.7 $ 24.19$ 28.2 42.8 2.195 64.5 920 $ 25.12$ 28.4 479 2.450 65.5 1012 $ 26.99$ 28.9 587 2.995 66.0 10.61 $ 27.92$ 29.1 645 3.280 67.0 1165 0 29.79 29.5 765 3.885 67.5 1122 31.66 29.9 893 4.525 68.0 1276 112 31.66 29.9 893 4.525 68.5 1334 171 32.60 30.1 995 4.860 69.5 1.454 290 34.47 30.5 10.98 5.50 70.0 1517 350 35.40 30.7 1.77 5.910 71.5 1.81 418 36.33 30.9 1.244 62.80 71.0 <td></td> <td></td> <td>-</td> <td></td> <td>26.4</td> <td></td> <td colspan="4">579</td>			-		26.4		579			
61.0 649 - 18.58 26.9 170 905 61.5 683 - 19.51 27.1 207 1090 62.0 719 - 20.45 27.3 246 1290 62.5 756 - 21.38 27.5 288 1495 63.0 795 - 22.32 27.8 333 1720 63.5 835 - 23.25 28.0 379 1950 64.0 877 - 24.19 28.2 428 2195 64.5 920 - 25.12 28.4 479 2450 65.5 1012 - 26.99 28.9 587 2995 66.0 1061 - 27.92 29.1 645 3280 67.5 1122 - 28.86 29.3 704 3580 67.5 1220 56 30.73 29.7 828 4200 68.0 1276 112 31.66 29.9 893 4525 68.5 1334 171 32.60 30.1 959 4860 69.6 1393 230 33.53 30.3 1028 5200 69.5 1454 290 34.47 30.5 1098 5550 70.0 1517 350 35.40 30.7 1170 5910 70.5 1581 418 36.33 30.9 1244 6280 71.0 1647 485			_							
61.5 683 - 19.51 27.1 207 1090 62.0 719 - 20.45 27.3 246 1290 62.5 756 - 21.38 27.5 288 1495 63.0 795 - 22.32 27.8 333 1720 63.5 835 - 23.25 28.0 379 1950 64.0 877 - 24.19 28.2 428 2195 64.5 920 - 25.12 28.4 479 2450 65.0 965 - 26.06 28.7 532 2720 65.5 1012 - 26.99 28.9 587 2995 66.0 1061 - 27.92 29.1 645 3280 67.0 1165 0 29.79 29.5 765 3885 67.5 1220 56 30.73 29.7 828 4200 68.0 1276 112 31.66 29.9 893 4525 68.5 1334 171 32.60 30.1 959 4860 69.0 1393 230 33.53 30.3 1028 5200 69.5 1454 290 34.47 30.5 1098 5550 70.0 1581 418 36.33 30.9 1244 6280 71.0 1647 485 37.27 31.1 1396 7400 72.5 1854 683 <t< td=""><td></td><td></td><td>_</td><td></td><td></td><td></td><td colspan="4"></td></t<>			_							
62.0 719 - 20.45 27.3 246 1290 62.5 756 - 21.38 27.5 288 1495 63.0 795 - 22.32 27.8 333 1720 63.5 835 - 23.25 28.0 379 1950 64.0 877 - 24.19 28.2 428 2195 64.5 920 - 25.12 28.4 479 2450 65.0 965 - 26.06 28.7 532 2720 65.5 1012 - 26.99 28.9 587 2995 66.0 1061 - 27.92 29.1 645 3280 66.5 1112 - 28.86 29.3 704 3580 67.0 1165 0 29.79 29.5 765 3885 67.5 1220 56 30.73 29.7 828 4200 68.0 1276 112 31.66 29.9 893 4525 68.5 1334 171 32.60 30.1 959 4860 69.0 1393 230 35.53 30.3 1028 5200 69.5 1454 290 34.47 30.5 1098 5550 70.0 1517 350 35.40 30.7 1170 5910 70.5 1581 418 36.33 30.9 1244 6280 71.0 1647 485 <			-				1 090			
62.5 756 $ 21.38$ 27.5 288 1.495 63.0 795 $ 22.32$ 27.8 333 1.720 63.5 835 $ 23.25$ 28.0 379 1.950 64.0 877 $ 24.19$ 28.2 428 2.195 64.5 920 $ 25.12$ 28.4 479 2.450 65.5 905 $ 26.06$ 28.7 532 2720 65.5 1.012 $ 26.99$ 28.9 587 2.995 66.0 1.061 $ 27.92$ 29.1 645 3.280 66.5 1.112 $ 28.86$ 29.3 704 3.580 67.0 1.165 0 29.79 29.5 765 3.885 67.5 1.220 56 30.73 29.7 828 4.200 68.0 1.276 112 31.66 29.9 893 4.525 68.5 1.334 171 32.60 30.1 959 4.860 69.0 1.393 230 33.53 30.3 1.028 5.200 69.5 1.454 290 34.47 30.5 1.098 5.550 70.0 1.517 35.0 35.40 30.7 1.170 5.910 71.5 1.744 550 38.20 31.3 1.396 7.440 72.5 1.854 683 40.07 31.7 1.554 7.840			_							
63.0 795 - 22.32 27.8 333 1720 63.5 835 - 23.25 28.0 379 1950 64.0 877 - 24.19 28.2 428 2195 64.5 920 - 25.12 28.4 479 2450 65.0 965 - 26.06 28.7 532 2720 65.5 1012 - 26.99 28.9 587 2995 66.0 1061 - 27.92 29.1 645 3280 66.5 1112 - 28.86 29.3 704 3580 67.0 1165 0 29.79 29.5 765 3885 67.5 1220 56 30.73 29.7 828 4200 68.0 1276 112 31.66 29.9 893 4525 68.5 1334 171 32.60 30.1 959 4860 69.0 1393 230 33.53 30.3 1028 5200 69.5 1454 290 34.47 30.5 1098 5550 70.0 1517 350 35.40 30.7 1170 5910 71.0 1647 485 37.27 31.1 1319 6660 71.5 1714 550 38.20 31.3 1396 7400 72.5 1854 683 40.07 31.7 1554 7840 73.5 2000 <td< td=""><td></td><td></td><td>_</td><td></td><td></td><td></td><td></td></td<>			_							
63.5 835 - 23.25 28.0 379 1950 64.0 877 - 24.19 28.2 428 2195 64.5 920 - 25.12 28.4 479 2450 65.0 965 - 26.06 28.7 532 2720 65.5 1012 - 26.99 28.9 587 2995 66.0 1061 - 27.92 29.1 645 3280 66.5 1112 - 28.86 29.3 704 3580 67.0 1165 0 29.79 29.5 765 3885 67.5 1220 56 30.73 29.7 828 4200 68.0 1276 112 31.66 29.9 893 4525 68.5 1334 171 32.60 30.1 959 4860 69.0 1393 230 33.53 30.3 1028 5200 69.5 1454 290 34.47 30.5 1098 5550 70.0 1517 350 35.40 30.7 1170 5910 70.5 1581 418 36.33 30.9 1244 6280 71.0 1647 485 37.27 31.1 1319 6660 71.5 1714 550 38.20 31.3 1396 7040 72.5 1854 683 40.07 31.7 1554 7840 73.5 2000 </td <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td>			_							
64.0 877 - 24.19 28.2 428 2195 64.5 920 - 25.12 28.4 479 2450 65.5 1012 - 26.06 28.7 532 2720 66.0 1061 - 27.92 29.1 645 3280 66.5 1112 - 28.86 29.3 704 3580 67.0 1165 0 29.79 29.5 765 3885 67.5 1220 56 30.73 29.7 828 4200 68.0 1276 112 31.66 29.9 893 4525 68.5 1334 171 32.60 30.1 959 4860 69.0 1393 230 33.53 30.3 1028 5500 70.0 1517 350 35.40 30.7 1170 5910 70.5 1581 418 36.33 30.9 1244 6280 71.0 1647 485 37.27 31.1 1319 6660 71.5 1714 550 38.20 31.3 1396 7040 72.0 1783 615 39.14 31.5 1474 7430 72.5 1854 683 40.07 31.7 1554 7840 73.6 2322 1080 44.74 32.7 1978 9960 74.5 2153 995 43.81 32.5 1890 9520 75.5 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>										
64.5 920 - 25.12 28.4 479 2450 65.0 965 - 26.06 28.7 532 2720 65.5 1012 - 26.99 28.9 587 2995 66.0 1061 - 27.92 29.1 645 3280 66.5 1112 - 28.86 29.3 704 3580 67.0 1165 0 29.79 29.5 765 3885 67.5 1220 56 30.73 29.7 828 4200 68.0 1276 112 31.66 29.9 893 4525 68.5 1334 171 32.60 30.1 959 4860 69.0 1393 230 33.53 30.3 1028 5200 69.5 1454 290 34.47 30.5 1098 5550 70.0 1517 350 35.40 30.7 1108 550 70.5 1581 418 36.33 30.9 1244 6280 71.0 1647 485 37.27 31.1 1319 6660 71.5 1714 550 38.20 31.3 1396 7040 72.0 1783 615 39.14 31.5 1474 7430 72.5 1854 683 40.07 31.7 1554 7840 73.5 2000 830 41.94 32.1 1719 8660 74.0 <										
65.5 $1\ 012$ $ 26.99$ 28.9 587 $2\ 995$ 66.0 $1\ 061$ $ 27.92$ 29.1 645 $3\ 280$ 66.5 $1\ 112$ $ 28.86$ 29.3 704 $3\ 580$ 67.0 $1\ 165$ 0 29.79 29.5 765 $3\ 885$ 67.5 $1\ 220$ 56 30.73 29.7 828 $4\ 200$ 68.0 $1\ 276$ 112 31.66 29.9 893 $4\ 525$ 68.5 $1\ 334$ 171 32.60 30.1 959 $4\ 860$ 69.0 $1\ 393$ 230 33.53 30.3 $1\ 028$ $5\ 200$ 69.5 $1\ 454$ 290 34.47 30.5 $1\ 098$ $5\ 550$ 70.0 $1\ 517$ 350 35.40 30.7 $1\ 170$ $5\ 910$ 70.5 $1\ 581$ 418 36.33 30.9 $1\ 244$ $6\ 280$ 71.0 $1\ 647$ 485 37.27 31.1 $1\ 319$ $6\ 660$ 71.5 $1\ 714$ 550 38.20 31.3 $1\ 396$ $7\ 040$ 72.0 $1\ 783$ 615 39.14 31.5 $1\ 474$ $7\ 430$ 73.5 $2\ 000$ 830 41.94 32.1 $1\ 719$ $8\ 660$ 74.0 $2\ 076$ 910 42.87 32.3 $1\ 804$ $9\ 080$ 75.5 $2\ 133$ $1\ 60$ 44.74 32.7 $1\ 978$ $9\ 960$ 75.5 2			_							
			_							
66.51 112-28.8629.37043 580 67.0 1 165029.7929.57653 885 67.5 1 2205630.7329.78284 200 68.0 1 27611231.6629.98934 525 68.5 1 33417132.6030.19594 860 69.0 1 39323033.5330.31 0285 200 69.5 1 45429034.4730.51 0985 550 70.0 1 51735035.4030.71 1705 910 70.5 1 58141836.3330.91 2446 280 71.0 1 64748537.2731.11 3196 660 71.5 1 71455038.2031.31 3967 040 72.0 1 78361539.1431.51 4747 430 72.5 1 85468340.0731.71 5547 840 73.0 1 92675041.0131.91 6368 240 73.5 2 00083041.9432.11 7198 660 74.0 2 0769104 2.8732.31 8049 080 74.5 2 1539954 3.8132.51 8909 520 75.0 2 2321 08044.7432.71 9789 960 75.5 2 3131 16045.6832.92 06710 400 76.5 2 4801 258 <td< td=""><td></td><td>-</td><td>-</td><td></td><td></td><td></td><td></td></td<>		-	-							
			-							
			-							
$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrr$										
$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrr$										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$										
70.51 58141836.3330.91 2446 280 71.0 1 64748537.2731.11 3196 660 71.5 1 71455038.2031.31 3967 040 72.0 1 78361539.1431.51 4747 430 72.5 1 85468340.0731.71 5547 840 73.0 1 92675041.0131.91 6368 240 73.5 2 00083041.9432.11 7198 660 74.0 2 07691042.8732.31 8049 080 74.5 2 15399543.8132.51 8909 520 75.0 2 2321 08044.7432.71 9789 960 75.5 2 3131 16045.6832.92 06710 400 76.0 2 3951 24046.6133.12 15810 860 76.5 2 4801 25847.5533.32 25011 320 77.0 2 5661 42048.4833.42 34311 780 77.5 2 6551 50049.4136.62 43812 260 78.0 2 7461 58050.3533.82 53512 740 78.5 2 8391 68051.2834.02 63213 230										
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$										
71.51 714 550 38.20 31.3 1 1396 7040 72.0 1 783 615 39.14 31.5 1474 7430 72.5 1 854 683 40.07 31.7 1554 7840 73.0 1 926 750 41.01 31.9 1636 8240 73.5 2 2000 830 41.94 32.1 1719 8660 74.0 2076 910 42.87 32.3 1804 9080 74.5 2153 995 43.81 32.5 1890 9520 75.0 2232 1080 44.74 32.7 1978 9960 75.5 2313 1160 45.68 32.9 2067 10400 76.0 2395 1240 46.61 33.1 2158 10860 76.5 2480 1258 47.55 33.3 2250 11320 77.0 2566 1420 48.48 33.4 2343 11780 77.5 2655 1500 49.41 36.6 2438 12260 78.0 2746 1580 50.35 33.8 2535 12740 78.5 2839 1680 51.28 34.0 2632 13230										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										
76.02 3951 24046.6133.12 15810 86076.52 4801 25847.5533.32 25011 32077.02 5661 42048.4833.42 34311 78077.52 6551 50049.4136.62 43812 26078.02 7461 58050.3533.82 53512 74078.52 8391 68051.2834.02 63213 230										
76.52 4801 25847.5533.32 25011 32077.02 5661 42048.4833.42 34311 78077.52 6551 50049.4136.62 43812 26078.02 7461 58050.3533.82 53512 74078.52 8391 68051.2834.02 63213 230										
77.02 5661 42048.4833.42 34311 78077.52 6551 50049.4136.62 43812 26078.02 7461 58050.3533.82 53512 74078.52 8391 68051.2834.02 63213 230							10 860			
77.52 6551 50049.4136.62 43812 26078.02 7461 58050.3533.82 53512 74078.52 8391 68051.2834.02 63213 230										
78.02 7461 58050.3533.82 53512 74078.52 8391 68051.2834.02 63213 230										
78.5 2 839 1 680 51.28 34.0 2 632 13 230							12 260			
							13 230			
79.0 2 934 1 780 52.22 34.2 2 731 13 730	79.0	2 934	1 780	52.22	34.2	2 731				

* This is the maximum discharge of an individual spillway bay or regulator. Total discharge is calculated by adding the contributions of each gate or regulator. There are two (2) regulators to five (5) spillway bays.

** This assumes that all gates and sluices are closed. Discharges through the spillway have to be added to the above figures to calculate the actual inflow into the reservoir.

*** The temporary storage above normal Full Supply Level of EL 67.0.

Doc: FM QD 1.1

Revision No: 4

Date: 17/04/02

TABLE E2 CONTROLLED GATE DISCHARGES

Wivenhoe Dam Gate Opening (m of Tangential Travel)

0oc: FM OD 1.1	Water EL (m AHD)	0.	0	0.5	1.0	1.5	2.0	2.53. 03. 54. 04.	55.0	5.5	6.0	6.5	7.0	7.5	8.0	8.5	9.0	9.5	10.0	10.5	11.0	11.5 12. 01	2.5	13.0	13.5	14.0) 14	.5 15	i.0 15	i.5 16	0 16.	5 17.0
DD 1 1	67.0 67.2		0 49 0 49		98 99	146 148	194 196	240 285 329 372 413 453 243 288 333 376 418 458		492 498	530 537	567 574	603 611	639 648	675 684	709 720	744 755	765 790														
	67.4		0	50	100	149	198	245 291 336 380 422 464		504	543	582	619	657	693	730	766	802	815													
	67.6		0	50	101	151	200	248 294 340 384 427 469		510	550	589	627	665	702	740	777	814	841													
	67.8		0	51	102	152	202	250 297 343 388 432 474		515	556	596	635	673	712	750	787	825	863	867												
R	68.0		0	51	103	154	204	253 300 347 392 436 479		521	562	603	642	682	721	759	798	837	876	893												
evis	68.2		0	52	104	155	206	255 303 350 396 441 484		527	569	610	650	690	729	769	808	848	888	919						UNCC	NTRO	LLED				
Revision No:	68.4		0	52	105	156	207	257 306 354 400 445 489		532	575	616	657	698	738	778	818	859	899	940	946						DISC	HARG	E			
No	68.6		0	53	105	158	209	260 309 357 404 450 494		538	581	623	665	706	747	788	829	870	911	953	973											
 ა	68.8		0	53	106	159	211	262 312 360 408 454 499		543	587	630	672	714	755	797	838	880	923	965	1000											
	69.0		0	54	107	160	213	264 315 364 412 458 504		549	593	636	679	722	764	806	848	891	934	977	1022	1028										
Da	69.2		0	54	108	162		267 317 367 415 463 509		554	599	643	686	729	772	815	858	901	945		1035											
Date:	69.4		0	54	109	163	217	269 320 370 419 467 514		560	605	649	693	737	780	824	868	912	956	1001	1047	1084										
28/	69.6		0	55	110	164		271 323 373 423 471 518		565	611	656	700	744	789	833	877	922	967			1107 1112										
28/08/01	69.8		0	55	111	166	220	273 326 377 427 475 523		570	616	662	707	752	797	842	887	932	978	1025	1072	1121 1141										
	70.0		0	56	112	167	222	276 328 380 430 479 528		575	622	668	714	759	805	850	896	942	989	1036	1085	1134 1170										
	70.2		0	56	112	168	224	278 331 383 434 484 532		580	628	674	721	767	813	859	905	952	1000	1048	1097	1147 119 8 1	1199									
	70.4		0	56	113	170	225	280 334 386 437 488 537		586	633	680	727	774	821	867	914	962	1010	1059	1109	1160 121 2 1	1229									
	70.6		0	57	114	171	227	282 336 389 441 492 542		591	639	687	734	781	828	876	923		1020			1173 122 6 1										
	70.8		0	57	115	172	229	284 339 392 445 496 546		596	644	693	741	788	836	884	932	981	1031	1081	1133	1185 123 9 1	1289									
P	71.0		0	58	116	173	230	286 341 395 448 500 551		601	650	699	747	795	844	892	941	991	1041	1092	1144	1198 125 2 1	309	1319								
age	71.2		0	58	117	175	232	289 344 398 452 504 555		605	655	705	754	802	851	900	950	1000	1051	1103	1156	1210 126 61	323	1349								
36	71.4		0	58	117	176	234	291 347 401 455 508 559		610	661	710	760	809	859	908	959					1222 127 9 1										
Page 36 of 55	71.6		0	59	118	177	235	293 349 404 458 512 564		615	666		766	816	866	916						1234 129 2 1										
55	71.8		0	59	119	178	237	295 352 407 462 515 568		620	671	722	773	823	874	924	976	1028	1081	1135	1190	1246 130 4 1	364	1425	1443							
	72.0		0	60	120	180	239	297 354 410 465 519 572		625	676	728	779	830	881	932	984	1037	1091	1145	1201	1258 131 7 1	377	1439	1474							
	72.2		0	60	121	181	240	299 357 413 469 523 577		629	682	733	785	837	888	940	993	1046	1100			1270 133 0 1										
	72.4		0	60	121	182	242	301 359 416 472 527 581		634	687	739	791	843	895	948	1001	1055	1110	1166	1223	1282 134 2 1	404	1468	1533	153	3					
	72.6		0	61	122	183	243	303 361 419 475 531 585		639	692	745	797	850	903	956	1009	1064	1119	1176	1234	1293 135 4 1	417	1482	1548	1570)					
1	72.8		0	61	123	184	245	305 364 422 478 534 589		643	697	750	803	856	910	963	1018	1073	1129	1186	1245	1305 136 7 1	430	1496	1563	1603	3					

Doc: FM QD 1.1 Revision No: 3 Date: 28/08/01

Page 36 of 55

Doc: F	Wiven	hoe Da	m	Ga	te O	pen	ing	(m o	f Ta	nger	tial	Travel)																						
Doc: FM QD 1.1	Water EL (m AHD)	0.0	0.5	1.0	1.5	2.0	2.5	3.0	3.5	4.0	4.5	5.0 5.5	6.0	6.5	7.0	7.5	8.0	8.5	9.0	9.5	10.0	10.5	11.0	11.5	12.0	12.5	13.0	13.5	14.0	14.5	15.0	15.5	16.0	16.5	17.0
	73.0	0	62	124	185	247	307	366	425 4	82 5	38 59	3 648	702	756	809	863	917	971	1026	1081	1138	1196	1255	1316	1379 14	43	1509	1577	1636						
	73.2	2	62 1	24	187	248	309	369	427 4	85 5	42 59	7 653	707	761	815	869	924	978	1034	1090	1147	1206	1266	1327	1391 14	56	1523	1592	1663	1669	1	UNCON.	ROLLE	D	
	73.4	6	62 1	25	188	250	311	371	430 4	88 5	45 60	2 657	712	767	821	876	931	986	1042	1099	1156	1216	1276	1339	1403 14	69	1536	1606	1678	1702		I	DISCHAR	RGE	
	73.6	11	64	126 1	89	251	313	373	433 4	91 5	49 60	6 662	717	772	827	882	937	993	1050	1107	1166	1225	1287	1350	1414 14	81	1550	1620	1693	1736					
Rev	73.8	17	69	127 1	90	253	315	376	436 4	95 5	53 61	0 666	722	778	833	888	944	1001	1058	1116	1175	1235	1297	1361	1426 14	94	1563	1635	1708	1770					
Revision No:	74.0	00	74	400	404	054	047	070	400.4	00 F	50.04	4 674	707	700		005	054	4000	4005	4404		40.45	4007	4070	4400 45		4570	40.40	4700	4000	4004				
n Z	74.0 74.2	23 31			191 192						56 61 60 61			783 788		895 901	951 958	1008 1015	1065 1073	1124 1132	1184 1192	1245 1254	1307 1317	1372 1382	1438 15 1449 15		1576 1589	1648 1662	1723 1738	1800 1815	1804 1838				
0:3	74.4	39		139							63 62			793		907	964	1013	1073	1140	1201	1264	1327	1393	1461 15		1602	1676	1752	1831	1873				
	74.4	47		145							67 62			799		913	971	1022	1089	1140	1210	1204	1327	1404	1472 15		1615	1690	1767	1846	1908				
	74.8	56				_					70 62			804		919	978	1036	1096	1157	1219	1282		1414	1483 15			1703			1943				
	14.0		100	100	200	202	024	001	440 0	100	10 02	0 000	140	004	002	010	570	1000	1000	1101	1210	1202	1041	1414	1400 10	• •	1020		nor	1001	1040				
D	7	66	112	161	213	267	326	390	452 5	13 5	74 63	3 692	751	809	867	926	984	1044	1104	1165	1227	1291	1357	1425	1494 15	66	1640	1717	1795	1876	1960	1978			
Date:	5.0 75.2	76	121	169	220	274	330	392	455 5	16 5	77 63	7 697	756	814	873	932	991	1051	1111	1173	1236	1301	1367	1435	1506 15	78	1653	1730	1809	1891	1976	2013			
24/8/98	75.4	87									81 64			819		938	997	1057	1119	1181	1245	1310	1377	1446	1517 15		1665	1743	1823		1992	2049			
86/8	75.6	98									84 64		765	824		944	1004	1064	1126	1189	1253	1319	1386	1456	1527 16		1678	1756	1837		2007	2085			
	75.8	109	152 1	98	247	298	350	405	463	525 5	87 64	9 709	769	829	889	949	1010	1071	1133	1197	1261	1328	1396	1466	1538 16		1690	1769	1851	1936	2023	2112	2121		
					OPPIN																														
_	76.0	121	164 2	09	257	307	359	412	468	528 5	91 65	2 713	774	834	895	955	1016	1078	1141	1205	1270	1337	1405	1476	1549 16	24	1702	1782	1865	1950	2038	2129	2158		
Page 37	76.2	133	175 2	20	268	317	368	421	475 5	32	594 65	6 718	779	839	900	961	1023	1085	1148	1212	1278	1346	1415	1486	1560 16	36	1714	1795	1878	1965	2053	2145	2194		
: 37	76.4	146	187 2	32	279	327	378	429	483 5	39	597 66	0 722	783	844	906	967	1029	1092	1155	1220	1286	1354	1424	1496	1570 16	47	1726	1808	1892	1979	2069	2161	2231		
of	76.6	159	200 2	44	290	338	388	439	492 5	466) 3	664 726	788	849	911	973	1035	1098	1162	1228	1295	1363	1434	1506	1581 16	58	1738	1820	1905	1993	2084	2177	2268		
55	76.8	173	213	257	302	350	399	449	501	554	610	668 730	792	854	916	978	1041	1105	1170	1235	1303	1372	1443	1516	1591	1669	1750	1833	1919	2007	2099	2193	2289	2306	
					OPPI																														
	77.0	186		70		362						4 734	797	859		984	1047	1112	1177	1243	1311	1380	1452	1526	1602 16		1762	1845	1932	2021	2113	2208	2306	2343	
	77.2	200		83							27 68			864		990	1054	1118	1184	1250	1319	1389	1461	1536	1612 16		1773	1858	1945			2224		2381	
	77.4	215		97		387					37 69		806			996	1060	1125	1191	1258	1327	1398	1470	1545	1622 17		1785	1870	1958	2049	2143	2239	2339	2419	
	77.6	230		11							47 70			873		1001	1066	1131	1198	1265	1335	1406	1479	1555	1633 17		1796	1882	1971	2063	2157		2355	2457	0.400
I	77.8	245									58 71				942	1007	1072		1205	1273	1343	1414	1488	1564	1643 17		1808	1894	1984			2270			2496
	78.0	260	299 3	40	383	428	474	522	570 6	19 6	70 72	2 /75	831	888	948	1012	1078	1144	1211	1280	1351	1423	1497	1574	1653 17	35	1819	1907	1997	2090	2186	2285	2387	2492	2535

APPENDIX F SOMERSET DAM TECHNICAL DATA

	510101		Jein meer	ARGE FOR SOMERSET DAM								
Lake level	Reservoir Capacity 10 ⁶ m ³	Temporary Flood Storage 10 ⁶ m ³	Net Inflow per 1mm rise per hour	* Discharge per Regulator	* Discharge per Sluice	* Discharge per Spillway Bay 3'	Maximum Available Discharge					
M AHD	10° m°	10° m°	m ³ /sec	m ³ /sec	m ³ /sec	m ³ /sec	m ³ /sec					
90.0 90.5 91.0 91.5 92.0 93.5 94.0 94.5 95.0 95.5 96.0 96.5 97.0 97.5 98.0 98.5 99.0 99.5 100.0 100.5 101.0 101.5 102.0 102.5 103.0 103.5 104.0 105.5 106.0 105.5 106.0 106.5 107.0 107.5	$\begin{array}{c} 120.3 \\ 129.5 \\ 139.3 \\ 149.6 \\ 160.5 \\ 172.0 \\ 184.1 \\ 196.7 \\ 210.0 \\ 224.0 \\ 238.5 \\ 253.6 \\ 269.3 \\ 285.6 \\ 302.7 \\ 320.7 \\ 339.5 \\ 359.2 \\ 379.8 \\ 401.4 \\ 428.9 \\ 447.5 \\ 472.2 \\ 498.0 \\ 524.9 \\ 553.1 \\ 582.6 \\ 613.2 \\ 645.1 \\ 678.3 \\ 712.7 \\ 748.3 \\ 785.2 \\ 823.4 \\ 863.1 \\ 904.0 \end{array}$	$\begin{array}{c} & & & & \\ & & & & \\ & & & & \\ & & & & $	$\begin{array}{c} 5.29\\ 5.50\\ 4.88\\ 5.28\\ 5.68\\ 6.09\\ 6.79\\ 7.10\\ 7.43\\ 7.78\\ 8.15\\ 8.54\\ 8.95\\ 9.37\\ 9.81\\ 10.28\\ 10.76\\ 11.25\\ 11.77\\ 12.31\\ 13.28\\ 13.83\\ 14.39\\ 14.95\\ 15.53\\ 16.11\\ 16.70\\ 17.30\\ 17.90\\ 18.52\\ 19.14\\ 19.78\\ 20.42\\ 21.07\\ 21.73\\ 22.39\\ \end{array}$	$\begin{array}{c} 57\\ 58\\ 58\\ 59\\ 60\\ 60\\ 61\\ 62\\ 62\\ 63\\ 64\\ 64\\ 65\\ 66\\ 66\\ 67\\ 68\\ 69\\ 69\\ 70\\ 70\\ 70\\ 71\\ 72\\ 72\\ 73\\ 73\\ 74\\ 74\\ 75\\ 75\\ 76\\ 76\\ 76\\ 77\\ 78\\ 78\\ 78\end{array}$	163 165 167 170 172 174 176 179 181 183 185 187 189 191 193 195 197 199 201 203 205 207 209 211 212 214 216 223 225 226 230 232		$\begin{array}{c} 1 529\\ 1 550\\ 1 572\\ 1 593\\ 1 614\\ 1 635\\ 1 655\\ 1 676\\ 1 695\\ 1 715\\ 1 735\\ 1 754\\ 1 773\\ 1 792\\ 1 810\\ 1 829\\ 1 847\\ 1 865\\ 1 883\\ 1 901\\ 1 918\\ 1 937\\ 1 989\\ 2 076\\ 2 189\\ 2 325\\ 2 482\\ 2 659\\ 2 854\\ 3 067\\ 3 296\\ 3 542\\ 3 803\\ 4 079\\ 4 370\\ 4 675\\ \end{array}$					

 Table F-l

 STORAGE AND DISCHARGE FOR SOMERSET DAM

This is the maximum discharge of an individual gate or regulator. Total discharge is calculated by adding the contributions of each gate or regulator.

Regulator- Discharge regulator valve of which there are four (4).Sluice- Sluice gate of which there are eight (8).Spillway- Overflow section of dam controlled by eight (8) radial gates.Temporary Flood- The temporary storage above the normal full supply level of El 99 m (AHD)Storage

Doc: FM QD 1.1

*

Revision No: 4

Date: 17/04/02

APPENDIX G WIVENHOE DAM GATE OPERATION CONSIDERATIONS

Full size pl ans of Wivenhoe D am, and Operations and M aintenance Manuals for Wivenhoe Dam are held by the Corporation and the Headworks Operator and a re available at the site. Operations and Maintenance Manu als relevant to the flood operation of the gates are:

- (a) "Master Manual and Drawings."
- (b) "Radial and Penstock Gate Hoists and Drawings."

G.1. SPILLWAY OPERATION PRINCIPLES

The radial gates are sequentially numbered from 1 to 5 from left to right looking in the downstream direction. Appendix I shows the general arrangement of the spillway area.

The flip bucket spillway is designed to control the discharge from the reservoir and to dissipate the energy of t he discharge. The flip th rows the discharge clear of the concrete structures in to a plung e pool where the energy is dissipated by turbulence. Under non-symmetric flow conditions, or wh en gates 1 and 5 are not operating, the discharge jet may impinge on the walls of the plunge pool, which has been excavated into erodible sandstone rock, and cause non-predictable erosion. Upstream migration of this erosion is to be avoided. The wing walls adjacent to the flip bucket deflect the discharge away from the walls of the plunge pool when gates 1 and 5 are operated.

Therefore in operating the spillway, the principles to be observed are, in order of priority:

- (i) The discharge jet into the plunge pool is not to impinge on the right or left walls of the plunge pool.
- (ii) The flow in the spillway is to be symmetrical.

The main purpose of gating the spillway is to exercise maximum control over the flow in the Brisbane River insofar as river flows in excess of 4 000 m^3 /sec cause damage to urban areas downstream. The gates also allow the routing of much larger floods with substantial flood mitigation being achieved.

G.2. RADIAL GATE OPERATING PRINCIPLE

Each radial gate consists of a cylindrical upstream skinplate segment that is attached to the radial arms. The cy lindrical axis is ho rizontal. Each gate ro tates about two spherical trunnion bearings that are on this axis.

The position of the gate is controlled by hydraulically driven winches that are located on the piers beside the gates. Wire ropes are attached to the downstream face of the skin plate through a pulley system. The hydraulic motors work off a common pressure manifold and under perfectly matched conditions, will give an equal lifting force to each side of the gate. This system does not sense rope travel and will take up slack rope. It cannot prevent or correct skewing of the skin plate segment between the piers. If skewing o ccurs, skids will come into contact with t he si de seal p lates to limit movement. It is not possible to operate a winch independently of the other winch attached to the gate.

When the hydraulic motors are not en ergised, the gates are held in position by spring loaded friction brakes on the winches. There are two brake bands per winch and each band is capable of supporting half the weight of the gate. One winch can support the total weight of a gate on both its brake bands but not on one.

G.3. RADIAL GATES OPERATING LIMITATIONS

G.3.1. Opening and Closing Rate

The aperture opening rate of each gate is limited to 500 mm/minute.

Aperture movement is limited by a programmable timer that stops gate movement after a set period of time.

G.3.2. Al ternate Consecutive Operation

To maintain symmetry of discharge in the spillway, either gates 1 and 5 or gates 2 and 4 are to be operated in alternate consecutive increments. The power for gate operation comes from two independent electric hy draulic pumps, each of which is capable of operating one gate at a time.

The normal hydraulic pressure source for each gate is as follows:

GATES	POWER SOURCE
Radial Gates 1 & 2, and Penstock Gate Hoist	Electric hydraulic pump 1
Radial Gates 3, 4 & 5	Electric hydraulic pump 2

In the event that an electric hydraulic pump fails, hydraulic pressure can be redirected from the other power source, but concurrent operation of more than one gate from a single power source is not possible.

Revision No: 4

G.3.3. Ov ertopping

While t he radi al g ates h ave been designed to w ithstand overtopping, it should be avoided if possible. The reservoir lev els and the structural state of the radial gates when in the closed position are as follows:

Reservoir Level m AHD	Condition	Radial Gate Stress Condition with Gate Closed
73	Top of closed gate	Normal
77	Design Flood Level	33% Overstress
79	Crest Level	Critical

Once overtopped, the gates become inoperable when the lifting tackle is fouled by debris from the overflow. The gates remain structurally secure until the reservoir level exceeds EL 77. The ability to control floods however may be lost.

G.3.4. G ate Dropping

Under no circumstances are the gates to be dropped. The lower skin plate sections are overstressed if a freefall of 60 mm is arrested by the seal plate on the spillway.

If a gate becomes stuck in an open position, it is to be freed by applying positive lifting forces. Under no circumstances are the winches to be unloaded and the direct weight of the gates used to yield the obstruction.

G.3.5. Operation in High Wind

Other than in periods of mitigation of medium and major floods, the gates are not to be raised or lowered when clear of water, duri ng periods of high winds. The gates c an however, be held on the brakes in any position in the presence of high wind.

The term "high wind" means any wind that ca uses twisting or movement of the gate. While a precise figure cannot be placed on these v elocities, further experience over time may allow a figure to be determined.

This limitation is required to prevent the gate from twisting from skew on one side to skew on the other side. While the gate is being raised or lowered, skewing cannot be prevented by the hydraulic lifting system and any im pact forces en countered may damage the gate.

G.3.6. Ma intenance

No more than one gate is to be inoperable at any one time for maintenance. The maintenance is to be scheduled so that the spillway bay can be cleared of obstructions in a reasonable time to allow its use in the event of major flooding.

G.4. BULKHEAD GATE OPERATING LIMITATIONS

The bulkhead gate can be used to control discharge in an emergency situation where a radial gate is inoperable. It is transported to, and lowered upstream of the inoperable radial gate by means of the gantry crane. The following conditions apply:

(a) The bulkhead gate can always be lowered with any type of underflow; and

(b) It is not possible to raise the bulkhead gate once it has been lowered past certain levels depending on upstream conditions without there being a pool of water between it and the radial gate. (Department of Primary Industries Wivenhoe Dam Design Report, September 1995 refers).

It is thus possible to preserve storage by effectively closing the spillway even with one radial gate inoperable. It will not be possible to raise the bulkhead gate until the radial gate behind has been repaired and is again storing water between the bulkhead gate and itself.

The bulkhead gate is not to be used for flood re gulation until the reservoir level is falling and not likely to rise within the period needed to repair the inoperable radial gate.

G.4.1. Opening and Closing Rates

The spil lway gantry crane is to be used to raise and lower the bulkhead gate. The crane op erates at two speeds, 1.5 and 3.0 m/min. When within the bulkhead gate guides, the bulkhead gate is to be moved only at 1.5 m/min.

G.4.2. Ov ertopping

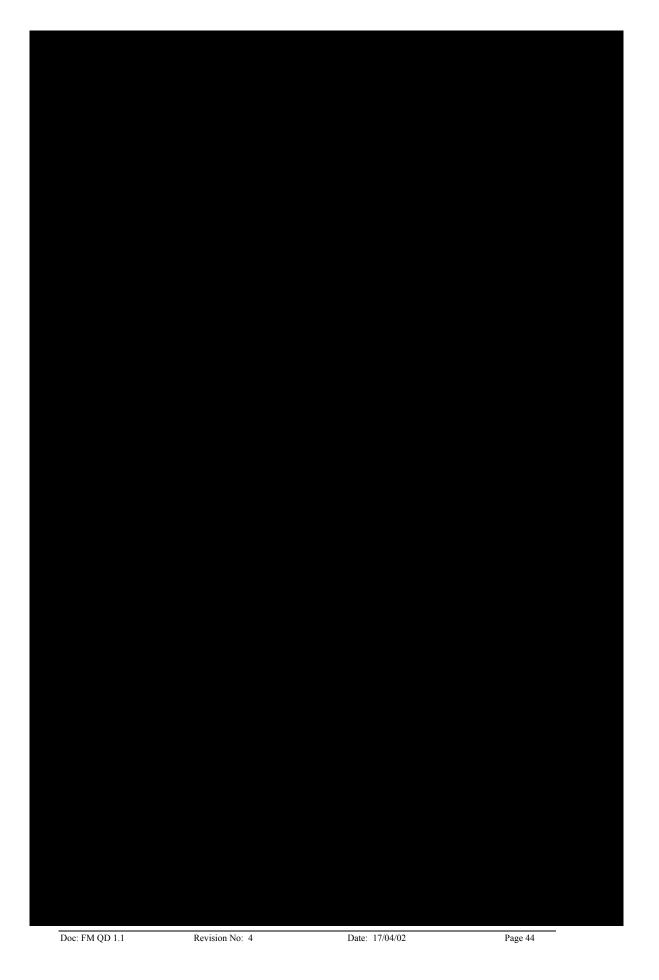
In the event that the bulkhead gate is overtopped (reservoir level exceeds EL 69 when bulkhead gate is closed), it cannot be removed unless a pool of water fills the space between it and the radial gate behind. The closed bulkhead becomes critically stressed when the reservoir level overtops it to EL 71.4.

It is not possible to engage the lifting tackle while overtopping is occurring. While there is any risk that the bulkhead gate may be overtopped, the lifting gear is to be left engaged so th at the gate can b e raise d on ce the down stream radial g ate bec omes operable.

G.4.3. Di scharge Regulation

In the event that a radial gate is inop erable in a partially open position, the bulkh ead gate can be u sed for flow regulation provided that the lower lip of the radial gate is clear of the underflow jet.

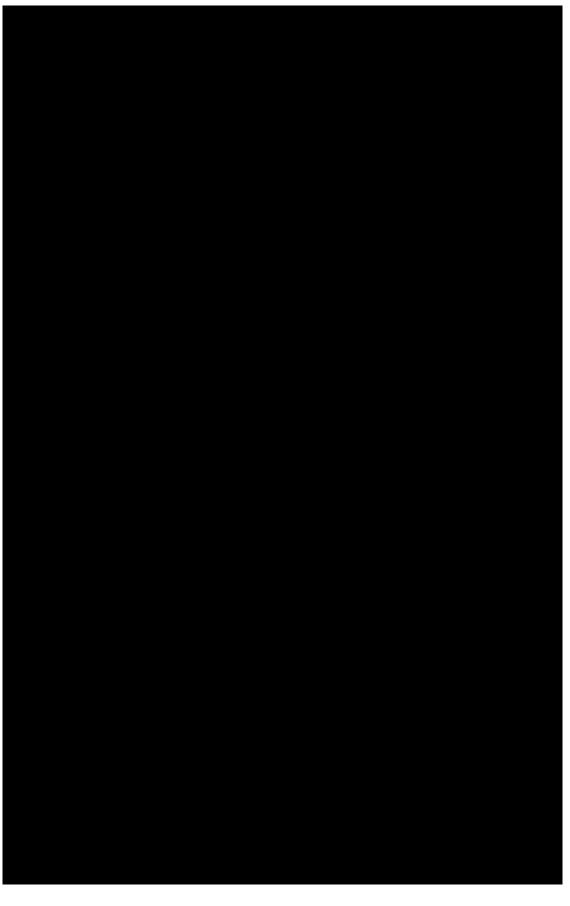
Where a pool exists between the bulkhead gate and a radial gate under flow conditions, the bulkhead gate will be subjected to additional pull-down and possibly subjected to vortex-induced vibrations. When this condition occ urs, the bulkhead gate is to be lowered to dewater the pool. The bulkhead gate can then be adjusted to regulate the flow provided the underflow jet remains below the lower lip of the radial gate.


Doc: FM QD 1.1

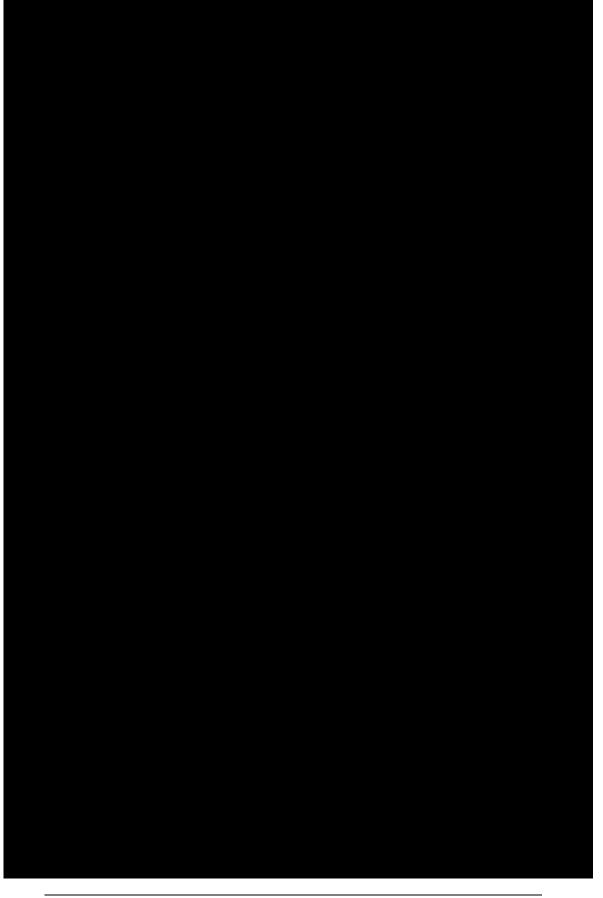
Revision No: 4

Revision No: 4

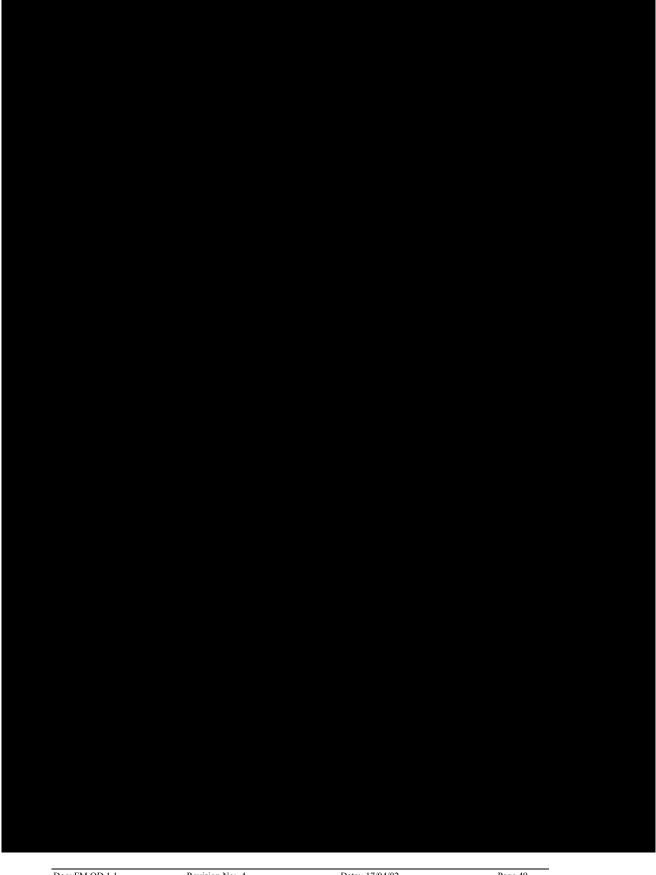
Date: 17/04/02


Revision No: 4

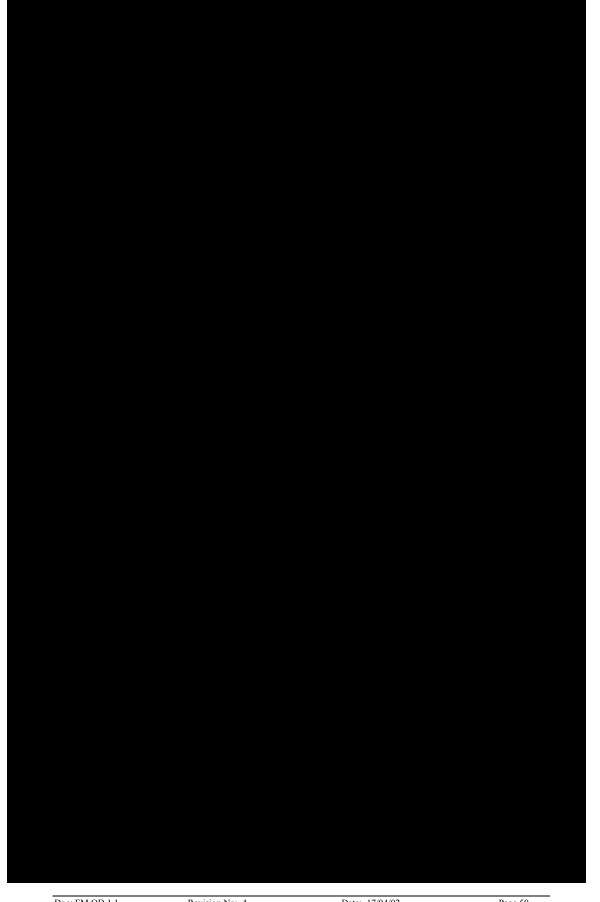
Date: 17/04/02


Revision No: 4

Date: 17/04/02


Revision No: 4

Date: 17/04/02


Revision No: 4

Date: 17/04/02

Revision No: 4

Date: 17/04/02

Revision No: 4

Date: 17/04/02

This assess ment assumes certa in operational proce dures and assumes that the Da m would fail once the embankment crest level of 79.15 was reached.

I.6. SO MERSET DAM FLOODS

Somerset Dam flood s were esti mated using the rainfalls and runoff rou ting model already discussed. Inflows to Somerset Dam, assuming the dam to be in existence and full, were calculated, as well as flow at the site without the dam in the catchment. The forty-eight hour PMP storm event was found to be critical, though the long duration PMP's produced very large flood volumes. Table I-6 lists results for the forty-eight hour duration storms.

Table I-6Somerset Dam Floods(for two-day storm duration)

AEP %	Peak Inflow (m ³ /sec)	Peak Outflow (m ³ /sec)	Flood Volume (ML)	Peak Lake Level (m AHD)
13	,500	1,700	421,000	103.5
0.1 4	,500	2,600	690,000	104.5
0.01 6	,800	4,700	1,042,000	107.5
0.001 9	,200	6,300	1,412,000	109.3
PMF	11,100 *	7,500 *	1,694,000 *	110.3 *

+ - NB. This duration does NOT give the maximum Peak Inflow for a given AEP * - Overtopped, estimated flow based on no dam failure

Studies conducted by structural engineers indicate that Somerset could withstandovertopping to EL 111.7 mAHD.

I.7 FLOOD CONTROL OPERATION MODEL

Floods in the Brisba ne River catchment above Wivenhoe Dam can originate in either the Stanley River or upper Brisbane River catchment or both. Both of the dams are capable of being operated in a number of ways, each of which will reduce the flow downstream. However, i n order to ac hieve m aximum reduction of fl ooding downstream of Wivenhoe Dam, it was necessary to review the operations at Somerset and Wivenhoe Dams using a flood operations simulation model.

The most recent flood studies have reviewed the basic hydrologic algorithms in the operational m odels u sed in t he earlier study and modified them t o incorporate additional features relating to gate openings and closings. The revised design flood hydrology and operational model algorithms were then used to re-examine the original five possible operational procedures for each of So merset Dam and Wivenhoe Dam, giving twenty-five possible c ombinations t o b e re-considered. The procedures previously de veloped f or Wivenhoe Da m were de signed so that initial re lease

operations did not adversely affect later operations in the event of later rainfall causing the magnitude of the flood to exceed the original estimate.

The pro cedures previously developed were also designed to restrict flooding in the lower catchment to the lowest level of the following categories where practicable:

(i) low level bridges submerged, Fernvale bridge open;

(ii) all bridges except Mt. Crosby Weir and to Fernvale bridges submerged;

(iii) all bridges submerged, no damage to urban areas;

(iv) damage to urban areas due to peak flow from downstream catchment, no releases from Wivenhoe Dam contributing to peak flow;

(v) extensive damage to urban are as due t o combined W ivenhoe D am releases and downstream flo w, Wivenhoe Dam rel ease c omponent o f peak flo w minimum practicable.

The pre vious fl ood studies recommended t hat on e procedure b e selected for the operation a t So merset Dam. Th is procedure had t wo a dvantages over t he other procedures tested. Firstly, it was feasible for all magnitudes of Stanley River floods tested and, secondly, it was the sim plest procedure to carry out. The re-analysis confirmed this conclusion.

The previous flood studies concluded that procedures for Wivenhoe Dam be reduced to four by combining two procedures into one. The resulting four procedures formed a hierarchy and the procedure to be adopted advances to the next procedure as the flood magnitude increases. The re-analysis confirmed this conclusion.

A Real Time Flood Operations Model for Somerset and Wivenhoe has been developed as part of the "Brisbane River and Pine River Flood Studies". This model incorporates the revised operational algorithms.

* Assume no failure of Wivenhoe Dam or Somerset Dam

Revision No: 4

APPENDIX J DRAWINGS

Doc: FM QD 1.1

Revision No: 4

Date: 17/04/02

APPENDIX K BRISBANE RIVER CATCHMENT

Doc: FM QD 1.1

Revision No: 4

Date: 17/04/02

Page iii: [1] Deleted	guppy	22/05/2002 10:07:00 AM	
1 INTRODUCTIO 1.1 Preface	N		1
	of Terms		
1	of Manual thority		
	on and Effect		
	ffect		
	ce of Manual		
	for Variations to Manual		
	on of Manual to Use Discretion		
· · · · · ·			
	OF OPERATIONS Operation		
v	signation of Senior Flood Oper		
2.1.2 Desi	gn ation of Flood Operations l	Engineer	7
	tions and Experience of Engine		
-	ialifications erience		
-	of Authorities		
	ration Arrangements		
	pilities of the Senior Flood Oper		
	oilities of the Flood Operations le Discretion		
2.9 Report			
10			
3 FL OOD MITIC	GATION OBJECTIVES		11
3.1 General			
11 2 2 Starrastarras	Safatry of Dama		11
3.2 Structural 3.2.1 Wiv	Safety of Dams	•••••••••••••••••••••••••••••••••••••••	
	erset Dam		
3.3 Extreme	Floods and Closely Spaced Larg	ge Floods	11
	on of Urban Areas		
3.5 Disruption 3.6 Provision			
3.7 Disruption	of Pumping Pool for Power Sta to Navigation		
•	SIFICATION		
	ITORING AND WARNING SY		
	1		
	f Documentation		
5.4 Key Refer	rence Gauges	•••••	16
5.5 Reference	Gauge Values		16
	TIONS		
6.1 Communica	ations between Staff		17

6.2 Dissemin ation of Information	
6.3 Nature of Information	
6.4 Release of Information to the Public	
7 REVIE W	10
7.1 Introduction	
7.2 Personnel Training	
7.3 Monitoring and Warning System	
7.4 Communications Networks	
7.5 O perational Review	
7.6 Five Yearly Review	
8 WIVENHOE DAM	
8.1 Introduction	
8.2 Initial Action	
8.3 Regulator and Gate Operation Procedures	
8.4 Flood Control Procedures	
8.5 Closing Procedures	
8	
9 SO MERSET DAM	
9.1 Introduction	
9.2 Initial Action	
9.3 Regulator and Gate Operation Procedures	
9.4 Flood Control Procedure	26
10 EMERG ENCY	
10.1 Introduction	
10.2 Overtoppin g of Dams	
10.3 Communication s Failure	
10.4 Wivenhoe Dam Emergency Procedure	
10.5 Somerset Dam Emergency Procedure	
10.6 Equipment Failure	
Toro - Tarburont - I and communication and a second	,